
HAL Id: hal-01936500
https://hal.science/hal-01936500

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistent neighborhood search for one-dimensional bin
packing and two-dimensional vector packing

Mirsad Buljubašić, Michel Vasquez

To cite this version:
Mirsad Buljubašić, Michel Vasquez. Consistent neighborhood search for one-dimensional bin packing
and two-dimensional vector packing. Computers and Operations Research, 2016, 76, pp.12 - 21.
�10.1016/j.cor.2016.06.009�. �hal-01936500�

https://hal.science/hal-01936500
https://hal.archives-ouvertes.fr

Consistent neighborhood search for one-dimensional bin packing and
two-dimensional vector packing
Ecole de

Keyword
Tabu se
Consiste
Bin pac
Vector b

n Corr
E-m

michel.v
Mirsad Buljubašić n, Michel Vasquez

s Mines d'Alès, LGI2P Laboratory, Nîmes, France

s local search is to
ng a variant of the
a b s t r a c t

We propose a consistent neighborhood search approach for solving the one-dimensional bin packing problem (BPP). The goal of thi
derive a feasible solution with a given number of bins, m, starting from m U= −B 1, where UB is an upper bound obtained by usi
classical First Fit heuristic. To this end, the local search was performed on a partial solution with m − 2 bins, i.e. a solution containing
 a subset of items
packed into m − 2 bins without capacity violations and a set of non-assigned items, with the objective of minimizing the total weight of non-assigned
items and, ultimately, packing all the non-assigned items into two bins. A partial solution was constructed by deleting bins from the last complete
g the it
 featurin
 minim
ra-mete
o or be
publish
 was al
imal or
solution. Local moves include rearrangin
tabu search was performed with moves
(unlimited) add/drop moves, in order to
with the same initial solution, same pa
benchmark instances; solutions equal t
considered, successfully outperforming
difficulty for BPP algorithms. The method
benchmarks, in all instances yielding opt
s:
arch
nt neighborhood
king
in packing

esponding author.
ail addresses: mirsad.buljubasic@mines-ales.fr
asquez@mines-ales.fr (M. Vasquez).
ems assigned to a single bin along with non-assigned items, i.e. removing and adding items to the bin. A
g a limited number of items to be added/dropped, plus a hill climbing/descent procedure with general
ize a given objective function. The very same procedure was used for all instances under consideration,
rs, same order of neighborhood exploration, etc. Promising results were obtained for a wide range of
tter than the best known solutions found by heuristic methods were obtained for all the instances
ed results for the particular class of instances hard28, which appears to cause the greatest degree of
so tested on the vector packing problem (VPP) and evaluated for classical two-dimensional VPP (2-DVPP)
best-known solutions.
1. Introduction

Given a set = { … }I n1, 2, , of items with associated weights wi

(= …i n1, ,), the bin packing problem (BPP) consists in finding the
minimum number of bins, of capacity C, required to pack all the
items without violating any of the capacity constraints. In other
words, the goal is to find a partition of items { … }I I I, , , m1 2 such that

∑ ≤ = …
∈

w C j m, 1, ,
i I

i

j

and m is minimum. The bin packing problem is known to be NP-
hard [10]. It is one of the most extensively studied combinatorial
problems and has a wide range of practical applications such as
storage allocation, cutting stock, multiprocessor scheduling and
the loading of flexible manufacturing systems, to name a few. The
(M. Buljubašić),
Vector Packing problem (VPP) is a generalization of BPP with
multiple resources. Item weights wi

r and bin capacities Cr are de-
fined for each resource ∈ { … }r R1, , , and the following constraint
must be satisfied:

∑ ≤ = … = …
∈

w C r R j m, 1, , , 1, , .
i I

i
r

r

j

Without loss of generality, we assume that capacities and weights
are integer-valued.

This paper will present a new improvement heuristic based on
a local search for solving BPP and VPP with two resources (2-
DVPP). The method will first be described in detail for a BPP
problem, followed by adaptations required to solve the 2-DVPP.
The solution is iteratively improved by decreasing the number of
bins being utilized. The procedure works as follows. First, the
upper bound on the solution value, UB, is obtained by a variant of
the First Fit heuristic. Next, an attempt is made to find a feasible
solution with −UB 1 bins, and this process continues until the
lower bound, time limit or maximum number of search iterations

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.06.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.06.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.06.009&domain=pdf
mailto:mirsad.buljubasic@mines-ales.fr
mailto:michel.vasquez@mines-ales.fr

is reached. Apart from the simple lower bound,
∑ =⎡

⎢⎢
⎤
⎥⎥

w

C
i
n

i1 , other

lower bounds developed by Fekete and Schepers [7], Martello and
Toth [13] (bound L3) and Alvim et al. [1] are also used.

In order to find a feasible solution with a given number of bins,
<m UB, a local search is employed. As opposed to the majority of

papers published on BPP, the local search explores partial solutions
that consist of a set of assigned items without any capacity vio-
lation and a set of non-assigned items. The moves rearrange the
items assigned to a single bin along with non-assigned items, i.e.
items are removed and added to the bin. The objective here is to
minimize the total weight of non-assigned items. This local search
on partial configurations is called the Consistent Neighborhood
Search (since only valid partial packings are considered). It has
been proven efficient on several combinatorial optimization pro-
blems [22,24]. Our approach will therefore be referred to as
CNS_BP (Consistent Neighborhood Search for Bin Packing) in the
remainder of the paper.

This search space of partial solutions is explored in two suc-
cessive phases: (1) a tabu search with limited add/drop moves and
(2) a descent with a general add/drop move. This sequence ter-
minates when a complete solution is found or the running time
limit or maximum number of iterations is reached. Additionally,
the algorithm makes use of a simple reduction procedure that
consists in fixing the assignments of all pairs of items that can fill
an entire bin. More precisely, once a set of item pairs (i,j) such that

+ =w w Ci j is identified, the problem can be reduced by deleting
those items (or setting their assignments). This same reduction has
been used in most papers on BPP. It is important to mention that
the reduction procedure does not have a significant influence on
the final results (but can speed up the search) and that no re-
duction is possible for a large proportion of the instances
considered.

This paper is organized as follows. Section 2 will describe re-
levant work. Then, our approach will be introduced in Section 3.
The general framework will be presented first, followed by a de-
scription of all its algorithmic components. A number of critical
remarks and parameter choices will be discussed in Section 4.
Section 5 presents a summary of methodological adaptations to
solve the 2-DVPP. The results of extensive computational experi-
ments performed on the available set of instances, for both the BPP
and 2-DVPP, will be provided in Section 6, followed by a
conclusion.
2. Relevant work

2.1. BPP

There is a large body of literature concerning the one-dimen-
sional bin packing problem. Both exact and heuristic methods have
been applied for solving the problem. Martello and Toth [13]
proposed a branch-and-bound procedure (MTP). Scholl et al. [17]
developed a hybrid method (BISON) that combines a tabu search
with a branch-and-bound procedure based on several bounds and
a new branching scheme. Schwerin and Wäscher [18] offered a
new lower bound for the BPP based on the cutting stock problem,
then integrated this new bound into MTP and achieved high-
quality results. Valerio de Carvalho [21] proposed an exact algo-
rithm using column generation and branch-and-bound.

Gupta and Ho [11] introduced a minimum bin slack (MBS)
constructive heuristic. At each step, a set of items that fits the bin
capacity as tightly as possible is identified and packed into the new
bin. Fleszar and Hindi [9] developed a hybrid algorithm that
combines a modified version of the MBS and the Variable
Neighborhood Search. Their hybrid algorithm performed well in
computational experiments, by producing the optimal solution for
1329 out of the 1370 instances considered (the first two classes of
instances to be discussed in Section 6.1).

Alvim et al. [1] presented a hybrid improvement heuristic
(HI_BP) that uses tabu search to move the items between bins. In
their algorithm, a complete yet infeasible configuration is to be
repaired through a tabu search procedure. Simple “shift and swap”
neighborhoods are explored, in addition to balancing/unbalancing
the use of bin pairs by solving a Maximum Subset Sum problem.
HI_BP performed very well, having obtained the optimal solution
for 1582 out of the 1587 instances considered (the first four classes
of instances to be discussed in Section 6.1).

In recent years, several competitive heuristics have been pre-
sented with results similar to those obtained by HI_BP. Singh and
Gupta [19] proposed a compound heuristic (C_BP) which combines
a hybrid steady-state grouping genetic algorithm with an im-
proved version of Fleszar and Hindi's Perturbation MBS. Loh et al.
[12] developed a weight annealing (WA) procedure, by relying on
the concept of weight annealing to expand and accelerate the
search by creating distortions in various parts of the search space.
The proposed algorithm is simple and easy to implement; more-
over, the authors reported high-level performances, exceeding
those obtained by HI_BP.

Fleszar and Charalambous [8] offered a modification to the
Perturbation-MBS method [9] where a new sufficient average
weight (SAW) principle is introduced to control the average
weight of items packed in each bin (referred to as Perturbation-
SAWMBS). This heuristic outperformed the best state-of-the-art
HI_BP, C_BP and WA algorithms. The authors also reported sig-
nificantly lower quality results for the WA heuristic compared to
those given in Loh et al. [12].

To the best of our knowledge, the most recent work in this area,
is reported in Quiroz-Castellanos et al. [16]. It involves a grouping
genetic algorithm (GGA-CGT) that outperforms all previous algo-
rithms with regard to the number of optimal solutions found,
particularly for the most difficult set of instances hard28. The
authors propose a new set of grouping genetic operators to pro-
mote the transmission of the best genes in the chromosomes. A
new reproduction technique that controls the exploration of the
search space is also presented, as well as a variant of the First Fit
procedure for producing a high-quality initial population.

Brandão and Pedroso [3] devised an exact approach for solving
the bin packing and cutting stock problems based on an Arc-Flow
Formulation of the problem which is then solved with the com-
mercial Gurobi solver. They were able to optimally solve all stan-
dard bin packing instances within a reasonable computation
times, including those instances that were not solved to optimality
by any heuristic method.

2.2. VPP

With regard to the two-dimensional VPP, Spieksma [20] pro-
posed a branch-and-bound algorithm, while Caprara and Toth [4]
reported exact and heuristic approaches as well as a worst-case
performance analysis. A heuristic approach using a set-covering
formulation was presented by Monaci and Toth [15]. Masson et al.
[14] proposed an iterative local search (ILS) algorithm for solving
the Machine Reassignment Problem and VPP with two resources;
they reported the best results for the classical VPP benchmark
instances of Spieksma [20] and Caprara and Toth [4].
3. Proposed heuristic

This section will describe our improvement heuristic. The main
part of the improvement procedure is illustrated in Fig. 1, while

Fig. 1. General improvement procedure.
the pseudo-code of the full procedure is given in Algorithm 1.
The algorithm starts by applying a simple reduction procedure

and by constructing an initial (feasible and complete) solution by
applying the First Fit heuristic on a randomly sorted set of items.
The random sort is used to avoid solutions with many small or big
non-assigned items, which could make the search more difficult or
slower (this is the case, for example, it items are sorted in de-
creasing order). This initial solution, containing UB bins, is then
improved by a local search-based procedure, which represents the
core element of our proposal. More precisely, an attempt is made
to find a complete solution with = −m UB 1 bins by applying a
local search on a partial solution, and this process is repeated until
a lower bound, time limit or maximum number of iterations is
reached (precisely defined later).

Algorithm 1. CNS_BP
rem
com
ran

←S
←m

Wh
m
b

I
←S

en
ove item pairs (i,j) such that + =w w Ci j

pute lower bound LB
domly shuffle the set of items
complete solution obtained by First Fit
number of bins in S
ile >m LB and time limit not exceeded do

← −m 1
uild partial solution P with −m 2 bins ▹ delete 3 bins from S
′ ← ()S CNS P ▹ try to find complete solution with m bins
f solution ′S not complete then TERMINATE

′S
d while
eturn S ▹ return the last complete solution
inp
wh

s
s

en
r

The remainder of this section will describe a procedure aimed
at finding a feasible solution with a given number of bins, m. The
basic idea here is to consider a partial solution with −m 2 bins and
then transform it into a complete feasible solution with m bins.
The partial solution contains a set of items assigned to −m 2 bins,
without any capacity violation, and a set of non-assigned items.
The local search, by rearranging the items, then tries to obtain a
configuration such that the non-assigned items can be packed into
two bins, thus producing a complete feasible solution with m bins.
This procedure is illustrated in Fig. 2.

It should be noted that a complete solution cannot be obtained
if more than two ”big” items (with weight greater than or equal to
half of the bin capacity) are not assigned (i.e., non-assigned items
cannot be packed into two bins). Therefore, the maximum number
of non-assigned big items is limited to two throughout the pro-
cedure. When it is possible to pack the non-assigned items into
two bins, the complete solution is obtained by simply adding the
two new bins to the current set of bins.

The partial solution with −m 2 bins is obtained by deleting
three bins from the last complete solution obtained with +m 1
bins i.e. by removing all the items from these bins and by adding
them to the set of non-assigned items. Bins to be deleted are se-
lected in the following way:

� the last two bins from a complete solution,
� the last bin (excluding the last two) such that total number of

non-assigned “big” items does not exceed two.

The capacity of the bins cannot be violated at any time during the
procedure.

For the sake of simplicity, let us assume that the non-assigned
items are packed into the special bin with unlimited capacity,
called trash can and denoted by TC. Let = { … }−B b b b, , , m1 2 2 be the
set of currently utilized bins, ⊆I IB the set of items assigned to the
bins in B and Ib the set of items currently packed into bin ∈b B.
Similarly, let ITC denote the set of items not currently assigned to
any bin. The total weight and cardinality of a set of items S will be
denoted by w(S) and | |S respectively. The total weight and number
of items currently assigned to bin ∈ ∪b B TC will be denoted by

() = ()w b w Ib and | | = | |b Ib .

3.1. Local search

The Local Search procedure is applied to reach a complete so-
lution with m bins, starting from a partial one with −m 2 bins.
Several neighborhoods are explored during the search, which
consists of two procedures executed in succession until a stopping
criterion is reached. These two procedures are: (a) tabu search
procedure and (b) hill climbing/descent procedure. All moves
consist of swapping the items between a bin in B and the trash can
TC.

Formally speaking, the local search moves include:

1. ()Swap p q, – swap p items from a bin ∈b B with q items from TC.
2. Pack(b) – optimally rearrange the items between bin ∈b B and

trash can TC, such that the remaining capacity in b is minimized,
that is, the set of items assigned to bin b fits the bin capacity as
tightly as possible. Pack is a generalization of a Swap move with
p and q both being unlimited.

Only moves not resulting in any capacity violation are con-
sidered during this search.

Algorithm 2. CNS(sol).
ut: partial solution sol
ile time or iterations limit not exceeded and complete so-
lution not found do

← ()ol TabuSearch sol
← ()ol Descent sol

d while
urn sol
ret

Swap moves are used only in the tabu search procedure, while
the descent procedure exclusively makes use of pack moves. The
pseudocode of the procedure is given in Algorithm 2. The two
main parts, TabuSearch() and Descent(), will be explained later in
the corresponding sections.

inp

ou

If
I

els
i
S

I

Fig. 2. Consistent neighborhood search.
But before, we will discuss the objective function, search
neighborhoods and search termination conditions.

The goal of the local search procedure is to optimize the fol-
lowing lexicographic objective function:

1. Minimize the total weight of non-assigned items (minimize use
of the trash can): min w(TC).

2. maximize the number of items in the trash can: max | |TC .

The first objective is quite natural, while the second is introduced
in order to yield items with lower weights in the trash can, as this
could: (1) increase the chance of terminating the search; and/or
(2) enable a wider exploration of the search space. Formally, the
following function is to be minimized:

× () − | |n w TC TC .

Objective function of the solution s will be denoted by obj(s).
The maximum number of items from the same bin that can be

rearranged in a single Swap move is limited to three. More pre-
cisely, ()Swap p q, moves with

() ∈ = {() () () () () () () () ()}p q PQ, 0, 1 , 1, 1 , 2, 1 , 1, 2 , 2, 2 , 1, 3 , 3, 1 , 2, 3 , 3, 2

are considered. ()Swap 0, 1 corresponds to shift move, which con-
sists of shifting (or adding) the item from the trash can to bin

∈b B. Note that the higher complexity of these ()Swap p q, moves,
with respect to the classical shift and swap moves used in the
literature, is compensated by the fact that no moves between pairs
of bins in B are performed.

Generating an optimal packing for a set of items, as originally
proposed in Gupta and Ho [11], is a common procedure introduced in
several papers [9,8]. The Pack move is the same as the “load un-
balancing” used in Alvim et al. [1]. The packing problem is equivalent
to theMaximum Subset Sum (MSS) problem and can be solved exactly
through dynamic programming or by enumeration. In our case, the
packing procedure is only being used for a small subset of items, i.e.
the set of items belonging to a single bin ∈b B or trash can TC. For a
set of items S, let _ ()pack set S denote the solution to the MSS problem,
which is a subset ⊆P S of maximum total weight such that () ≤w S C .
The enumeration procedurewas used here and its pseudocode is given
in Algorithm 3. Clearly, the complexity of the enumeration procedure
is ()2l , where l is a number of items considered. Our experiments
showed that using a dynamic programming procedure (of complexity

(×)l C) instead of enumeration does not produce better solutions for
the set of instances considered, while improvement in the total run-
ning time of the algorithm, if any, is negligible.

As mentioned above, no more than two ”big” items (with
weights greater than or equal to C/2) can be assigned to the trash
can during the entire problem solving procedure. This is easily
achieved by forbidding all the moves that result in three or more
big items in the trash can. This is omitted in the algorithms pre-
sented below (pseudocodes) for the sake of simplicity.
Algorithm 3. _ ()pack set S P, .
ut: set of items S, current packing P (initialized to empty
set)
tput: best packing Pn (static variable, initialized to empty
set)

= ∅S then
f () > ()⁎w P w P or () = ()⁎w P w P and | | < | |⁎P P then ←⁎P P
e
← first item in S

← ⧹{ }S i

f () + ≤w P w Ci then _ (∪ { })pack set S P i,
_ ()pack set S P,

d if
en

During the search, each time the total weight in the trash can is
less than or equal to C2 , an attempt is made to pack all items from
the trash can in two bins. Obviously, this is possible if and only if

(_ ()) ≥ () −w pack set I w TC C.TC

If packing into two bins is indeed feasible, then a complete solu-
tion with the target number of bins has been found and the local
search procedure terminates. The local search procedure also ter-
minates when the total number of solutions with () ≤w TC C2
obtained during the search exceeds a given number. It seems
reasonable to terminate the search after failing too many times to
pack the non-assigned items into two bins, and this limit is set to
100,000 times for all the instances considered. In addition, further
exploration of the search space does not appear to be worthwhile
if no solution with () ≤w TC C2 can be obtained in a reasonable
time. Therefore, the search terminates if no solution with

() ≤w TC C2 has been found during the first ten algorithm loops
(tabu þ descent).

3.1.1. Tabu search
The main component of the improvement procedure is a tabu

search that includes Swap moves between trash can and bins in B.
The whole procedure is given in Algorithm 4. At each iteration, all
feasible and non-tabu ()Swap p q, moves between the trash can
and each bin are evaluated and the best one with regard to the
defined objective is performed. Should two or more moves with
the same best objective value exist, then a random choice is made.
Note that the best move is carried out even if it does not improve
the solution. Each time the total weight in the trash can is less
than or equal to C2 , an attempt is made to terminate the search by
packing the non-assigned items into two bins.

This process is repeated until no feasible and non-tabu move
exists, or until the time limit timeLimitTabu or the maximum
number of consecutive moves without improvement (maxNmbI-
ters) is reached. All the results reported in Section 6 were obtained
using =timeLimitTabu sec1 and = | | × | |maxNmbIters B I . The tabu
search procedure returns either the best solution found if the

if
en
up
en
if b

ite

isT
inp
for

up
inp

for

t

initial solution is improved or the last solution obtained (see the
last 5 lines in Algorithm 4).

Whenever an item with weight w is placed into bin b via a swap
move, all swap moves that include an item from b with weight w
become tabu for a specific number of iterations. Only removing the
items from the bin (i.e. placing them into the trash can) can be
considered tabu. Thus, moving an item from the trash can to a bin is
never tabu. The number of iterations for which moving an item of
weight w from bin b to the trash can is tabu depends on the number
of swap moves performed that place an item of weight w into b,

()freq b w, . More precisely, the given move is tabu for ()freq b w, /2
iterations. All frequencies ()freq b w, are reset to zero when the
current best objective value is improved in the tabu search. Im-
plementation of the tabu list management is straightforward and
procedures ()resetTabu , ()isTabu and ()updateTabu (given on page 14)
are invoked in the main algorithm (Algorithm 4) to reset, check and
update the tabu status respectively.

Given that our objective function is lexicographic, minimizing the
total weight of non-assigned items has a higher priority than max-
imizing the number of non-assigned items. Nevertheless, this choice
can lead the search to configurations in which the first objective is
quite well optimized, but with a very small number of non-assigned
items, which might make the search termination and exploration of
the search space more difficult. We therefore decided to use two
different variants of the tabu search procedure, namely:

� tabu search consisting of all defined ()Swap p q, moves,
� tabu search consisting of a subset of swap moves that do not

decrease the second objective, that is, () ∈ {() ()p q, 1, 1 , 2, 1 ,
() () ()}2, 2 , 3, 1 , 3, 2 .

The two variants differ only in the set of allowed swap moves and
are applied one after the other. Thus, the whole tabu search pro-
cedure consists in sequentially applying these two variants. The
second variant significantly improved the results obtained on the
hard 28 dataset (around 5 new optimal solutions on average).

Algorithm 4. ()TabuSearch .
inp
sol
bes
res
wh

m
f

e
i

i

rep
r
f

e
en
ut: initial solution initSol
← initSol

←tSol initSol
()etTabu

ile <iter maxNmbIters and running time < timeLimitTabudo
← ∅ ← ∅ ← −⁎ ⁎ ⁎

S T b, , 1
Δ ← × ()n w Iin

or each ∈b B do
for each ⊆S Ib do
If () =isTabu b S false, then ▹ only non-tabu moves

for each ⊆T I ,TC (| | | |) ∈S T PQ, . do ▹ only allowed pairs
if () + () − () ≤w b w T w S C then ▹ check capacity

Δ ← × (() − ()) − (| | − | |)n w S w T S T
if Δ Δ≤ min then

Δ Δ← ← ← ←⁎ ⁎ ⁎
S S T T b b, , , min

end if
end if

end for
end if

end for
nd for
f = ∅⁎T then TERMINATE ▹ terminate when no allowed move
exists swap Sn and Tn in sol ▹ perform (| | | |)⁎ ⁎

Swap S T, move
f () < ()obj sol obj bestSol then ▹ update best sol.

←bestSol sol
()resetTabu
end if
() ≤w TC C2 and (_ ()) ≥ () −w pack set I w TC CTC then TERMINATE

d if
()⁎ ⁎

dateTabu b S,
d while

≠estSol initSol then return bestSol
e return sol
els

()resetTabu

←r 0
each pair () ∈ ×b i B I, do [][] ←freq b w 0i , [][] ← −tabu b w 1i
for
()abu b S,
ut: bin ∈b B, set of items ⊆S Ib to drop from b
each item ∈i S do if [][] ≥tabu b w iteri return true
urn false
ret
()dateTabu b S,
ut: bin ∈b B, set of items ⊆S ITC to add to bin b

← +iter iter 1
each item ∈i S

[][] ← [][] +freq b w freq b w 1i i

[][] ← + [][]abu b w iter freq b w /2i i
3.1.2. Descent procedure
The second part of the local search explores the solution space by

applying Pack moves. The latter are exclusively used in the descent
(hill climbing) procedure due to their greater complexity. As in the
tabu search, these moves are performed only between the trash can
and bins in B. The Pack(b) move is executed for each bin ∈b B until
no improvement in the objective can be achieved. Formally, Pack(b)
consists in assigning a set of items _ (∪)pack set I Ib TC to bin b and set
(∪)⧹ _ (∪)I I pack set I Ib TC b TC to the trash can. The bins in B are con-
sidered in random order. It is clear that the objective cannot increase
during the procedure due to the nature of the pack move. As in the
tabu search, a feasible packing of non-assigned items into two bins is
attempted after each Pack move such that () ≤w TC C2 . The running
time of the descent procedure is significantly less than that of the
tabu search, which is understandable given that all performed moves
must provide an improvement.

A complete Pack(b) move is performed only when the total
number of items considered | ∪ |I Ib TC does not exceed 20. Other-
wise, a limited Pack(b) move on a random subset of items con-
taining no more than ten items from b and no more than ten items
from TC is performed. Thus, the complexity of the Packmove never
exceeds 220. The descent procedure is described in Algorithm 5.

Algorithm 5. ()Descent .
eat
andomly sort the set of bins B
oreach ∈b B do
Pack(b) ▹ perform Pack move between b and TC
if () ≤w TC C2 and (_ ()) ≥ () −w pack set I w TC CTC then
TERMINATE

nd if
d for
til no objective improvement made
Un

Table 1
Algorithm parameters: the first three can be considered as algorithmic choices,
while the other six are experimentally set to given values.

Parameter Chosen value

Bins in partial solution m�2
Termination condition () ≤w TC C2
Max. number of items from the same bin in Swap move 3

Local search running time limit 60 s
Max. number of items in ()Pack move 20
Max. number of iterations without improvement in tabu search

(max NmbIters)
| | × | |B I

()TabuSearch running time limit (timeLimitTabu) 1 s
Max. number of attempts made to pack non-assigned items 100,000
Tabu tenure frequency/2
4. Discussion and parameters

Unlike many published algorithms, only one procedure has been
implemented to build an initial solution. We decided to use First Fit
because of its simplicity, while randomly sorting the set of items is
used to avoid search configurations with many items of similar size
(too many small or too many big items for example) in the trash can.
The trash can could contain too many small items if, for example, the
First Fit Decrease heuristic is used. Furthermore, solutions obtained
by using only the First Fit heuristic on a given set of items (without
random shuffling) depend on the order of items in the benchmark
data files; they may be in decreasing order for example, or even in an
order such that the First Fit heuristic would produce an optimal so-
lution for each instance.

Many experiments including choices of neighborhoods, termi-
nation conditions, etc. have been carried out. For instance, a partial
solution with −m 3 bins can be employed, and the termination
condition could be the packing of the non-assigned items into
three bins. This modification can produce improved average re-
sults or computation times for certain instances, though our ex-
periments showed that no overall improvement can be achieved.
On the other hand, the procedure could be simplified by adopting
a partial solution with −m 1 bins (or m bins) and using () ≤w TC C
(or () =w TC 0) as the termination criteria. The first approach with

−m 1 bins would produce similar results for most of the datasets
considered, while the second one yields significantly lower quality
solutions on all datasets.

Since the tabu search procedure is the main part of the algo-
rithm, one can expect that the maximum number of items to be
rearranged in a single ()Swap p q, move, i.e. the upper bounds for p
and q, can significantly influence solution quality. As will be shown
later, the results obtained by allowing no more than two items
from the same bin to be swapped, rather than three, are only
slightly worse. However, allowing just ()Swap 0, 1 and ()Swap 1, 1
moves, drastically reduces solution quality. This outcome is to be
expected since capacity violation is prohibited and most moves
quickly become infeasible. Our algorithm uses only a few para-
meters. Its total running time was limited to 60 s for all instances.
Opting for a much smaller limit would produce the same results
for most instances, but the 60 s limit is preferred due to the dif-
ficulty of the instances belonging to the hard28 and gau_1 classes.
The tabu search procedure was limited to a duration of time-
LimitTabu, which was set to one second in all reported experi-
ments, and a maximum number of iterations (moves) without
improvement,maxNmbIters, set to | | × | |B I . The complete Packmove
was only performed if the total number of items considered for
rearrangement did not exceed 20 (which is not really a limitation
for any of the instances considered). Otherwise moves were lim-
ited to a subset of 20 items. This limitation was introduced to avoid
excessive enumeration times, but similar values (15–25 for ex-
ample) would produce the same quality of results. Furthermore, if
a dynamic programming procedure is used to get optimal pack-
ings, no limitation on the number of items is required. The tabu
tenure in the tabu search procedure is proportional to the fre-
quency of the move. The list of all the parameters is given in
Table 1.

Optimizing the running time was not our primary goal, so we
did not devote much effort to accelerating the algorithm or finding
solutions more quickly for certain instances through different
modifications (e.g., exploring fewer neighborhoods). No distinc-
tion whatsoever was made between the instances. Nevertheless,
we sought to obtain an algorithm with reasonable running times,
and we believe this goal has been achieved.
5. Applying the method to 2-DVPP

The generalization of the presented method to 2-DVPP is
straightforward. The main modification involves the objective
function. Let ()w TC1 and ()w TC2 be the total weight of non-as-
signed items on resources 1 and 2, respectively. The first objective
here is to minimize the larger of the two values, ()w TC C/1

1 and
()w TC C/2

2. The second objective, as for BPP, is to maximize the
number of items in the trash can. Formally, the following function
is to be minimized:

× × × () () − | |
⎛
⎝⎜

⎞
⎠⎟n C C

w TC
C

w TC
C

TCmax , .1 2

1

1

2

2

As for the BPP problem, the upper bound UB is obtained by
applying the First Fit heuristic to a randomly sorted set of items.
The reduction procedure is analogous to the one used in BPP: a set
of item pairs (i,j) s.t. + =w w Ci j

1 1
1 and + =w w Ci j

2 2
2 is identified,

and the problem is reduced by assigning these items. In the case of
2-DVPP, we consider the weight of item j to be greater than or
equal to half of the bin capacity if ≥wj

C1
2
1 and ≥wj

C2
2
2 .

Only a simple lower bound,

∑ ∑= =
⎡
⎢
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎥
⎥
⎥

w

C

w

C
max , ,i

n
i i

n
i1

1

1

1
2

2

is used for 2-DVPP. All other algorithmic features, such as the
chosen parameters, remain the same. An analogous adaptation
could be made for VPP with more than two resources; however,
experiments were not conducted since only a few relevant ex-
perimental results are reported in the literature and most algo-
rithms have only been tested on 2-DVPP benchmarks.
6. Computational results

This section will report the results of extensive computational
experiments performed with our method on a broad set of test
problems. Our algorithm was implemented in Cþþ and compiled
using the gcc 4.7.2 compiler in Ubuntu 14.04. All tests were run on
a computer with an Intel Core i7-3770 CPU 3.40 GHz processor.
The computation times are reported in seconds. Unless otherwise
specified, the reported values always correspond to the total
running time of the algorithm i.e. from the calculation of the lower
bound and construction of the initial solution to the search
termination.

6.1. BPP

A common set of one-dimensional bin-packing instances was
used to test our algorithm. This set consists of five classes of

Table 3
Number of optimally solved instances after limiting the running time of the exact
approach based on the Arc-Flow formulation.

Turning the exact approach into a heuristic

Time limit (s) 60 120 300 600 1000
Optimal solutions 1520 1558 1598 1607 1611
instances: (1) a class developed by Falkenauer [6] made of two
sets, uniform and triplets (denoted respectively by U and T in the
tables of results) each with 80 instances; (2) a class developed by
[17] consisting of three sets set_1, set_2, and set_3 with 720, 480
and 10 instances respectively; (3) a class of instances developed by
Scholl et al. [18] made of two sets, was_1 and was_2, each with
100 instances; (4) a class of instances developed by Schwerin and
Wäscher [23], called gau_1, containing 17 problem instances;
(5) the hard28 class, consisting of 28 difficult problems instances
used, e.g. in [2]. All instances can be downloaded from the Web
page of the EURO Special Interest Group on Cutting and Packing
[5]. Optimal solutions for all instances are known.

Optimal solutions for the first three classes (1570 instances in
all) were obtained using several heuristics, including HI_BP [1] and
GGA-CGT [16]. HI_BP optimally solves 12 of the 17 instances in
gau_1, while other recent heuristics yielded more optimal results
(e.g. 15 by C_BP [19] and 16 by Perturbation-SAWMBS [8] and
GGA-CGT). The only instance from this class that could not be
solved to optimality by any heuristic algorithm was “TEST0014”.

Fleszar and Charalambous reported that their Perturbation-
SAWMBS method could not solve to optimality more instances in
the hard28 dataset than the First Fit Decrease procedure (5 out of
the 28), even after drastically increasing the maximum number of
iterations in their algorithm. The same applies to the HI_BP algo-
rithm, as reported in Quiroz-Castellanos et al. [16]. In fact, most
heuristics proposed for the bin packing problem, including the
best performers, cannot solve to optimality more than 5 instances
from this class. Nevertheless, GGA-CGT finds optimal solutions to
16 instances. The authors also reported that more instances can be
solved by increasing the population size (up to 22 instances when
the population is increased from 500 to 10,000,000).

The exact method based on the Arc-Flow Formulation, as pre-
sented in Brandão and Pedroso [3], can solve all instances to op-
timality within a reasonable computing time, including all in-
stances from the hard28 dataset. The solver can be downloaded at
http://vpsolver.dcc.fc.up.pt/ and detailed results obtained using
the Gurobi solver to solve their Arc-Flow model are given at http://
www.dcc.fc.up.pt/fdabrandao/research/vpsolver/results/.

Average running times of this exact algorithm for each class of
instances are listed in column time in Table 2. The computer used
was a 2 � Quad-Core Intel Xeon at 2.66 GHz, Mac OS X 10.8.0,
16 GB of memory, while the Gurobi 5.0.0 solver (single thread) was
used to solve the model. It can be noted that the computation
times in their experiments were much longer for the gau_1 da-
taset (up to a few thousand seconds) when compared to other
datasets because the average number of items per bin in this da-
taset is greater than in other datasets. Generally, an exact algo-
rithm runs until optimality is proven, although it might find the
optimal (or feasible) solution very early, and can therefore be, for
example, easily transformed into a heuristic approach by stopping
it after a given time limit. However, terminating the exact algo-
rithm based on the Arc-Flow Formulation before optimality is
Table 2
Results of the exact approach based on the Arc-Flow formulation.

Class inst time (s) IPtimeToBest (s)

U 80 0.34 0.24
T 80 0.91 0.71
set_1 720 0.15 0.10
set_2 480 43.4 39.7
set_3 10 12.1 7.53
was_1 100 0.67 0.52
was_2 100 0.57 0.40
gau_1 17 1641 1485
hard28 28 29.69 27.0
proven is not of much value because the lower bound obtained
through the linear relaxation is optimal in the vast majority of
cases (>99%), and the algorithm terminates almost as soon as an
optimal solution if found. Column IPtimeToBest of Table 2 shows
the average running time (excluding the time for calculating a
bound) to reach the optimal solution. Table 3 reports the total
number of optimal solutions found by the exact approach with
different computation time limits (excluding the time spent for
calculating the bound).

To investigate the effectiveness of CNS_BP, we compared these
results with those obtained by the best heuristic approaches re-
ported in the literature, Perturbation-SAWMBS and GGA–CGT.

The running time of CNS_BP is highly influenced by several
important factors, such as the lower bound used to terminate the
search and the limits on running time and number of iterations.
Using a more complicated bound could terminate the search ear-
lier but may also consume significant CPU time. Choosing appro-
priate limits on running time and number of iterations largely
depends on the set of instances to be solved. For example, if the
hard28 dataset was excluded from consideration, which is the case
in many published papers on BPP, then the average total time
would decrease substantially, as would the required limits on
running time and iterations. In the reported results, there is no
distinction made in this regard. Raising the limit on running time
or number of iterations can increase the number of optimal solu-
tions but can also drastically increase the average running time
since the total running time is reported even if no improvement is
achieved. We also report the running times required to obtain the
best solution values i.e. excluding the time spent exploring the
search space after the last complete solution has been found. All
the results reported in this section were obtained with a running
time limit of 60 s and no more than 100,000 moves resulting in

() ≤w TC C2 , unless otherwise specified. The lower bound used for
each instance was the best of the following four bounds:

= ∑ =⎡
⎢⎢

⎤
⎥⎥L

w

C1
i
n

i1 , ()L p proposed in Fekete and Schepers [7] with p¼10,

L3 bound from Martello and Toth [13] and ϑL proposed in Alvim
et al. [1].

Like most previous work on BPP, a single execution of the al-
gorithm was performed on each instance, with the initial seed for
the random number generation set to 1. The results are reported in
Table 4. For each class of instances, the number of instances solved
to optimality with each approach, as well as the average compu-
tation time per instance, are reported. For our algorithm, the
average time to reach the best solution (toBest) per instance for
each class is also reported. Given that the algorithms were exe-
cuted on different machines, we calculated appropriate scaling
factors to compare their run times. For this purpose, we used the
CPU speed estimations provided the in SPEC standard benchmark
(https://www.spec.org/cpu2006/results/cint2006.html). On this
basis, the CPU speeds of the processors used to run Perturbation-
SAWMBS, GGA-CGT, and CNS_BP are 18.30, 12.30 and 53.80 re-
spectively. If we choose the second one as a reference, the scaling
factors will be 1.48, 1 and 4.37 respectively. By multiplying the CPU
time of each algorithm by its corresponding scaling factor calcu-
lated above, we obtain a Unified Computational Time (UCT) [25].
In Table 4, computational time expressed in UCT is given for P.-

http://vpsolver.dcc.fc.up.pt/
http://www.dcc.fc.up.pt/fdabrandao/research/vpsolver/results/
http://www.dcc.fc.up.pt/fdabrandao/research/vpsolver/results/
https://www.spec.org/cpu2006/results/cint2006.html

Table 4
Results with a seed set equal to 1. A comparison is drawn with the best state-of-the-art methods.

Results for seed¼1

Class Inst P.-SAWMBS GGA-CGT CNS_BP

Opt Time scTime Opt Time Opt Time scTime toBest

U 80 79 0.00 0.00 80 0.23 80 0.068 0.299 0.058
T 80 80 0.00 0.00 80 0.41 80 0.018 0.078 0.018
set_1 720 720 0.01 0.015 720 0.35 720 0.073 0.319 0.002
set_2 480 480 0.00 0.00 480 0.12 480 0.033 0.144 0.033
set_3 10 10 0.16 0.24 10 1.99 10 0.004 0.017 0.004
was_1 100 100 0.00 0.00 100 0.00 100 0.000 0.002 0.000
was_2 100 100 0.01 0.015 100 1.07 100 0.001 0.004 0.001
gau_1 17 16 0.04 0.06 16 0.27 17 2.679 11.70 1.822
hard28 28 5 0.24 0.36 16 2.40 25 7.209 31.50 2.007
Total 1615 1590 1602 1612

Intel core2 Core2 Duo Intel i7-3770
Q8200 2.33 GHz CE6300 1.86 GHz 3.40 GHz

Table 6
Number of runs (out of 100) producing a given number of optimal solutions.

Results distribution

Optimally solved instances 1607 1608 1609 1610 1611 1612 1613
Number of runs 2 3 11 26 32 17 9

Table 7
Results with simplifications, average results for 100 seeds; results when allowing a
maximum of two items from the same bin to be swapped in the tabu search
procedure and results without applying the Descent procedure.

Class Inst (≤ ≤)Swap p q2, 2 no ()Descent

Opt Time Opt Time

U 80 80.0 0.063 80.0 0.069
T 80 80.0 0.013 80.0 0.016
set_1 720 719.26 0.059 719.37 0.074
set_2 480 479.94 0.065 479.03 0.125
set_3 10 10.0 0.104 10.0 0.001
was_1 100 100.0 0.025 100.0 0.000
was_2 100 100.0 0.022 99.91 0.004
gau_1 17 16.05 3.958 16.92 2.186
hard28 28 24.60 7.573 24.73 7.379
Total 1615 1609.85 1609.96
SAWMBS and CNS_BP, while it is not necessary for the GGA-CGT
algorithm since the corresponding factor is equal to 1.

A more detailed and more relevant (in our opinion) result for
CNS_BP would be the average obtained by running the algorithm
with 100 different seeds (1–100) and with different time limits.
These results are reported in Table 5. As in the previous table, the
number of instances solved to optimality and average running
time per instance are indicated for each class and each of five time
limits (60, 30, 10, 5 and 2 s). In terms of number of optimal solu-
tions found, our algorithm outperforms all published heuristic
algorithms on the last two datasets and obtains the same (optimal)
solutions on all other datasets. Perturbation-SAWMBS is faster in
terms of running time, while GGA-CGT and CNS_BP are compar-
able in this regard.

The number of solved instances from the hard28 dataset varies
from 24 to 27 for the various seeds as reported in Table 8. The only
unsolved instance over 100 runs is “BPP_13”. Nevertheless, optimal
solution for this instance can be found by increasing the time limit
or running the algorithm with more seeds.

The total number of instances solved to optimality (out of 1615)
varies between 1607 and 1613 when running the algorithm with
100 seeds. More details on the distribution of the results are given
in Table 6. The results obtained with certain algorithmic simplifi-
cations are reported in Table 7. More precisely, we report the re-
sults obtained after prohibiting more than two items from the
same bin to be rearranged in a single Swap move during the tabu
search and the results obtained without the ()Descent procedure.
This table reports the average results over 100 runs. One can no-
tice that these two simplifications do not significantly impact the
quality of the results.
Table 5
Average results of CNS_BP for 100 runs and for different time limits.

Class 60 s 30 s 10 s

Opt Time Opt Time Opt

U 80.0 0.069 80.0 0.069 80.0
T 80.0 0.016 80.0 0.016 80.0
set_1 719.31 0.074 719.31 0.069 719
set_2 479.83 0.043 479.82 0.042 479
set_3 10.0 0.001 10.0 0.001 10.0
was_1 100.0 0.000 100.0 0.000 100
was_2 100.0 0.001 100.0 0.001 100
gau_1 16.77 2.600 16.53 2.039 16.2
hard28 24.81 7.385 24.46 4.751 23.8
Total 1610.72 1610.12 160
6.2. 2-DVPP

The 2-DVPP instances used to evaluate the performance of
CNS_BP were extracted from Spieksma [20] and Caprara and Toth
[4]. A total of 10 different classes of instances were used. Each class
is composed of 40 instances, broken down into 10 instances of four
5 s 2 s

Time Opt Time Opt Time

0.069 80.0 0.069 80.0 0.069
0.016 80.0 0.016 80.0 0.016

.31 0.069 719.31 0.069 719.31 0.069

.57 0.038 479.35 0.035 478.68 0.031
0.001 10.0 0.001 10.0 0.001

.0 0.000 100.0 0.000 100.0 0.000

.0 0.001 100.0 0.001 100.0 0.001
1 1.323 16.08 0.874 16.5 0.388
6 2.655 23.13 1.745 21.45 0.945
8.95 1607.87 1605.49

Table 8
Detailed results for the hard28 dataset. The number of runs resulting in an optimal
solution (#opt) is reported for each instance, as are the average running time (time)
and average time spent to obtain best solutions (toBest). 100 runs were conducted
for each instance. It should be noted that the average running time over all in-
stances is largely influenced by the running time for the most difficult instances
and for instances where the lower bound is different from the optimal value
(BPP_119 for example).

Instance LB OPT #opt Time toBest

BPP_14 61 62 100 10.180 0.000
BPP_832 60 60 100 0.553 0.553
BPP_40 59 59 31 50.279 9.343
BPP_360 62 62 100 0.049 0.049
BPP_645 58 58 100 2.125 2.125
BPP_742 64 64 100 0.066 0.066
BPP_766 62 62 91 9.386 7.266
BPP_60 63 63 23 2.039 0.231
BPP_13 67 67 0 7.660 0.000
BPP_195 64 64 100 0.048 0.048
BPP_709 67 67 36 48.464 10.412
BPP_785 68 68 100 0.235 0.235
BPP_47 71 71 100 0.110 0.110
BPP_181 72 72 100 1.337 1.337
BPP_359 75 76 100 1.532 0.000
BPP_485 71 71 100 0.645 0.645
BPP_640 74 74 100 0.046 0.046
BPP_716 76 77 100 1.106 0.000
BPP_119 76 77 100 59.374 0.000
BPP_144 73 73 100 0.854 0.854
BPP_561 72 72 100 0.013 0.013
BPP_781 71 71 100 0.019 0.019
BPP_900 75 75 100 2.510 2.510
BPP_175 83 84 100 3.840 0.001
BPP_178 80 80 100 0.241 0.241
BPP_419 80 80 100 3.974 3.974
BPP_531 83 83 100 0.068 0.068
BPP_814 81 81 100 0.030 0.030

Table 9
2-DVPP Results. Improvements over previous solutions found by heuristics are
shown in bold.

2-DVPP results - 50 runs

N Class LB OPT MS-ILS CNS_BP

Best Time Avg Best Time toBest

25 1 69 69 69 2.54 69.0 69 0.000 0.000
25 6 99 101 101 4.26 101.0 101 2.000 0.000
25 7 95 96 96 3.72 96.0 96 1.000 0.000
25 9 63 73 73 4.06 73.0 73 10.000 0.000
24 10 80 80 80 2.22 80.0 80 0.000 0.000

50 1 135 135 135 14.5 135.0 135 0.000 0.000
50 6 213 215 215 13.7 215.0 215 2.000 0.000
50 7 196 197 197 17.6 197.0 197 1.000 0.000
50 9 135 145 145 39.8 145.0 145 10.000 0.000
51 10 170 170 170 13.8 170.0 170 0.000 0.000

100 1 255 255 257 58.9 255.0 255 0.034 0.034
100 6 405 410 410 60.0 410.0 410 5.001 0.001
100 7 398 402 402 57.8 402.0 402 4.004 0.004
100 9 257 267 267 60.0 267.0 267 10.000 0.000
99 10 330 330 330 46.4 330.0 330 0.007 0.007

200 1 503 503 503 60.0 503.0 503 0.011 0.011
200 6 803 811 811 60.0 811.0 811 8.002 0.002
200 7 799 801 802 60.0 801.0 801 2.000 0.000
200 9 503 — 513 60.0 513.0 513 10.011 0.011
201 10 670 670 678 60.0 670.1 670 0.913 0.784
different sizes. The Class 10 instances are generated by cutting the
bin resources into triplets of items, such that all bins are full in
optimal solutions. For this class, therefore, the optimal solutions in
most cases are known from the instance generation process, and
are not a result of the bin packing algorithms. Classes 2, 3, 4, 5 and
8 are known to be easily solvable by simple greedy heuristics [15],
hence our experiments focus on the remaining classes, a total of
200 instances.

The previous best results have been obtained by the iterated
local search (MS-ILS) heuristic reported in Masson et al. [14]. Thus,
we compare our results to theirs. It should be noted that 330 out of
400 instances could still be solved by the exact approach proposed
by [3]; 60 out of the 70 unsolved instances belong to classes 4 and
5 and can be easily solved optimally with non-exact approaches.
Consequently, 10 instances belonging to class 9 and containing 200
items are the only ones with unknown optima. Our method ob-
tained optimal solutions for all instances with known optima (390
out of 400) and the best known values for the remaining 10
instances.

The results reported in Table 9 have been aggregated by pro-
blem class, i.e. for each class the cumulative number of bins for the
10 instances is reported. A total of 50 runs with different seeds
were performed for each instance. From left to right, the columns
in Table 9 report the problem size, problem class, simple lower
bound (defined in Section 5), optimal value (if known), the best
known upper bound (obtained by MS-ILS), average running time
per instance for MS-ILS, average and best number of bins gener-
ated with our heuristic, and the average CPU time per instance and
average CPU time required to obtain the best solutions. All the best
known upper bounds and optimal solutions from previous algo-
rithms were found. The running time limit was set to 10 s, and no
more than two items from the same bin could be rearranged in a
single Swap move throughout the tabu search procedure. The MS-
ILS results reported in Masson et al. [14] were obtained with a
time limit of 300 s on an Opteron 2.4 GHz with 4 GB of RAM
memory running Linux OpenSuse 11.1. According to the CPU speed
estimations provided in the SPEC standard benchmark (https://
www.spec.org/cpu2006/results/cint2006.html), this machine is
around five times slower than the one we used in our experiments
(more details on the Opteron 2.4 GHz are required for a more ac-
curate value). Therefore, the MS-ILS running times reported in
Masson et al. [14] have been divided by five.
7. Conclusion

In this paper, we propose a new local search-based algorithm
for the Bin Packing Problem. The main feature of this algorithm is
to proceed by partial configurations of the search space. Items are
assigned to −m 2 bins, while satisfying the capacity constraint, or
are not assigned at all. This algorithm seeks to derive a set of non-
assigned items that can be packed into two bins to obtain a
complete feasible solution with m bins. Subsequently, the com-
putation is divided into two repeated steps:

� the tabu search applies only low cardinality swap moves be-
tween non-assigned items and bins. The objective function is
aimed at minimizing the sum of weights of non-assigned items
while maximizing the number of non-assigned items;

� the descent procedure generates locally optimal packings be-
tween non-assigned items and each bin using the same objec-
tive function. This procedure performs generalized swap moves
between a bin and non-assigned items.

Whenever the total weight of non-assigned items is less than or
equal to twice the capacity of a bin, an attempt is made to pack all
non-assigned items into two bins by using the packing algorithm
of the Descent procedure. This algorithm uses few parameters and
outperforms all previous heuristic approaches in terms of the
number of instances solved to optimality. Let us note in particular

https://www.spec.org/cpu2006/results/cint2006.html
https://www.spec.org/cpu2006/results/cint2006.html

that it obtains better solutions than other heuristics for the hard28
and gau_1 datasets. Considering the simplicity of the overall
method, it was quite easy to adapt it to the Vector Packing Problem
and solve the available benchmarks with a significantly better
performance than other published approaches.

These results might come as a surprise because the algorithm
only focuses on the configuration of non-assigned items, which
may be viewed as a major restriction. But, integrating bin char-
acteristics into the objective function (like ∑ (− ())∈ C w bb B

2 for
instance), increases CPU time without providing better results.
Acknowledgements

The authors would like to thank the two anonymous reviewers
and the area editor for their constructive comments that improve
the content as well as the presentation of the paper.
References

[1] Alvim ACF, Ribeiro CC, Glover F, Aloise DJ. A hybrid improvement heuristic for
the one-dimensional bin packing problem. J Heurist 2004;10:205–29.

[2] Belov G, Scheithauer G. A branch-and-cut-and-price algorithm for one-di-
mensional stock cutting and two-dimensional two-stage cutting. Eur J Oper
Res 2006;171(1):85–106.

[3] Brandão, F, Pedroso JP. Bin Packing and Related Problems: General Arc-flow
Formulation with Graph Compression. Technical Report DCC-2013-08, Fa-
culdade de Ciências da Universidade do Porto, Portugal; 2013.

[4] Caprara A, Toth P. Lower bounds and algorithms for the 2-dimensional vector
packing problem. Discrete Appl Math 2001;111(3):231–62.

[5] ESICUP, 2013. Euro Especial Interest Group on Cutting and Packing. One Di-
mensional Cutting and Packing Data Sets. http://paginas.fe.up.pt/esicup/tiki-
list_file_gallery.php?galleryId¼1.

[6] Falkenauer E. A hybrid grouping genetic algorithm for bin packing. J Heurist
1996;2:5–30.

[7] Fekete SP, Schepers J. New classes of fast lower bounds for bin packing
problems. Math Program 2001;91:11–31.
[8] Fleszar K, Charalambous C. Average-weight-controlled bin-oriented heuristics

for the one-dimensional bin-packing problem. Eur J Oper Res 2011;210:176–
84.

[9] Fleszar K, Hindi KS. New heuristics for one-dimensional bin-packing. Comput
Oper Res 2002;29:821–39.

[10] Garey MR, Johnson DS. Computers and intractability: a guide to the theory of
np-completeness. New York, USA: W.H. Freeman; 1979.

[11] Gupta JND, Ho JC. A new heuristic algorithm for the one-dimensional bin
packing problem. Prod Plann Control 1999;10:598–603.

[12] Loh KH, Golden B, Wasil E. Solving the one-dimensional bin packing problem
with a weight annealing heuristic. Comput Oper Res 2008;35(7):2283–91.

[13] Martello S, Toth P. Knapsack problems: algorithms and computer im-
plementations.Chichester, England: Wiley; 1990.

[14] Masson R, Vidal T, Michallet J, Penna PHV, Petrucci V, Subramanian A, et al. An
iterated local search heuristic for multi-capacity bin packing and machine
reassignment problems. Expert Syst Appl 2013;40(13):5266–75.

[15] Monaci M, Toth P. A set-covering-based heuristic approach for bin-packing
problems. INFORMS J Comput 2006;18(1):71–85.

[16] Quiroz-Castellanos M, Cruz-Reyes L, Torres-Jiménez J, Gomez Santillán C,
Huacuja HJF, Alvim ACF. A grouping genetic algorithm with controlled gene
transmission for the bin packing problem. Comput Oper Res 2015;55:52–64.

[17] Scholl A, Klein R, Jurgens C. Bison: a fast hybrid procedure for exactly solving
the one-dimensional bin packing problem. Comput Oper Res 1997;24(7):627–
45.

[18] Schwerin P, Wäscher G. A new lower bound for the bin-packing problem and
its integration into mtp and bison. Pesqui Op 1999;19:111–29.

[19] Singh A, Gupta AK. Two heuristics for the one-dimensional bin-packing pro-
blem. OR Spectr 2007;29(4):765–81.

[20] Spieksma FCR. A branch-and-bound algorithm for the two-dimensional vector
packing problem. Comput Oper Res 1994;21(1):19–25.

[21] Valerio de Carvalho JM. Exact solution of bin-packing problems using column
generation and branch-and-bound. Ann Oper Res 1999;86:629–59.

[22] Vasquez M, Dupont A, Habet D. Consistency checking within local search
applied to the frequency assignment with polarization problem. RAIRO – Oper
Res 2003;37(4):311–23.

[23] Wäscher G, Gau T. Heuristics for the integer one-dimensional cutting stock
problem: a computational study. Oper-Res-Spektrum 1996;18(3):131–44.

[24] Zufferey N, Vasquez M. A generalized consistent neighborhood search for
satellite range scheduling problems. RAIRO – Oper Res 2015;49(1):99–121.

[25] Perboli G, Pezzella F, Tadei R. EVE-OPT: a hybrid algorithm for the capacitated
vehicle routing problem. Math Methods Oper Res 2008;68(2):361–82.

http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref1
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref1
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref1
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref2
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref2
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref2
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref2
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref4
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref4
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref4
http://paginas.fe.up.pt/esicup/tiki-list_file_gallery.php?galleryId=1
http://paginas.fe.up.pt/esicup/tiki-list_file_gallery.php?galleryId=1
http://paginas.fe.up.pt/esicup/tiki-list_file_gallery.php?galleryId=1
http://paginas.fe.up.pt/esicup/tiki-list_file_gallery.php?galleryId=1
http://paginas.fe.up.pt/esicup/tiki-list_file_gallery.php?galleryId=1
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref6
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref6
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref6
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref7
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref7
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref7
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref8
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref8
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref8
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref8
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref9
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref9
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref9
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref11
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref11
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref11
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref12
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref12
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref12
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref13
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref13
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref14
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref14
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref14
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref14
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref15
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref15
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref15
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref16
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref16
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref16
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref16
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref17
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref17
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref17
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref17
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref18
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref18
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref18
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref19
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref19
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref19
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref20
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref20
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref20
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref21
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref21
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref21
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref22
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref22
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref22
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref22
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref23
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref23
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref23
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref24
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref24
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref24
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref25
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref25
http://refhub.elsevier.com/S0305-0548(16)30141-1/sbref25

