
HAL Id: hal-01936483
https://hal.science/hal-01936483

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-phase heuristic for SNCF rolling stock problem
Mirsad Buljubašić, Michel Vasquez, Haris Gavranović

To cite this version:
Mirsad Buljubašić, Michel Vasquez, Haris Gavranović. Two-phase heuristic for SNCF rolling stock
problem. Annals of Operations Research, 2018, 271 (2), pp.1107 - 1129. �10.1007/s10479-017-2550-z�.
�hal-01936483�

https://hal.science/hal-01936483
https://hal.archives-ouvertes.fr

Two-phase heuristic for SNCF rolling stock problem

Mirsad Buljubašić1 · Michel Vasquez1 ·
Haris Gavranović2

Abstract A two-phase approach was adopted to solve the problem given during the
ROADEF/EURO Challenge 2014 competition. The problem focuses on rolling stock man-
agement at railway sites, as defined by French Railways (SNCF). In the first phase, a train
assignment problem is solved by combining a greedy heuristic procedure with integer pro-
gramming. The objective is to maximize the number of assigned departures while meeting
technical constraints. The second phase consists of scheduling train movements inside the
station while minimizing the number of cancelled (uncovered) arrivals and departures. This
schedule has to comply with resource constraints such as capacity, length, order of trains,
etc. A constructive heuristic is used to build a feasible schedule, which is subject to
improvement by an iterative procedure based on a local search. Experiment results, that
demonstrate the effectiveness of our approach on the large scale instances provided by
SNCF, are presented hereafter.

Keywords Greedy heuristic · Integer programming · Local search · Rolling stock ·
Scheduling

1 Introduction

This paper considers the problem of rolling stock unit management at railway sites, as
defined by French Railways (SNCF) and proposed at the ROADEF/EURO Challenge 2014.
The prob-

B Mirsad Buljubašić
mirsad.buljubasic@mines-ales.fr

Michel Vasquez
michel.vasquez@mines-ales.fr

Haris Gavranović
haris.gavranovic@gmail.com

1 LGI2P Laboratory, Ecole des Mines d’Alès, Nîmes, France

2 International University of Sarajevo, Sarajevo, Bosnia and Herzegovina

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-017-2550-z&domain=pdf

lem involves managing trains between their arrivals and departures at terminal stations. The
purpose of this paper is to describe the method developed by our team upon taking part in this
challenge. The main goal was to achieve the best possible results in relation to the other com-
petitors. This problem is currently being jointly addressed by several SNCF Departments,
by breaking it down into several sub-problems (train assignment, scheduling constraints,
track group conflicts, platform assignment, maintenance planning, etc.) to be solved sequen-
tially. Consequently, the integrated problem formulation dealt with here (in the challenge)
actually reflects a forward-looking approach. Between terminal station arrivals and depar-
tures, the trains in fact are always present. This aspect, unfortunately, often gets neglected
in railway optimization methods (Ramond and Marcos 2014). In the past however, rail net-
works possessed sufficient capacity to accommodate all trains without introducing excessive
constraints—but this is no longer the case. Traffic has indeed increased considerably during
recent years, and a number of stations are now experiencing serious congestion (Ramond
and Marcos 2014; Corman et al. 2010; Huisman et al. 2005). Current traffic trends will make
this phenomenon even more challenging over the next several years. The proposed model
focuses on the multiple dimensions inherent in this problem, by taking into account many
different aspects. The model’s scope remains within geographically limited boundaries, typ-
ically over just a few km in urban environments: train stations and their surrounding railway
infrastructures are targeted by this model. The solutions to such problems involve temporary
parking and shunting on station locations, which typically consists of platforms, maintenance
facilities, rail yards adjacent to stations and the set of tracks linking these various resources
(this infrastructure constitutes what is referred to as the “system”).

This paper will be organized as follows. A description of the problem is provided in
Sect. 2. The description given herein was borrowed from the official competition subject
(Ramond and Marcos 2014). Section 3 addresses a related work. Our two-phase approach
is described in Sect. 4: solving the problem of matching (assigning) trains to departures is
considered first, followed by the problem of scheduling trains inside the station. An iterative
improvement procedure, based on a local search, is presented at the end of this section. The
computational results obtained from the available set of instances, provided by SNCF, are
detailed in Sect. 5. The last section presents the authors’ final remarks and conclusion.

2 Problem statement

A comprehensive description of the problem can be found in the competition subject (Ramond
and Marcos 2014). Herein, we give a simplified, more concise formulation which is sufficient
to describe our approach and make our presentation clearer and more readable.

2.1 Planning horizon

The planning horizon considered in this problem is an integral number of days (nDays) from
morning of day 1 to midnight of day nDays. We use the word “time” to represent a time
instant (date/time) during the horizon. The time horizon is discretized, the smallest duration
taken into account being one second.

2.2 Arrivals and departures

Arrivals generate entrances of trains in the system and departures are the way trains leave the
system. Arrival and departure times are provided as a fixed input and are considered to be

non-modifiable. It had to be decided which train is assigned to each departure. It is feasible,
but penalizing, not to cover (i.e. to cancel) some arrivals or departures. The set of train arrivals
is denoted by T and a train t ∈ T is defined by the following characteristics:

– arrival time arrT imet ,
– idealDwellt andmaxDwellt , respectively representing the ideal and themaximum time

train should stay on the platform after arrT imet ,
– remaining distance before maintenance remDBMt , determining whether or not t must

perform maintenance operations before being assigned to a departure.

The following attributes define a departured ∈ D, whereD represents the set of all departures:

– depT imed , idealDwelld , maxDwelld : all similar to the train arrival attributes,
– distance reqDd of the journey following the departure; this value is compared, for a train

t ∈ T , with remDBMt , to determine whether or not maintenance operations have to be
performed on t before depT imed .

In practice, the trains associated with arrivals are usually trains which were earlier assigned
to departures and which spent some time out of the system before coming back. To take
this into account, some arrivals are linked with departures occurring earlier in the horizon.
When an arrival t has a linked departure d, there are two distinct. If d is cancelled (i.e. if
no train is assigned to d), then remDBMt is the one provided in the input data for t . If d
is covered, then remDBMt is replaced by the one induced by the train t ′ assigned to d i.e.
remDBMt = remDBMt ′ − reqDd .

2.3 Maintenance

Trainsmust be serviced on a regular basis to enable them to operate safely.Maintenancework
helps restore remDBMt to its maximum value maxDBMt . Maintenance operations can
only be performed at servicing facilities. As the system’s maintenance capability is limited,
the number of operations which can be performed in one day, i.e. across all the system’s
maintenance facilities, is bounded by a maximum value represented by maxMaint .

2.4 Infrastructure resources

Between arrivals and departures, trains are either moving or parked on tracks that we con-
sider to be resources. Let R be the set of all resources. Resources can be either platforms,
maintenance facilities, yards or track groups. Platforms and maintenance facilities represent
portions of tracks considered individually, while track groups and yards are aggregated types
of resources which usually contain more than one track as well as switches to physically
link the different tracks together. An example of resources configuration is given in Fig. 1.
A resource r ∈ R has a set of neighbouring resources, defining the possible transitions for
trains, in a symmetrical way. Resources represent railways infrastructure elements which are
in general linear and can be accessed from both sides, and in some cases from only one side.
Given this aspect, the neighbours of a resource can then be divided into two subsets, one
being physically associated with each side of the linear element. The transitions between a
resource, r , and one of its neighbours, are performed through one of the entry/exit points,
which we call gates, located on either side of the resource. These gates are the physical tracks
linking the various resources. Platforms and facilities, representing individual tracks, have
at most one gate on each side. Only track groups and yards may have more than one gate
on each side. For these types of resources, two adjacent resources might be linked by more

Fig. 1 Example of infrastructure with 8 platforms, a single yard, 5 maintenance facilities and 4 track groups
connecting them

than one gate: the gate used for the transition between two resources has to be specified. For
example, track group 1 in Fig. 1 has 8 gates and 8 neighbouring resources on the right side,
and 14 gates and 2 neighbouring resources to the left.

Platforms represent tracks within the train station where passengers can board and dis-
embark. Maintenance facility resources are special tracks inside maintenance workshops.
They are used to periodically reset the train remDBM . Platforms and maintenance facilities
are both characterized by a length which may not be exceeded by the total length of trains
using it (length of platforms in the example shown in Fig. 1 varies from 270 to 400, while all
facilities have a length of 350 or 450).

Yards are sets of tracks used to park trains. Trains can stay in yards with no time restriction,
but a yard has a limited physical capacity in terms of the number of trains it can handle
simultaneously (25 for the yard in Fig. 1 example). Capacity is the only constraint when
parking the trains in the yards, i.e. there are no constraints on movement of trains in the yards
as is the case on platforms or in maintenance facilities.

Track groups are sets of tracks used by trains to move throughout the system. Its real
physical configuration in terms of tracks and switches linking them can be very complex. Its
complexity is not taken into account herein; we have considered it as a black box with some
indications on how to identify conflicts. The duration of use of track group k by any train (i.e.
travel time) is a constant denoted by trT imek . It is the time required by a train to enter the
track group k on one side and exit from the opposite side. Indeed, a train entering on one side
of a track group must exit from the other side. All gates on one side are reachable from all
gates of the opposite side. In addition, hwT imek represents the headway of the track group:
this is a safety time which must be adhered to at any place between two trains. In Fig. 1,
trT ime and hwT ime are shown for each track group in the top left and bottom right corners
respectively; for example, for track group 2 we have trT ime = 30 s and hwT ime = 3min.
When several trains use a track group over the same time period, there may be conflicts

between them. A conflict occurs if the paths of two trains on the track group intersect and
headway time hwT ime between them is not complied with. Conflicts are considered to be
unfeasible. Each arrival and each departure has a fixed arrival/departure sequence. These
sequences represent the routing of trains on the tracks during the last few km before reaching
the platforms. Sequence is defined by an ordered set of track groups that a train has to use
when arriving/departing. In Fig. 1, possible arrival sequences are TrackGroup3-TrackGroup1
and TrackGroup4-TrackGroup2-TrackGroup1.

2.5 Solution representation and objective function

A solution to the problem consists of a set of schedules, one for each train. The train schedule
is a sequence of events during its presence in the system, along with details such as the time
of each event, the resources used, etc. With this information for every train, the status of the
system and each of its resources can be derived at any time during the horizon. The objective
function to be minimized is a weighted sum of the following individual costs:

1. Uncovered arrival/departure cost,
2. Platform usage cost.

The uncovered arrival/departure cost is proportional to the number of cancelled arrivals and
departures. Platform usage cost is the sum of the costs of using the platforms during arrivals
and departures. Each arrival t ∈ T has an ideal dwell time idealDwellt , and each departure
d ∈ D also has an ideal dwell time idealDwelld . The cost of using the platform during
arrival/departure is proportional to the difference between actual dwell time (platform use
duration) and ideal dwell time. It is important to mention that the actual objective function, as
defined in the competition subject (Ramond and Marcos 2014), contains several other parts,
but for reasons of simplicity, have been omitted here. Furthermore, for the set of instances
introduced in the competition, these two objectives are, by far, the most critical.

3 Related work

A large body of literature on train routing problems is available. However, any exact or even
similar matches from previous research with the current problem could not be identified.
Only variations to some of the sub-problems occurring here can be found in publications
such as Lentink et al. (2003) and Freling et al. (2005). Furthermore, there is a broad range
of optimization models for specific problem variants. We will not therefore be emphasizing
any of the papers or related problem variants herein.

Recently, both during and after the competition, a few papers (or technical reports) were
published on this topic. Cambazard and Catusse (2014) propose amethodology heavily based
on modelling with both integer programming (IP) and Constraint Programming technolo-
gies for problem resolution. These authors mainly concentrate on solving the problem of
assigning trains to departures and using an integer programming approach similar to that
explained in this paper. Haahr and Bull (2014) propose two exact methods, IP and Column
Generation, for solving the same sub-problem (called “Train Departure Matching Problem”
in their paper). They report that solving the problem of assigning trains to departures exactly
is very difficult, if not impossible, for a given set of instances. Most of the teams competing
in the ROADEF/EURO Challenge 2014 proposed algorithms that rely on greedy procedures
or integer programming or a combination of both. Modelling an entire problem, or a signif-
icant part of one, using IP is theoretically possible and has been achieved by a number of

competitors, yet the outcome proved incapable of producing satisfactory results on the given
set of instances. IP techniques therefore are mainly used to solve only specific sub-problems.
The breakdown of a problem into two dependent sub-problems, i.e. assignment and schedul-
ing problems, is quite a natural step given the complexity of the initial problem and was
implemented in most of the approaches presented. To the best of our knowledge, none of
competitors conducted a local search (at least as a significant component of their research).

4 Two-phase approach

In our method, the problem has been broken down into two sub-problems, which are then
solved sequentially. During the first phase, a train assignment problem is solved by combining
a greedy heuristic procedure with integer programming (IP). The main objective here is to
maximize the number of assigned departures while meeting technical constraints. Other
objectives are taken into account as well, with the aim of obtaining “better” input for the
subsequent phase. During the second phase, the train scheduling problem, which consists
of scheduling the trains inside the station, is solved using a constructive heuristic model.
The goal is to schedule as many assignments as possible, by using station resources and
complying with all the constraints. An iterative improvement procedure is implemented in
order to improve the resulting schedule.

4.1 Assignment problem

This section will describe the method adopted to solve the problem of matching (assigning)
trains to departures. Assigning train t ∈ T to departure d ∈ D must meet the following
technical constraints:

– The remaining distance before the maintenance of train t must be sufficient for departure
d: remDBMt ≥ reqDd .

– The time difference between arrival and departuremust be large enough (for maintenance
operations, parking,…).

We call an assignment (t, d) of a train t ∈ T to a departure d ∈ D feasible if the following
holds:

1. arrT imet + maintT ime(t, d) + addT ime(t, d) ≤ depT imed ,
2. remDBMt ≥ reqDd ,

where:

– maintT ime(t, d) is the total maintenance duration required for scheduling t to d (0 if
maintenance not required),

– addT ime(t, d) is an additional time necessary for parking and handling the train, i.e.
in the case where the train is required to leave the arrivals platform before departure
(non-immediate departure). The train may be parked either at the maintenance facility to
undergo servicing or at any authorized resource before being scheduled for departure.

Additional time, addT ime(t, d), is a variable value to be determined; it is used to increase
the chance of finding a feasible schedule, yet an excessive value of this variable may also
decrease the number of assigned departures. This value has been experimentally set to lie
within the range of 5–60 min. Only feasible assignments (t, d) are to be considered. Further-
more, the solution to the assignment problem must abide by the maintenance limit constraint

i.e. the total number of maintenance operations during any day must not exceed a given
number maxMaint .

The following objectives are considered in the assignment phase:

1. maximize the number of assigned departures,
2. maximize the number of immediate departures,1

3. minimize the number of maintenance operations,
4. minimize the number of assignments with a large difference between departure time and

arrival time (greater than 10h for example).

These objectives are mixed and exact importance (weight) of each objective part will be
given while describing the methods used for solving the problem. The reason for introducing
objectives (2) and (3) is to minimize the use of track groups since minimizing track group use
will obviously decrease the chance of conflict. Another goal of inserting (3) is to minimize
the use of maintenance facilities, which are considered critical resources. The aim in avoiding
long waiting time between arrival and departure is to minimize the use of parking resources.
The following definitions will be used herein:

– nmbM(t, d): the number of maintenances required to schedule train t to departure d
(equals 0 or 1);

– imm(t, d): equals 1 if d is immediate, 0 otherwise;
– long(t, d): equals 1 if depT imed −arrT imet > L , where L is a parameter, 0 otherwise.

The assignment problem is made significantly more complex as the remaining distance for
some trains is not known before scheduling the linked departures. The maximum number of
maintenance operations per day constraint complicates the problem even more. A combina-
tion of greedy and integer programming (IP) algorithms has been implemented to solve this
assignment problem.

4.1.1 Greedy procedure

The greedy procedure tries to match departures one by one. For each departure d, the best
train is chosen in consideration of the defined objectives. The procedure can be formalised
as follows:

– sort departures d ∈ D in ascending order with respect to departure time;
– for each departure d ∈ D, find the “best” available train.

Departure assigned to train t will be denoted by d(t) (d(t) = −1 in case no departure
is assigned to t). After assigning train t to linked departure d, the value remDBM of the
corresponding linked train is updated according to the constraint. The exact choice of train for
each departure is accurately described in the pseudo-code of the greedy assignment (Alg. 1).
The following rules are informally applied when choosing the train for each departure d:

– consider only currently unassigned trains;
– whenever possible, choose an immediate assignment;
– assignments without required maintenance and trains with a small remDBM are prefer-

able for non-linked departures;

1 Departure d covered by train t is said to be immediate if train t can be scheduled to d without leaving the
platform.

Algorithm 1: Greedy assignment

1 bigM = 1 + maxt∈T (maxDBMt)
2 Sort departures by time;
3 for d = 0 to |D| − 1 do

// each departure
4 bestT rain ← −1;
5 minValue ← 2 × bigM ;
6 for t = 0 to |T | − 1 do
7 if d(t) = −1 ∧ (t, d) is f easible ∧ maintenance limit not exceeded then
8 if imm(t, d) then
9 value ← −bigM ;

10 else
11 if long(t, d) then
12 value ← depT imed − arrT imet ;

13 else
14 if d not linked then
15 value ← remDBMt + nmbM(t, d) × bigM ;

16 if d linked ∧nmbM(t, d) > 0 then
17 value ← remDBMt − bigM ;

18 if d linked ∧nmbM(t, d) = 0 then
19 value ← −remDBMt ;

20 if value < minValue then
21 minValue ← value;
22 bestT rain ← t ;

23 if bestT rain �= −1 then
24 t (d) ← bestT rain;
25 d(bestT rain) ← d;
26 Update linked arrival if needed;
27 Add maint. to all intervals containing [arr Dayt (d), depDayd] if required;

– in contrast to the previous rule, assignments with required maintenance and trains with
a large remDBM are preferable for linked departures;

– long waiting times between arrival and departure are not desirable.

The ‘maximumnumber ofmaintenance operations per day’ constraint is taken into account
in the following manner. For each interval of days [day1, day2], we define a current num-
ber of maintenance operations performed between days day1 and day2 by m(day1, day2).
Obviously, m(day1, day2) must not exceed (day2 − day1 + 1) × max Maint . Each time a
maintenance operation needs to be performed for assignment (t, d), the valuem(day1, day2)
is updated for each interval of days [day1, day2] containing [arr Dayt , depDayd], where
arr Dayt and depDayd represent arrival day of train t and the day of departure d respectively.
Adhering to the given bound for each interval of days guarantees a feasible choice of days
for each required maintenance operation; a simple procedure for choosing the exact day of
maintenance, along with the proof of correctness, is given in Sect. 4.1.3. This same concept is
found in the IP model, which enables a daily maintenance limit constraint to be represented
linearly.

4.1.2 IP model

To enhance solutions to the assignment problem, the greedy procedure explained above is
combined with a integer programming (IP) approach. The main difficulty in applying IP
directly (independently) to solve the assignment problem involves linked departures. More
specifically, the remaining distance before maintenance (remDBM) of some trains is not
knownbefore assigning the linked departures. The greedy procedure described in the previous
section and IP have thus been combined as follows:

– The assignment problem is solved by a greedy procedure;
– Linked departure assignments are fixed (in updating the data on linked trains);
– The resulting assignment problem is solved once again with IP.

LetF = {(f t1, f d1), (f t2, f d2), . . . , (f tk, f dk)} ⊆ T ×D be the set of fixed assignments.
Let the set of possible assignments be defined as:

S = {(t1, d1), (t2, d2), . . . , (tn, dn)} ⊆ T × D,

where:

– each assignment (ti , di) is feasible;
– none of the departures d1, . . . , dn is linked;
– none of the trains t1, . . . , tn has been assigned to linked departure i.e.

∀i ∈ {1, . . . , n}, j ∈ {1, . . . , k} ti �= f t j .

For each pair (t j , d j) in S, a decision variable x j is defined: x j = 1 if t j is assigned to
d j , x j = 0 otherwise. All the objective parts are merged into a single objective function by
applying a non-negative weight for each of them. The objective function to be maximized is
formalized as follows:

n∑

j=1

x j×
(
assignmentWeight + durationWeight × (

1 − long(t j , d j)
)

+ immWeight × imm(t j , d j) + maintWeight × (
1 − nmbM(t j , d j)

))

Theweights are chosen experimentally, and all results in the paper have been obtainedwith the
following choices: assignmentWeight = 1000, durationWeight = 100, immWeight =
10 and maintWeight = 1. Next, we define the constraints included in this model. Let
nmbFixed(day1, day2) be the number of maintenance operations between days day1 and
day2 required by fixed assignments i.e.

nmbFixed(day1, day2) =
k∑

i=1

nmbM(f ti , f di) × 1[arr Day f ti ,depDay f di]⊆[day1,day2]

The constraint on maintenance is formulated by the following:

∀[day1, day2]
n∑

j=1

nmbM(t j , d j) × x j × 1[arr Dayt j ,depDayd j]⊆[day1,day2]

≤ (day2 − day1 + 1) × maxMaint − nmbFixed(day1, day2)

Fig. 2 Assignments ordered by
departure day and arrival day

4.1.3 Choosing maintenance days

As described earlier, the maximum number of maintenance operations per day constraint is
met by complying with the limit for each interval of days [day1, day2], while updating the
number ofmaintenance operations for each interval that contains [arr Dayt , depDayd]when
servicing has to be performed for the assignment (t, d). The exact day for each maintenance
operation still needs to be determined.A simple procedure, alongwith its proof of correctness,
is presented in this section. This procedure functions as follows:

– sorting assignments (requiring maintenance) in ascending order by departure day and
then by arrival day (example is given in Fig. 2);

– for each assignment (t, d) in a sorted list:

– choose the first available day for maintenance, i.e. the first day in {arr Dayt ,
. . . , depDayd} for which the maintenance limit has not been reached.

Wewill now prove the correctness of this procedure. LetM = {m1,m2, . . . ,mk} be the set of
all assignments requiringmaintenance.Next, let Ai and Di be the arrival and departure days of
assignment mi respectively. We can now write mi = (Ai , Di), Ai , Di ∈ {1, 2, . . . , nDays}.
Claim If the following inequality holds for each interval of days [day1, day2]:

k∑

i=1

1[Ai ,Di]⊆[day1,day2] ≤ (day2 − day1 + 1) × maxMaint (1)

then the assignment of maintenance days using the procedure described above meets the
‘maximum number of maintenance operations per day’ constraint.

Proof This claim will be proven by way of contradiction. Let m j = (A j , Dj) be the first
assignment for which a servicing day cannot be chosen by following the given procedure and
Mj−1 = {m1,m2, . . . ,m j−1} be the set of assignments with servicing days already set. This
set-up means that the maintenance limit is reached for each day in [A j , Dj]. (*) Let day0 be
the first day such that the maintenance limit is reached for each day in interval [day0, Dj]
(the existence of day0 is obvious and day0 ≤ A j). Clearly,

– day0 = 1 or
– the limit is not reached for day0 − 1. (**)

Let F = { f1, f2, . . . , fl} ⊂ Mj−1 be the set of assignments that have already been assigned
to one of the days in [day0, Dj] (l = (Dj − day0 + 1) × maxMaint , since the limit has
been reached for the entire interval). For each fi = (A f i , D f i) ∈ F , we have:

– A f i ≥ day0: otherwise, the chosen servicing day would not be greater than day0 − 1
because of the assignment rule and (**),

– D f i ≤ Dj : as a result of the sorting order.

The same holds form j : A j ≥ day0 and Dj ≤ Dj . Let us now consider the setU = F ∪m j .
As previously shown, the maintenance interval for each element of U lies in [day0, Dj],
thus:
k∑

i=1

1[Ai ,Di]⊆[day0,Dj] ≥
∑

i∈U
1[Ai ,Di]⊆[day0,Dj] = |U | = (Dj −day0 +1)×maxMaint +1

which is contradictory to the main assumption (1).

4.2 Scheduling problem

The goal of the second algorithm part is to schedule the assignments generated by the first
phase inside the station while abiding by all resource constraints. Trains must move through
the network/graph of inter-connected resources. All types of resources and constraints asso-
ciated with the trains are given in the problem description provided in Sect. 2. A constructive
procedure has been implemented here to solve the scheduling problem. The output schedule
is then improved by an iterative procedure based on a local search. There are three scheduling
options for each train t ∈ T :

1. t is scheduled for departure d ∈ D;
2. t is parked inside the station until the end of the planning time frame without being

scheduled for any departure;
3. t is cancelled.

The schedule, possibly an empty one, must be given for each train t ∈ T . All resources
used by the train must be specified, along with the exact time of entering and leaving each
resource. The greedy procedure schedules the trains one by one, in a defined order (ordering
will be addressed later). A complete schedule for the train is output before scheduling the
next train. Nevertheless, all trains share the same resources and all constraints need to be
complied with over the entire scheduling procedure.

4.2.1 Possible train movements

Modelling the scheduling problem exactly, i.e. taking all possible resource choices into
consideration at every possible time instant, is not realistic given the size and structure of

the instances proposed by SNCF. We have therefore limited possible train movements to the
following:

– arriving at the platform via a given set of track groups (arrival sequence),
– departing from the platform via a given set of track groups (departure sequence),
– move from arrivals platform to yard,
– move from arrivals platform to facility,
– move from parking (facility, yard) to departure platform,
– move from yard to facility,
– move from facility to yard.

The train schedule will, for each train movement, specify the set of resources deployed with
the exact resource enter and exit times. The connected set of resources used while moving
the train from one place to another will be called path. P = (R1, R2, . . . , Rk) denotes a
path connecting resources R1 and Rk that starts at R1, visits resources R2, R3, . . . , Rk−1
and then ends at Rk . Two consecutive resources on a path must be connected by a gate.
The use of path P for given entry and exit times on each resource will be called travel.
To simplify the scheduling procedure, the time spent on each intermediate resource on a
path (R2, . . . , Rk−1) is always a minimum. In the case of track groups, this time is set equal
to trT ime, while in the case of other resources it equals to the constant value (minimum
duration of resource usage) given as input. The travel of a given train is thus fully determined
by the designated path and the starting time. Travel using path P and starting at time h
will be denoted T (P, h). To conclude, the schedule of a train is represented as a set of
travels {T (P1, h1), T (P2, h2), . . . T (Pl , hl)}. All paths potentially used for any movement
are constructed before the start of the scheduling procedure. This set of paths includes those
for each pair of resources (r1, r2), such that r1 and r2 are of different types, with neither
of them being a track group. Paths are sorted by length (i.e. total number of resources) for
each pair (r1, r2). Furthermore, should there be many paths between two resources, only
the shortest ones are to be kept (15 shortest for example). This simple pre-processing step
simplifies implementation considerably.

The scheduling procedure seeks to identify a feasible schedule for a given train with small
number of travels. The choice of movements depends on the type of operations that need to
be carried out (e.g. maintenance), total time to be spent at the station, etc. Train movements
are planned one by one. If no feasible travel can be found at some point during the planning
procedure, then the train will be cancelled, i.e. no attempt will be made to modify the previous
movements.

4.2.2 Resource consumption and travel feasibility

Resource consumption is tracked by recording the set of all previous visits for each resource
in the station. A visit to a resource has the following attributes: entry time and side, exit time
and side, train length, and entry and exit gates. Each time the resource needs to be visited by
a train, all constraints for a given resource are checked and the visit is only allowed if found
to be feasible. Then, verifying the feasibility of travel T (P, h) simply requires checking the
visit feasibility on each resource in path P , with corresponding entry and exit times being
uniquely determined by h.

4.2.3 Time spent on a resource between two travels

One of the difficulties involved in train scheduling is to determine an exit time for the last
resource in each travel. Knowing the exit time on the last resource is required in order to
check constraints regarding this particular resource. An exact exit time is often not known
before the next travel is planned. The following strategy was used to deal with this issue:

1. If the last travel resource is a yard: the exit time is equal to departure time if the train is to
be scheduled for a departure; otherwise, the exit time is the end of the planning horizon.

2. If the last travel resource is a facility (for either parking or maintenance).

– same as (1) in the case maintenance is not required,
– otherwise, exit time is equal to the minimum between departure time and facility

entry time plus 12h.

3. If the last resource of travel T (Pi , hi) is a platform: travel T (Pi , hi) and T (Pi+1, hi+1)

are planned together. This step is equivalent to planning a single travel, with possi-
ble routes/paths being a combination of two paths (paths for travels T (Pi , hi) and
T (Pi+1, hi+1)), yet time spent on the platform is no longer fixed and needs to be deter-
mined.

4.2.4 Travel starting time

An important decision to be made when scheduling each train is the starting time for each
travel. Some starting times are fixed, such as the time of arrival and departure, while others
are to be selected from a feasible set of time instants. An ideal starting time, idealST , will be
defined for each travel. We can always calculate the earliest and latest possible travel times,
est and lst , which depend on the time constraints such as minimum resource times, travel
duration, fixed arrival and departure times, etc. The ideal travel starting time depends on the
type of travel; for our purposes, the following was used:

– if arrival train t needs to be moved from platform (to yard or facility) then the ideal
starting time will minimize the dwell cost on the platform, i.e. idealST = arrT imet +
idealDwellt ;

– if train t , parked at a yard or facility, needs to be moved to the platform for departure d
then the ideal starting time will minimize the dwell cost on the platform, i.e. idealST =
depT imed − idealDwelld − travelDur , where travelDur is the duration of travel;

– if the train is to be moved from one parking resource to another (i.e. from yard to facility
or vice versa) then the ideal starting time is the earliest possible starting time, est .

Once the ideal travel starting time, idealST , has been determined, the next step seeks to
choose a starting time, between the earliest and latest possible, as close as possible to idealST .
Formally speaking, the selected starting travel time, h, is the first one from the set

{idealST, idealST − δ, idealST + δ, idealST − 2δ, idealST + 2δ, . . .},
such that h ∈ [est, lst] and travel T (P, h) is feasible for some path P . Parameter δ is chosen
from the interval [10s, 60s].

4.2.5 Dealing with parking capacity

Since the station has limited capacity, it is not possible for the number of trains arriving at the
station to significantly exceed the number of departures from the station. Consequently, most

trains associated with arrivals must be scheduled to a departure. However, some trains may
remain at the station until the end of the planning horizon, though this number is typically
much smaller than the number of trains scheduled to a departure. Furthermore, if station
resources are critical, it is not desirable to consume them with the trains not scheduled for
any departure, which could potentially disable the departure scheduling of some trains. We
have therefore used the following simple heuristic in the scheduling procedure:

1. planning departures: schedule each assigned train t (d(t) ≥ 0) and if the train cannot be
successfully scheduled for departure d(t), then cancel it;

2. park unassigned and cancelled trains at the very end of the procedure (after optimizing
the solution).

It should also be noted that assignments with too much time between arrival and departure
are not desirable from the standpoint of yard capacity, which is taken into account during the
assignment phase.

4.2.6 Choosing gates: avoiding conflicts on track groups

The main difficulty with this problem, from our experience, lies in effectively choosing the
gates for each track group to enter and exit, as this gate selection will allow more trains to
travel on the track groups without conflict. As defined in Sect. 2, conflicts on track groups are
prohibited. For each travel T (P, h) by a train t , a set of entry/exit gates on each track group
in P needs to be determined. As with all other resources, the exact entry and exit times for
each track group are known if the starting time, h, of the travel is given.

Let n1 be the number of possible gates to choose for an entering track group TG ∈ P , and
n2 the number of possible gates for exiting. We then have a total of n1 ×n2 possible moves to
choose from. It is simple to check whether or not the selected move conflicts with any of the
previous moves on the track group. For this purpose, as with any other resource type, we have
kept a set of all visits (moves) to the track group, and only those moves that do not conflict with
any moves in the given set are to be allowed. A set of entry/exit gates without conflicts must
be determined for the entire travel T (P, h), which means that a feasible move needs to be
found on each track group in P . Consequently, the number of possible combinations of moves
becomes greater. One should notice that choice of exit gate on one resource automatically
determines the choice of entering gate on the next one. A simple depth-first search (DFS)
to find a feasible set of moves for travel has been used. This procedure explores all possible
combinations of moves (one move for each track group in P) until a feasible one (without
conflicts) is found. The most basic way of using a DFS procedure is to begin with the first
possible gate on each track group and increase the gate index, according to a depth-first
sequence, whenever a feasible choice has not been found. This manner of choosing the gates
is not necessarily a good one as regards track group usage. To improve the choice of gates,
let us attempt to identify a different order for exploring the possibilities in a DFS procedure.
Formally, for each path P = (R1, R2, . . . , Rn), a “preferred” entry gate on each resource
in P will be defined and the DFS procedure will explore all possibilities by starting with a
preferred gate on each resource. The set of preferred gates for travel T (P, h) is determined
according to the first and last resources, more specifically R1 and Rn in P , and depending
on the positions of these resources relative to the neighbouring track groups, R2 and Rn−1. It
should be noted that the majority of travels start or end at the platform. Consequently, the most
critical track groups are those either connected to or close to the platforms. We have therefore
decided to define the preferred gates solely according to the relative position of the platform
with respect to the connected track group. If R1 is the j − th of N platforms connected to

track group R2 (according to gate indices) and g1, g2, . . . , gk are the gates from Ri to Ri+1

(2 ≤ i < n), then a preferred gate is gl , where: l = j×k
N . The same rule is applied if Rn is

a platform. For example, if the chosen platform is the top platform, then it is only natural to
choose the top gate on each resource in path P. We have conducted several experiments with
a more complicated choice of gates, however the results obtained only changed slightly and
were not necessarily always better. Moreover, the local search procedure described at the end
of this section will question this choice of gates.

4.2.7 Virtual visits

One of the difficulties in avoiding conflicts is not knowing the “future traffic”, i.e. overall track
group use. This issue is particularly important when choosing the starting times of travels
without a fixed starting time (i.e. all travels except arrivals and departures). Very often, many
different possibilities are feasible and just one has to be chosen, although choosing any one
of them might potentially block more trains yet to be scheduled than choosing another one.
We have introduced the concept of “virtual visits” to improve the starting time of each travel.
Virtual visits can be viewed as the potential visits capable of occurring on the track groups
in the future. Virtual visits will be generated for each arrival and each matched departure (by
the assignment procedure) and then taken into account when choosing the starting times and
gates for the travel. The set of virtual visits V is built as follows:

– for each arrival t ∈ T and each matched departure d ∈ D

– randomly choose a compatible platform p,
– find a set of gates for arrival/departure (sequence + platform)with aminimumnumber

of conflicts with V (as explained in previous section),
– add the matching set of visits to the track groups to V .

The set of virtual visits is computed at the start of the scheduling phase, before scheduling any
train. Next, during train scheduling, the starting time of each travel not matching an arrival
or departure is selected in order to minimize the number of conflicts with virtual visits. The
virtual visits of train t are removed from V when the scheduling procedure for t has been
completed (t is scheduled for departure, parked or cancelled).

4.2.8 Scheduling order

Trains are to be scheduled independently and consecutively, one by one. Some trains however
may have a higher scheduling priority than others. For example, cancelling a train assigned
to a linked departure could cause cancellation of the linked trains, and some trains use far
fewer resources than others, etc. Trains are therefore scheduled in the following order:

1. Assigned trains,

(a) trains that may be departing immediately: only arrival and departure gates are used,
(b) trains assigned to linked departures: uncovering a linked departure may cause more

uncovered departures,
(c) trains that do not require any maintenance,
(d) remaining assigned trains,

2. Unassigned trains.

Constraints on linked departures are complied with, e.g. if train t2 ∈ T is linked to departure
d ∈ D and t1 ∈ T is assigned to d, then t1 must come before t2 in the given order.

Fig. 3 Solution process

4.3 Iterative improvement procedure

This section recommends an iterative procedure for improving the schedule. This procedure
operates as follows:

– (1) schedule more trains by allowing conflicts in the track groups,
– (2) resolve conflicts by means of a local search,
– repeat steps (1)–(2) until the stopping criteria are met.

The entire solution procedure is illustrated in Fig. 3.

4.3.1 Feasible to infeasible solution with more trains

The first step of this improvement procedure consists of adding more trains (and depar-
tures) to the feasible schedule by allowing conflicts. For each train added, the allowed track
group conflicts are limited to a given number (e.g. a maximum of 3 conflicts per train). This
scheduling procedure is the same as the one previously explained, but without adhering to the
constraint on track group conflicts. All other constraints are to be met. An infeasible solution
generated in this manner will serve as input for the local search procedure described below.

4.3.2 Local search to resolve track group conflicts

An infeasible solution is repaired by means of a local search procedure. The aim of this
procedure is to change the choice of gates in order to reduce the number of conflicts to zero.
The entry and exit times are to remain unchanged for each visit, as is the list of resources
allocated for each train. Accordingly, a complete schedule for the train will either remain the
same or be deleted (in the case of cancelling the train). The initial configuration (solution) is
an infeasible set of visits on track groups. A visit is represented by a pair of gates (g1, g2).
The configuration is denoted by V = {(g11, g21), . . . , (g1n, g2n)} and the initial one by
V0 = {(g101, g210), . . . , (g10n, g2n0)}. The domain of each variable g1i (g2i) includes all gates
connecting the same pair of resources as g1i

0 (g2i
0) and null value. A visit corresponding to

(g1,null), (null, g2) or (null,null) is called a partial visit. It is assumed that no conflict
occurs with a partial visit. A configuration V is called partial if it contains a partial visit.

Remark Two successive visits of the same train (g1i , g2i) and (g1 j , g2 j) share a common
gate, i.e. g2i = g1 j . For these cases, the local search procedure will perform the same
modification at both gates. The objective of the local search procedure is to minimize the
number of cancelled trains. A train is cancelled if one of its visits is partial.

Greedy procedure to resolve track group conflicts
The first part of a local search is the greedy procedure to clear conflicts by deleting gates,
i.e. setting the gate values to null. The objective here is to compute a partial, but feasible,
configuration (set of visits). The heuristic is simple: delete the gate that will decrease conflicts
by the greatest number until conflicts no longer exist.
Tabu search on the partial feasible configuration
The tabu search procedure starts from a partial, but feasible, configuration of gates given by
the previous procedure. The goal is to assign gate values to partial visits while keeping the
configuration feasible. The following two elementary moves are carried out:

– ADD gate means one of 2 possible moves:

– (null, g2i) ⇒ (g1i , g2i) (g1i �= null and g1i leads to the sameneighbour resource
as g10i)

– (g1i ,null) ⇒ (g1i , g2i) (g2i �= null and g2i leads to the sameneighbour resource
as g20i)

– DROP gate means one of 2 possible moves:

– (g1i , g2i) ⇒ (null, g2i) (delete g1)
– (g1i , g2i) ⇒ (g1i ,null) (delete g2)

These modifications are also applied to the next/previous visit of the given train (see remark
in Sect. 4.3.2). The local search move consists of a single ADD move and, should conflicts
occur, is to be followed by a few DROP moves in order to clear the conflicts. Deleting a
gate gi (DROP) is allowed only if gi has not been added for a given number of iterations
(i.e. if setting gi to null is not tabu). The number of iterations for which deleting a gate is
tabu equals the frequency of adding this gate. The current configuration is evaluated by the
following hierarchical function:

1. number of trains cancelled,
2. number of deleted gates, i.e. the number of gates with a null value.

At each iteration, a non-tabu move that minimizes this function is performed. If there are
two or more moves with the same objective, then a random choice is made. This process
is repeated until no non-tabu move exists or until a maximum number of moves without
improvement has been reached. In all reported experiments this limit has been set to 300.

An illustration of the objective function change during this improvement procedure is
given in Fig. 4. It can be noted that most of the improvement occurs during the early stage
and not many new trains are added at the end. The improved results due to the local search
are illustrated in Fig. 5.

MIP instead of Local Search The problem of repairing the conflicts explained above,
and solved by local search procedure, may also be solved in different ways. One possible
approach that we tested is to define a problem as a mixed integer program (which is not too
complicated), with the objective of determining the maximum subset (in terms of number of

0 50 100 150 200 250 300 350

6.6

6.8

7

7.2

7.4

7.6

7.8

·105

time (sec)

o
bj
ec
ti
v
e

0 50 100 150 200 250 300 350

1

1.1

1.2

1.3

1.4

·106

o
bj
ec
ti
v
e

time (sec)

Fig. 4 Objective function oscillation during improvement phase for instances B1 and X4. The X-axis repre-
sents time elapsed since improvement procedure start, while the Y-axis represents the value of the objective
function after adding new trains to the feasible solutions and after the local search procedure

scheduled trains) of train schedules without conflicts on track groups. The overall improve-
ment procedure remains the same, we only try to “repair conflicts” by using mixed integer
programming instead of local search. If we consider a single improvement phase iteration
(add trains + repair) i.e. solving the problem—given a set of train schedules with conflicts,
choose the gate values so that a minimum number of departures/arrivals is cancelled—it is
clear that MIP will produce better (or at least the same) solutions than local search. However,
using MIP instead of local search has not made any (or negligible) improvements to the
final results using presented improvement framework, particularly for a 10-min running time
when using MIP usually produces poorer results. The main reason for this is the fact that
after many improvement phase iterations (e.g. 100) solution values obtained by local search
come very close to the values of infeasible solutions, i.e. only a few trains can be added to

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

·106

Instance

O
bj
ec
ti
v
e

withoutLS

withLS

Fig. 5 Improvement by local search (instances B1–B12)

the feasible solutions. In addition, many more iterations can be done in the same running
time if local search is used, which is crucial for some instances. Similar conclusions can be
drawnwhenMIP is used with a given running time limit (thus, transforming an exact solution
approach into an heuristic one).

4.4 Final algorithm

The pseudo-code of the final algorithm is given in Algorithm 2.

Algorithm 2: Final Algori thm
1 Solve assignment problem (greedy/IP);
2 Determine maintenance days;
3 Sort trains for schedule (see schedule order);
4 Add virtual visits;
5 for t ∈ T do
6 schedule train t;
7 if train is not scheduled to departure cancel it;

8 repeat
9 add trains with conflicts;

10 repair conflicts (local search);
11 until stopping criteria is met;
12 Park non-scheduled trains;

5 Evaluation and computational results

The method has been tested on the official set of competition instances provided by SNCF.
This test data consists of two sets of instances, i.e. dataset B and dataset X. The first set was
made available during the competition, while dataset X is a hidden set of instances provided

Table 1 Instances characteristics Inst nDays |T | |D| maxMaint LDep

B1 7 1235 1235 30 475

B2 7 1235 1235 30 475

B3 7 1235 1235 60 0

B4 7 1780 1780 50 722

B5 7 2153 2153 60 720

B6 7 1780 1780 50 722

B7 1 304 304 100 143

B8 1 304 304 100 143

B9 7 1967 1967 100 860

B10 1 196 196 20 60

B11 7 1122 1122 20 486

B12 3 570 570 20 263

X1 7 1235 1235 30 475

X2 7 1499 1499 40 475

X3 7 1235 1235 30 475

X4 7 1780 1780 50 722

X5 7 1780 1780 50 722

X6 7 1780 1780 100 0

X7 7 1967 1967 100 860

X8 3 905 905 100 445

X9 3 905 905 100 445

X10 1 196 196 20 89

X11 7 1122 1122 20 486

X12 3 570 570 20 263

to test algorithm robustness and then made publicly available after the end of the competition.
The basic characteristics of instances are given in Table 1: horizon length (nDays), number
of arrivals (|T |) and departures (|D|), maximum number of maintenance operations in a day
(max Maint) and number of linked departures (LDep) are reported for each instance. The
algorithm has been implemented in C++ and compiled using Linux gcc 4.7.2 compiler in
Ubuntu 12.10. All tests were performed on a computer with an Intel Core i7-3770 CPU 3.40
GHz processor. The IP model proposed for the assignment phase was solved using the IBM
ILOG CPLEX 12.6 solver.

The algorithm sequentially produces independent solutions until the time limit is exceeded
and retains the best one. The results obtained on datasets B and X, in a 10-min running
time, are listed in Table 2; average and best result over 20 runs with different initial seeds
for the random number generation are reported. We also report the results submitted for
the competition, along with the best results obtained by other competitors (our submitted
program produced less good results due to the fact that IP model given in Sect. 4.1.2 was not
included).

There is clearly a significant difference between the average and best solutions, sometimes
more than 5%. This is due to the randomness in the heuristics proposed. However, running
the algorithm for more seeds (e.g. 100 instead of 20) or with larger time limit will not yield
a significant further improvement for a given set of instances.

Table 2 Results on data sets B, X: average and best values from 20 runs of 10min are reported, as well as
competition results

Instance Challenge With MIP included (20 runs)

Our result Best others Average Best

B1 699,750 1,026,208 643,651 622,879

B2 636,550 980,607 582,000 561,579

B3 545,974 976,754 480,960 462,848

B4 1,263,764 1,671,107 1,179,584 1,142,660

B5 1,573,290 2,060,485 1,471,631 1,417,578

B6 1,097,572 1,586,010 1,047,493 993,580

B7 168,369 257,986 171,257 167,993

B8 213,190 291,216 221,480 208,573

B9 1,332,256 1,719,646 1,234,501 1,130,644

B10 168,457 155,100 149,301 142,600

B11 1,192,687 1,142,072 1,100,200 1,076,260

B12 620,527 571,497 577,000 556,853

X1 790,506 1,036,393 712,260 683,939

X2 1,176,901 1,323,148 890,666 874,014

X3 735,579 1,040,464 669,864 655,220

X4 1,109,468 1,608,134 1,026,635 983,693

X5 1,012,268 1,519,608 925,955 884,348

X6 943,024 1,560,462 822,780 768,395

X7 1,642,024 1,914,783 1,569,772 1,543,090

X8 534,889 777,363 560,170 553,427

X9 732,818 871,027 748,539 711,395

X10 193,210 184,022 180,707 168,407

X11 1,107,732 988,996 1,018,810 965,892

X12 501,218 467,605 477,634 455,736

Best competition results are shown in bold

The percentage of arrivals and departures cancelled varies from 11.90%on the B3 instance
to 44.21% on B12, the average value being 26.17%. Train cancellation is mainly due to the
fact that track group conflicts are prohibited. These conflicts are not always the actual conflicts
due to a “black-box” approach introduced to model track groups in the current problem. The
approach does not appear to lead to a solution that can be used in practice, due to a large
number of cancelled arrivals and departures. As previously stated, we have been trying to
solve the problem ‘as posted’ in the competition, adhering to all the given constraints to
obtain the best possible result. However, the problem needs to be formulated differently in
order to recommend solutions that can be used in practice. It is important to mention that the
original problem formulated at the start of the competition allowed track group conflicts and
there was a penalty in the objective function for each conflict. But the organizers changed
this in a later phase.

6 Conclusion

This rolling stock unit management problem on a railway site is extremely difficult to solve
for several reasons. Most induced sub-problems, such as the train assignment, scheduling,
track group conflicts and platform assignment, are indeed complicated. In order to solve this
problem, we implemented a two-phase approach that combines exact and heuristic methods. A
natural way of approaching the problem consists of dividing it into two sub-problems, the first
consisting of matching (assigning) trains to departures and the second consisting of planning
train movements (scheduling) inside the station, and then solving both sequentially. It would
also be quite natural to consider a break down of the problem by days (and subsequently
combining the days), as there are hardly any arrivals and departures at night. However, the
experiments we performed have shown that the quality of the solutions decreases, while not
greatly increasing algorithm simplicity or computational time. This was the case, in particular,
for the first version of the problem (i.e. with conflicts on track group as soft constraints), where
many more trains have not been assigned to any departure. It should also be noted that the
assignment procedure presented in this paper tends to schedule the arrival and departure of
a train on the same day.

The presence of linked departures and a constraint on the daily maintenance limit further
complicate the assignment problem. Otherwise, the problem could be solved in a polynomial
time by means, for instance, of the maximum weighted matching algorithm. A common
strategy for overcoming these constraints calls for modelling the assignment problem as
a mixed integer program. The number of linked departures in the given set of instances
however makes the IP model unworkable due to the tremendous number of variables to be
generated in order to cope with the linked departures. A greedy procedure has therefore
been used to solve the assignment problem. The departures are sorted by departure time
and matched to the trains one by one, in a greedy manner. A simple function was used to
evaluate the quality of assignment (t, d). Solutions to the assignment problem are improved by
combining a greedy procedure with IP, whereby all train assignments with linked departures
obtained by the greedy procedure are fixed and the remaining assignment is solved by IP. We
recommended the simple idea (and proved its correctness) of modelling the constraint on the
daily maintenance limit as a linear one.

The second step in solving the problem is to plan train movements inside the station
while complying with all resource constraints and cancelling as few trains as possible. This
problem is very complex and contains a huge number of decision variables (resources, gates
and entry/exit times must be specified for each train); hence, modelling the problem exactly
and solving it efficiently are likely to be impossible. We therefore opted for a constructive
procedure to schedule the trains. They are scheduled sequentially, one by one, after being
ordered by a given set of criteria. The possible train movements are restricted to just a few of
critical importance in order to reduce problem complexity. For this purpose, a set of potential
paths that trains are allowed to use was compiled at the beginning of the procedure. A concept
of virtual visits was offered to expand the choice of starting times for each travel in order
to address track group conflicts. An iterative procedure was adopted to improve scheduling
phase solutions, by allowing infeasible solutions as regards track group conflicts and then
resolving these solutions by means of a local search. The introduction of both virtual visits and
an iterative improvement procedure helped greatly improve these solutions. The algorithm
described in this paper was ranked first at the ROADEF/EURO Challenge 2014.

References

Cambazard, H., & Catusse, N. (2014). Roadef challenge 2014: A modeling approach, rolling stock unit
management on railway sites. IFORS 2014, Barcelona 13–18 July.

Corman, F., D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2010). A tabu search algorithm for rerouting trains
during rail operations. Transportation Research Part B: Methodological, 44(1), 175–192.

Freling, R., Lentink, R. M., Kroon, L. G., & Huisman, D. (2005). Shunting of passenger train units in a railway
station. Transportation Science, 39(2), 261–272.

Haahr, J., & Bull, S. H. (2014). Exact methods for solving the train departure matching problem. IFORS 2014,
Barcelona 13–18 July.

Huisman,D., Kroon, L., Lentink, R.,&Vromans,M. (2005). OperationsResearch in Passenger RailwayTrans-
portation. No ERS-2005-023-LIS, ERIM Report Series Research in Management, Erasmus Research
Institute of Management (ERIM).

Lentink, R. M., Fioole, P. J., Kroon, L. G., & van’t Woudt, C. (2003). Applying operations research techniques
to planning of train shunting. Technical Report ERS-2003-094-LIS, Erasmus University Rotterdam,
Rotterdam, The Netherlands.

Ramond, F., &Marcos, N. (2014). Trains don’t vanish! ROADEF EURO 2014 challenge problem description,
2014. https://hal.archives-ouvertes.fr/hal-01057324.

https://hal.archives-ouvertes.fr/hal-01057324

