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SPEED OF PROPAGATION FOR HAMILTON-JACOBI EQUATIONS WITH

MULTIPLICATIVE ROUGH TIME DEPENDENCE AND CONVEX

HAMILTONIANS

PAUL GASSIAT, BENJAMIN GESS, PIERRE-LOUIS LIONS, AND PANAGIOTIS E. SOUGANIDIS

Abstract. We show that the initial value problem for Hamilton-Jacobi equations with multi-

plicative rough time dependence, typically stochastic, and convex Hamiltonians satisfies finite
speed of propagation. We prove that in general the range of dependence is bounded by a multiple

of the length of the “skeleton” of the path, that is a piecewise linear path obtained by connecting
the successive extrema of the original one. When the driving path is a Brownian motion, we prove

that its skeleton has almost surely finite length. We also discuss the optimality of the estimate.

1. Introduction

We consider the initial value problem for Hamilton-Jacobi equations with multiplicative rough time
dependence, that is

(1.1) du “ HpDu, xq ¨ dξ in Rd ˆ p0, T s up¨, 0q “ u0 in Rd,

with

(1.2) H : Rd ˆ Rd Ñ R convex and Lipschitz continuous in the first argument

and

(1.3) ξ P C0pr0, T sq,

where C0pr0, T sq denotes the space of continuous paths ξ : r0, T s Ñ R such that ξp0q “ 0.

When ξ is a C1 or BV-path, (1.1) is the standard Hamilton-Jacobi equation that is studied using
the Crandall-Lions theory of viscosity solutions. For such paths, in place of (1.1) we will often write

(1.4) ut “ HpDu, xq 9ξ in Rd ˆ p0, T s up¨, 0q “ u0 in Rd

When ξ is merely continuous, in (1.1) ¨ simply denotes the way the path enters the equation. When
ξ is a Brownian motion, then ¨dξ stands for the classical Stratonovich differential.

Lions and Souganidis introduced in [13] the notion of stochastic or pathwise viscosity solutions for
a general class of equations which contain (1.1) as a special case and studied its well-posedness; for
this as well as further properties see Lions-Souganidis [13, 14, 15, 12, 16].

One of the questions raised in [16] was whether (1.1) has a finite speed of propagation, which is one
of the important characteristics of the hyperbolic nature of the equations for regular paths.

Roughly speaking, finite speed of propagation means that, if two solutions agree at some time in a
ball, then they agree on a forward cone with a time dependent radius.
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A partial result in this direction was shown in Lions and Souganidis [14] (see also Souganidis [16]),
while Gassiat showed in [5] that, in general, when H is neither convex nor concave (1.1) does not
have the finite speed of propagation property.

In this work, assuming (1.2) and (1.3), we establish finite speed of propagation in the sense formu-
lated precisely next.

Given T ą 0 and H : Rd ˆ Rd Ñ R let

ρHpξ, T q :“ sup
!

R ě 0 : there exist solutions u1, u2 of (1.1) and x P Rd,(1.5)

such that u1p¨, 0q “ u2p¨, 0q in BRpxq and u1px, T q ‰ u2px, T q
)

,

where BRpxq is the ball in Rd centered at x with radius R.

The classical theory for Hamilton-Jacobi equations (see Lions [9] and Crandall and Lions [2]) yields
that, if ξ is a C1- or, more generally, a BV-path, then

(1.6) ρHpξ, T q ď L}ξ}TV pr0,T sq,

where

}ξ}TV pr0,T sq :“ sup
0“t0ď...ďtn“T

n´1
ÿ

i“0

|ξpti`1q ´ ξptiq|

is the total variation semi-norm of ξ and L is the Lipschitz constant of H. It is easy to see that

(1.6) is sharp when 9ξ ” 1.

For general rough, that is only continuous, signal ξ it was shown in [14], [16] that, if Hpp, xq “
H1ppq´H2ppq, where H1, H2 satisfy (1.2) with Lipschitz constant L and H1p0q “ H2p0q “ 0, then,
for any constant A, if

up0, ¨q ” A on BRp0q,

then

upt, ¨q ” A on BRptqp0q, for Rptq :“ R´ Lp max
sPr0,T s

ξpsq ´ min
sPr0,T s

ξpsqq.

This does not, however, imply a finite domain of dependence.

In fact, it was shown in [5] that when Hppq “ |p1|´|p2| equality is attained in (1.6) for all continuous
ξ, a fact which implies that there is no finite domain of dependence if ξ R BV pr0, T sq. In other
words, the counter-example in [5] shows that for non-convex Hamiltonian H, all of the oscillations
of ξ, measured in terms of the TV -norm, are relevant for the dynamics of (1.1).

In contrast, in this paper we show that, if H is convex, there is an estimate, which is better than
(1.6), and, in particular, implies that the rate of dependence ρHpξ, T q is almost surely finite when
ξ is a Brownian path. This new bound relies on a better understanding of which oscillations of the
signal ξ are effectively relevant for the dynamics of (1.1).

In this spirit, we prove that, if H is convex, then ξ can be replaced by its skeleton. This is a reduced
path R0,T pξq which keeps track solely of the oscillations of ξ that are relevant for the dynamics
of (1.1) without changing the solution to (1.1). Hence, in the convex case only the oscillations
of ξ encoded in R0,T pξq are relevant for (1.1). In the one-dimensional setting and for smooth,
strictly convex, x-independent Hamiltonians a related result has been obtained independently and
by different methods in Hoel, Karlsen, Risebro, and Storrøsten [7].

We also establish that the reduced path of a Brownian motion has almost surely finite variation, a
fact which implies that ρHpξ, T q is almost surely finite.
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Figure 1.1. The (fully) reduced path

Given ξ P C0pr0, T sq, the sequence pτiqiPZ of successive extrema of ξ is defined by

(1.7) τ0 :“ sup

"

t P r0, T s, ξptq “ max
0ďsďT

ξpsq or ξptq “ min
0ďsďT

ξpsq

*

,

and, for all i ě 0,

(1.8) τi`1 “

#

arg maxrτi,T s ξ if ξpτiq ă 0,

arg minrτi,T s ξ if ξpτiq ą 0,

and, for all i ď 0,

(1.9) τi´1 “

#

arg maxr0,τis ξ if ξpτiq ă 0,

arg minr0,τis ξ if ξpτiq ą 0.

The skeleton (resp. full skeleton) or reduced (resp. fully reduced) path R0,T pξq (resp. R̃0,T pξq) of

ξ P C0pr0, T sq is defined as follows (see Figure 1.1).

Definition 1.1. Let ξ P C0pr0, T sq.
(i) The reduced path R0,T pξq is a piecewise linear function which agrees with ξ on pτiqiPZ.

(ii) The fully reduced path R̃0,T pξq is a piecewise linear function agreeing with ξ on pτ´iqiPNYtT u.

(iii) A path ξ P C0pr0, T sq is reduced (resp. fully reduced) if ξ “ R0,T pξq (resp. ξ “ R̃0,T pξq).

Let uξ be the solution to (1.1). We show in Theorem 2.9 in the next section that

(1.10) uξp¨, T q “ uR0,T pξqp¨, T q,

which immediately implies the following result.

Theorem 1.2. Assume (1.2). Then, for all ξ P C0pr0, T sq,

(1.11) ρHpξ, T q ď L }R0,T pξq}TV pr0,T sq.
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The second main result of the paper, which is a probabilistic one and of independent interest,
concerns the total variation of the reduced path of a Brownian motion. To state it, we introduce
the random variable θ : r0,8q Ñ r0,8q given by

(1.12) θpaq :“ inftt ě 0 : max
r0,ts

B ´min
r0,ts

B “ au.

We prove that the length of the reduced path is a random variable with almost Gaussian tails. We
also show that if, instead of fixing the time horizon T , we fix the range, that is the maximum minus
the minimum of B, then the length has Poissonian tails

Theorem 1.3. Let B be a Brownian motion and fix T ą 0. Then, for each γ P p0, 2q, there exists
C “ Cpγ, T q ą 0 such that, for any x ě 2,

(1.13) P
´

}R0,T pBq}TV pr0,T sq ě x
¯

ď C exp p´Cxγq ,

and

(1.14) lim
xÑ8

lnP
´

›

›R0,θp1qpBq
›

›

TV pr0,θp1qsq
ě x

¯

x lnpxq
“ ´1.

We also study the sharpness of the upper bound. For simplicity we only treat the case Hppq “ |p|.

Theorem 1.4. Let Hppq “ |p| on Rd with d ě 1. Then, for all T ą 0 and ξ P C0pr0, T sq,

(1.15) ρHpξ, T q ě }R̃0,T pξq}TV pr0,T sq.

When d “ 1, then

ρHpξ, T q “ }R̃0,T pξq}TV pr0,T sq.

The paper is organized as follows. In section 2 we improve upon results of [13, 14, 11] about
representation formulae, the control of the oscillations in time and the domain of dependence of
the solutions of (1.4) with piecewise linear paths. We then extend these estimates by density to
general continuous paths. In order to avoid stating many assumptions on H, we introduce a new
condition about solutions of (1.4) which is satisfied by the general class of Hamiltonians for which
there is a well-posed theory of pathwise solutions as developed in [12]. All these lead to the proof
of Theorem 1.2. In section 3 we discuss the example which shows that the upper bound obtained
in Theorem 1.2 is sharp. Section 4 is devoted to the study of “random” properties of the reduced
path of the Brownian motion (Theorem 1.3).

2. Reduction to the skeleton path and domain of dependence

Notation and preliminaries. For all ξ P C0pr0, T sq and u0 P BUCpRdq, let Sξ be the flow of
solutions of (1.1). A simple rescaling shows that without loss of generality we may assume that

L “ 1.

In view of (1.2) and the normalization of the Lipschitz constant we have

Hpp, xq “ sup
vPB1p0q

tp ¨ v ´ Lpv, xqu ,

where Lpv, xq “ suppPRd tp ¨ v ´Hpp, xqu.
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We assume that H satisfies all assumptions needed (see [2]) for ut “ HpDu, xq 9ξ to be well posed
when ξ is smooth and we denote by S˘Hptq : BUCpRdq Ñ BUCpRdq the solution operator when
9ξ ” ˘1, that is, for u0 P BUCpRdq, S˘Hptqu0 is the unique solution of

(2.1) ut “ ˘HpDu, xq in Rd ˆ p0, T s up¨, 0q “ u0 in Rd.

Moreover, for t ď 0, SHptq :“ S´Hp´tq.

Given S, S1 : BUCpRdq Ñ BUCpRdq, we say that S ď S1 if Su ď S1u for all u in BUCpRdq.
In the sequel we write ξs,t :“ ξt ´ ξs for the increments of ξ over the interval rs, ts.

Let ξ P Cpr0, T sq be a piecewise linear path, that is, for a partition 0 “ t0 ď . . . ď tN “ T of r0, T s,
and ai, bi P R, i “ 1, . . . N ,

ξptq “
N´1
ÿ

i“0

1rti,ti`1qpaipt´ tiq ` biq.

We then set

SξHp0, T q :“SξHptN´1, tN q ˝ ¨ ¨ ¨ ˝ S
ξ
Hpt0, t1q

and note that

SξHp0, T q “ SHpξtN´1,tN q ˝ ¨ ¨ ¨ ˝ SHpξt0,t1q.

We show later that ξ ÞÑ SξHp0, ¨q is uniformly continuous in sup-norm, which allows to extend

SξHp0, T q to all continuous ξ.

Monotonicity properties. The control representation of the solution u of (2.1) (see, for example,
Lions [9]) with ξt ” t and u0 P BUCpRdq is

upx, tq “ SHptqu0pxq “ sup
qPA

"

u0pXptqq ´

ż t

0

Lpqpsq, Xpsqqds : Xp0q “ x, 9Xpsq “ qpsq for s P r0, ts

*

,

and

S´Hptqu0pyq “ inf
rPA

"

u0pY ptqq `

ż t

0

Lprpsq, Y psqqds : Y p0q “ y, 9Y psq “ ´rpsq for s P r0, ts

*

,

where A “ L8pR`;B1p0qq is the set of controls.

The next property is a refinement of an observation in [11].

Lemma 2.1. Fix t ą 0 and u0 P BUCpRdq. Then

SHptq ˝ SHp´tqu0 ď u0 ď SHp´tq ˝ SHptqu0.

Proof. Since the arguments are identical we only show the proof of the inequality on the left.

We have

SHptq ˝ SHp´tqu0pxq “ sup
qPA

inf
rPA

!

u0pY ptqq `

ż t

0

Lprpsq, Y psqqds´

ż t

0

Lpqpsq, Xpsqqds :

Y p0q “ Xptq, 9Y psq “ ´rpsq, Xp0q “ x, 9Xpsq “ qpsq for s P r0, ts
)

.



6 P. GASSIAT, B. GESS, P-L. LIONS, AND P. E. SOUGANIDIS

ξ

t1 T

a0t1

ξ0,T

ξ

t1 T

a0t1

ξ0,T

Figure 2.1. Reduction

Given q P A choose rpsq “ qpt´ sq in the infimum above. Since Y psq “ Xpt´ sq, it follows that

SHptq ˝ SHp´tqu0pxq ď sup
qPA

!

u0pXp0qq `

ż t

0

Lpqpt´ sq, Xpt´ sqqds´

ż t

0

Lpqpsq, Xpsqqds :

Xp0q “ x, 9Xpsq “ qpsq for s P r0, ts
)

“ u0pxq.

�

The next result is an easy consequence of Lemma 2.1 and the definition of SξH for piecewise linear
paths.

Lemma 2.2. Let ξt “ 1tPr0,t1spa0tq`1tPrt1,T spa1pt´ t1q`a0t1q. If a0 ě 0 and a1 ď 0 (resp. a0 ď 0
and a1 ě 0), then

SξHp0, T q ě SHpξ0,T q presp. SξHp0, T q ď SHpξ0,T q.q

Proof. Since the claim is immediate if a0 “ 0 or a1 “ 0, we assume next that a0 ą 0 and a1 ă 0
(see Figure 2.1).

If ξ0,T ď 0, then

SHpa1pT ´ t1qq “ S´Hp´a1pT ´ t1qq “ S´Hp´a1pT ´ t1q ´ a0t1q ˝ S´Hpa0t1q

“ S´Hp´ξ0,T q ˝ S´Hpa0t1q “ SHpξ0,T q ˝ SHp´a0t1q,

and, hence, in view of Lemma 2.1,

SξHp0, T q “ SHpξ0,T q ˝ SHp´a0t1q ˝ SHpa0t1q ě SHpξ0,T q.

If ξ0,T ě 0 (see Figure 2.1), then, again using Lemma 2.1, we find

SξHp0, T q “ SHpa1pT ´ t1qq ˝ SHp´a1pT ´ t1q ` a0t1 ` a1pT ´ t1qq

“ SHpa1pT ´ t1qq ˝ SHp´a1pT ´ t1qq ˝ SHpa0t1 ` a1pT ´ t1qq ď SHpξ0,T q.

For the second inequality we note that S´ξ´Hp0, T q “ SξHp0, T q, S´Hp´tq “ SHptq. It then follows
from the the first part that

SξHp0, T q “ S´ξ´Hp0, T q ě S´Hp´ξ0,T q “ SHpξ0,T q.

�
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The next observation provides the first indication of the possible reduction encountered when using
the max or min of a given path. For the statement, given piecewise linear path ξ, we set

τmax :“ suptt P r0, T s : ξt “ max
sPr0,T s

ξsu and τmin :“ suptt P r0, T s : ξt “ min
sPr0,T s

ξsu.

Lemma 2.3. Fix a piecewise linear path ξ. Then

SξHpτmax, T q ˝ SHpξ0,τmaxq ď SξHp0, T q ď SHpξτmin,T q ˝ S
ξ
Hp0, τminq.

Proof. Since the proofs of both inequalities are similar, we only show the details for the first.

Note that without loss of generality we may assume that sgnpξti´1,tiq “ ´sgnpξti,ti`1
q for all

rti´1, ti`1s Ď r0, τmaxs.

It follows that, if ξ|r0,τmaxs is linear, then SξHp0, τmaxq “ SHpξ0,τmaxq.

If not, since ξ0,τmax ě 0, there is an index j such that ξtj´1,tj`1
ě 0 and ξtj´1,tj ď 0. It then follows

from Lemma 2.2 that

SξHp0, τmaxq ď S ξ̃Hp0, τmaxq,

where ξ̃ is piecewise linear and coincides with ξ for all t P tti : i ‰ ju.

A simple iteration yields SξHp0, τmaxq ď SHpξ0,τmaxq, and, since SξHp0, T q “ SξHpτmax, T q˝S
ξ
Hp0, τmaxq,

this concludes the proof.
�

We combine the conclusions of the previous lemmata to establish the following monotonicity result.

Corollary 2.4. Let ξ, ζ be piecewise linear, ξp0q “ ζp0q, ξpT q “ ζpT q and ξ ď ζ on r0, T s. Then

(2.2) SξHp0, T q ď SζHp0, T q.

Proof. We assume that ξ and ζ are piecewise linear on each interval rti, ti`1s of a joint subdivision
0 “ t0 ď . . . ď tN “ T of r0, T s.

If N “ 2, we show that, for all γ ě 0 and all a, b P R,

(2.3) SHpa` γq ˝ SHpb´ γq ď SHpaq ˝ SHpbq.

If a ě 0, this follows from the fact that, in view of Lemma 2.2,

SHpγq ˝ SHpb´ γq ď SHpbq.

If a` γ ď 0, then again Lemma 2.2 yields

SHpaq ˝ SHpbq “ SHpa` γq ˝ SHp´γq ˝ SHpbq ě SHpa` γq ˝ SHpb´ γq.

Finally, if a ď 0 ď a` γ we have

SHpaq ˝ SHpbq ě SHpa` bq ě SHpa` γq ˝ SHpb´ γq.

The proof for N ą 2 follows by induction on N . Let ρ be piecewise linear on the same partition
and coincide with ζ on t0, t1, and with ξ on t2, . . . , tN . The induction hypothesis then yields

SξHp0, t2q ď SρHp0, t2q and SρHpt1, T q ď SζHpt1, T q

from which we deduce

SξHp0, T q ď SρHp0, T q ď SζHp0, T q.

�
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A uniform modulus of continuity. To extend the information obtained about the possible
cancellations and oscillations from piecewise linear to arbitrary continuous paths, we need a well-
posed theory for the pathwise viscosity solutions. Such a theory has been developed by the last
two authors in [11] and [12]. The former reference imposes conditions on the joint dependence of
the Hamiltonians in pp, xq but does not require convexity. A special (resp. a more general) class of
convex or concave Hamiltonians, which do not require such conditions, is studied in Friz, Gassiat,
Lions and Souganidis [3] (resp. Lions and Souganidis [15]). An alternative, although less intrinsic,
approach is to show that the solution operator has a unique extension from piecewise linear paths
to arbitrary continuous ones.

To avoid stating additional conditions and since finding the optimal assumptions on the joint
dependence on pp, xq of the Hamiltonians is not the main focus of this paper, we bypass this issue
here. Instead, we formulate a general assumption that allows to have a unique extension of the
solution operator to all continuous paths, which is enough to analyze the domain of dependence.
We only remark that this assumption is satisfied by the Hamiltonians considered in [12] as well as
some other ones that can be analyzed by the same methods.

For t P p0, T q, the minimal action, also known as the fundamental solution, associated with Hamil-
tonians satisfying (1.2) is given by

Lpx, y, tq :“ inft

ż t

0

Lp 9γpsq, γpsqqds : γ P C0,1pr0, T sq such that γp0q “ x, γptq “ yu;

when we need to emphasize the dependence of L, we write LH .

We recall (see, for example, [9]) that, for all t, s ě 0 and x, y, z P Rd,

(2.4) Lpx, z, t` sq ď Lpx, y, tq ` Lpy, z, sq.

Moreover, for any u0 P BUCpRdq, t ě 0 and x P Rd,

(2.5) upx, tq “ SHptqu0pxq “ sup
yPRd

ru0pyq ´ Lpx, y, tqs .

Finally, since´S´Hptqu0 “ S
|H
p´u0q with qHpp, xq “ Hp´p, xq, we also have, for any u0 P BUCpRdq,

t ě 0 and x P Rd,

(2.6) S´Hptqu0 “ inf
yPRd

”

u0pyq ` L|Hpx, y, tq
ı

.

We assume that, for all r ą 0,

(2.7) lim sup
δÑ0

inf
rď|x´y|

Lpx, y, δq “ `8,

and

(2.8) lim
δÑ0

lim
rÑ0

sup
|x´y|ďr

Lpx, y, δq “ 0.

Note that (2.8) is some sort of controllability assumption, while (2.7) follows from a uniform in x
upper bound on H.

Proposition 2.5. If (2.7) and (2.8) hold, then, for each u0 P BUCpRdq and T ě 0, the family
!

SξHp0, T qu0 : ξ piecewise linear
)

has a uniform modulus of continuity.
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The claim above is a consequence of the following estimate.

Proposition 2.6. Let u “ SξHp0, tqu0 with ξ piecewise linear and u0 P BUCpRdq. Then, for all
t ě 0 and all x, y P Rd,

(2.9) upx, tq ´ upy, tq ď inf
δą0

˜

Lpy, x, δq ` sup
x1,y1PRd

“

u0px
1q ´ u0py

1q ´ Lpy1, x1, δq
‰

¸

.

Proof. By induction it is enough to prove the estimate for u “ SHptqu0 and u “ SHp´tqu0.

We begin with the former and we fix x, y and x1 P Rd. Assuming in what follows the inf in the
definition of L is attained, otherwise we work with approximate minimizers, we choose γ to be a
minimizer for Lpy, x1, t` δq and set ỹ1 “ γptq. It follows from (2.4) that

Lpy, x, δq ` Lpx, x1, tq ě Lpy, x1, t` δq “

ż t

0

Lp 9γpsq, γpsqqds`

ż t`δ

t

Lp 9γpsq, γpsqqds

ě Lpy, ỹ1, tq ` Lpỹ1, x1, δq.

Hence

pu0px1q ´ Lpx, x1, tqq ´ sup
y1PRd

tu0py1q ´ Lpy, y1, tqu ´ Lpy, x, δq

ď u0px1q ´ u0pỹ1q ´ Lpx, x1, tq ` Lpy, ỹ1, tq ´ Lpy, x, δq
ď u0px1q ´ u0pỹ1q ´ Lpỹ1, x1, δq ď sup

x1,y1PRd

 

u0px
1q ´ u0py

1q ´ Lpy1, x1, δq
(

.

It follows that

upx, tq ´ upy, tq ´ Lpy, x, δq ď sup
x1,y1

 

u0px
1q ´ u0py

1q ´ Lpy1, x1, δq
(

and we conclude by taking the inf over δ.

In view of (2.6), a similar argument gives the estimate for u “ S´Hptqu0.
�

Proof of Proposition 2.5. Fix u0 and let

ηpδq :“ sup
x1,y1PRd

`

u0px
1q ´ u0py

1q ´ Lpy1, x1, δq
˘

and

νpx, yq :“ inf
δą0

pLpy, x, δq ` ηpδqq , ωprq :“ sup
|x´y|ďr

maxrνpx, yq, νpy, xqs.

If follows from Proposition 2.6 that, if v “ SξHu0, then |vpxq ´ vpyq| ď ωp|x ´ y|q. On the other
hand, in view of (2.7), lim

δÑ0
ηpδq “ 0, and, hence, using (2.8) we conclude that lim

rÑ0
ωprq “ 0.

�

Extension and reduction. The extension result is stated next. In this subsection, we always
assume that either H is independent of x or that (2.7) and (2.8) hold. In what follows we write
} ¨ }8,O for the L8-norm over O.
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Corollary 2.7. The map ξ ÞÑ SHpξq is uniformly continuous in the sup-norm in the sense that, if
pξnqnPN is a sequence of piecewise-linear functions on r0, T s with limn,mÑ8 }ξ

n ´ ξm}8,r0,T s “ 0,

then, for all u P BUCpRdq,

(2.10) lim
n,mÑ8

}Sξ
n

H p0, T qu´ S
ξm

H p0, T qu}8,Rd “ 0.

It follows that we can extend ξ ÞÑ SHpξq to all continuous paths. Indeed ξn Ñ ξ in sup-norm as
nÑ8, then

(2.11) SξHp0, T qu :“ lim
nÑ8

Sξ
n

H p0, T qu.

Proof of Corollary 2.7 Fix δ ą 0 and let ξ, ζ be piecewise linear such that }ξ ´ ζ}8 ď δ on r0, T s.
We extend ξ, ζ to all of R as constants on p´8, 0q and pT,`8q and choose η P r´1, 1s such that
ξpT q “ ζpT q ` ηδ.

Let ξ˘δ be defined by

ξ˘δ :“

#

ξ ˘ δ on r0, T s,

ξ on p´8,´δq Y pT ` δ,`8q,

and
9ξ˘δ “ ˘1 on p´δ, 0q and 9ξ˘δ “ ¯1´ η on pT, T ` δq.

It follows that ξ˘p´δq “ ζp´δq, ξ˘pT ` δq “ ζpT ` δq, ξ´δ ď ζ ď ξδ, and, since Sξ
˘δ

H p´δ, T ` δq “

SHp¯δ ´ ηδq ˝ S
ξ
Hp0, T q ˝ SHp˘δq, Corollary 2.4 yields

SHpδp1´ ηqq ˝ S
ξ
Hp0, T q ˝ SHp´δq ď SζHp0, T q ď SHp´δp1` ηqq ˝ S

ξ
Hp0, T q ˝ SHpδq

which implies that

SξHp0, T q ´ SHp´δp1` ηqq ˝ SξHp0, T q ˝ SHpδq ď SξHp0, T q ´ S
ζ
Hp0, T q,

and

SξHp0, T q ´ S
ζ
Hp0, T q ď SξHp0, T q ´ SHpδp1´ ηqq ˝ S

ξ
Hp0, T q ˝ SHp´δq.

We now need to check that both sides of the above inequality go to 0 as δ Ñ 0. This follows if

lim
δÑ0

}SHpδq ˝ S
ξ
Hp0, T qu´ SHp´δq ˝ S

ξ
Hp0, T qu}8,Rd “ 0

independently of ξ, which is a consequence of Proposition 2.5.
�

The next conclusion is an immediate consequence of Lemma 2.3 and Corollary 2.7.

Corollary 2.8. Let ξ be a continuous path such that ξT “ maxr0,T s ξ and ξ0 “ minr0,T s ξ. Then,

SξHp0, T q “ SHpξ0,T q.

Similarly, if ξT “ minr0,T s ξ and ξ0 “ maxr0,T s ξ, then

SξHp0, T q “ S´Hp´ξ0,T q.

It follows that we can have a general representation for the solution to (1.1) as a (countable)
composition of the flows SHptq, SHp´tq.

Theorem 2.9. Let ξ be a continuous path. Then

Sξp0, T q “ SR0,T pξqp0, T q.
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Proof. We apply Corollary 2.8 inductively to the successive extrema as defined in (1.7), (1.8), (1.9).
It only remains to show that this procedure converges for iÑ ˘8. This follows from the continuity
of ξ in combination with Corollary 2.7.

�

3. The optimality of the domain of dependence

We consider the initial value problem

(3.1) du “ |Du| ¨ dξ in Rd ˆ p0, T s up¨, 0q “ u0p¨q in Rd

and prove Theorem 1.4.
We remark that, in view of the geometric properties of (3.1), it is enough to consider the evolution
of the level set

P`ptq “ tx P R : upx, tq ě 0u .

Indeed, (3.1) is a level-set PDE, that is, if u is a solution, then also Φpuq is a solution. At this point
the choice of the Stratonovich differential in (3.1) is important (see Souganidis [1], [16] and Lions,
Souganidis [11]). It follows that P`ptq depends only on P`p0q and not on the particular form of
u0. In fact, in the case of (3.1) this can be read off the explicit solution formula, for all δ ą 0,

S|¨|pδqupxq “ sup
|x´y| ďδ

upyq, S|¨|p´δqupxq “ inf
|x´y| ďδ

upyq.

In particular, in d “ 1 and with the convention that rc, ds “ H if c ą d, it follows that, for all δ P R,

(3.2) S|¨|pδqpra, bsq “ ra´ δ, b` δs.

We notice that, informally, for general initial conditions, P` expands with speed |dξ| when dξ ą 0,
and contracts with speed |dξ| when dξ ă 0.

The key behind the construction of the lower bound is the observation, already made in [11], that
there is some irreversibility in the dynamics. For example, once a hole is filled, that is two connected
components of P` are joined by an increase in ξ, it cannot be recreated later when ξ decreases.
Symmetrically, if a component of P` is destroyed by a decrease in ξ, it does not re-appear later.
This intuition leads to the lower bound for ρHpξ, T q derived below.

In what follows, to simplify the notation we omit the dependence of the solution operator and the
speed of propagation on H, that is, we simply write S, Sξ and ρpξ, T q. We fix d “ 1 and establish
first the lower bound in Theorem 1.4, and then look at the upper bound. Note that considering
initial conditions depending only on the first coordinate implies that the lower bound also holds for
d ě 2.

Lower bound for the speed of propagation. The result is stated next.

Proposition 3.1. Let ξ be a continuous path. Then

(3.3) ρHpξ, T q ě }R̃
ξp0, T q}TV pr0,T sq.

Proof. Without loss of generality we assume that ξ is a reduced path. Moreover, since the claim
stays the same if we replace ξ by ´ξ, we further assume that ξpτ0q “ max0ďsďT ξpsq.

We first consider the case where N :“ maxtn ď 0 : τn “ 0u is finite. Since ξ is constant if N “ 0,
we further assume N ď ´1 and fix a sequence xi, N ´ 1 ď i ď 1 such that x1 “ 0 and, for all
N ă k ď 0,

(3.4) 2
ˇ

ˇξ0,τk´2

ˇ

ˇ ă xk`1 ´ xk ă 2 |ξ0,τk | .
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ξ

I0

t “ 0 t “ 1 t “ 2

x1 “ 0x0x´1

x1 “ 0x0x´1 x1 “ 0x0x´1 x1 “ 0x0x´1 x1 “ 0x0x´1

x1 “ 0x0x´1 x1 “ 0x0x´1

t “ 3

x1 “ 0x0x´1

Figure 3.1. Lower bound

Set

(3.5) Ik “

"

rx2k´1, x2ks if 2k ´ 1 ą N
H otherwise,

and

(3.6) P 1 “
ď

kď0

Ik Y r0,`8q, P 2 “ p´8, xN s Y P
1.

Since ξ is a reduced path and due to (3.2), the evolution of P 1, P 2 can be easily described by
induction on k as follows.

The component Ik evolves individually, that is it does not intersect any other connected components,
before τ2k. This follows from the fact that |x2k´1 ´ x2k´2| and |x2k ´ x2k`1| are smaller than 2ξ0,τ2k .

Since ´2ξ0,τ2k´3
ă |x2k ´ x2k´1| ă ´2ξ0,τ2k´1

, the component Ik of P 1 disappears at time τ2k´1

but not at any of the earlier τi’s.

Finally, given that x2k´1 ´ x2k´2 ă 2ξ0,τ2k´2
, the component Ik of P 2 has joined the components

Ij with j ă k by the time τ2k´2.

It follows that

Spξ, τ0qpP 1q “ r´ξ0,τ0 ,`8q and Sξp0, T qpP 1q “ r´ξ0,T ,`8q

and
Sξp0, T qpP 2q “ R.

Since P 1 and P 2 only differ for x ď xN , this implies

ρHpξ, T q ě p´ξ0,T ´ xN q` .

Choosing the pxk ´ xk´1q as large as possible in (3.4) we obtain

ρpξ, T q ě ´ξ0,T ` 2
ÿ

kď0

|ξ0,τk | “ |ξτ0,T | `
ÿ

kď0

|ξ0,τk | `
ÿ

kď´1

|ξ0,τk | .

Finally, using that, for k ď 0,
ˇ

ˇξτk´1,τk

ˇ

ˇ “ |ξ0,τk | `
ˇ

ˇξ0,τk´1

ˇ

ˇ, we obtain

ρpξ, T q ě |ξτ0,T | `
ÿ

kď0

|ξτk´1,τk | “

›

›

›
R̃0,T pξq

›

›

›

TV

which concludes the proof in the case where τN “ 0 for some N .
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Next we treat the general case. We fix N ď ´1 arbitrary, and as before we define xk, Ik and P 1,
P 2 satisfying (3.4), (3.5) and (3.6). Now since (3.4) implies that

x2k ´ x2k´1 ą ´ inf
r0,τN s

ξ, x2k`1 ´ x2k ą sup
r0,τN s

ξ,

the Ik’s do not interact before time τN .

Let x̃k “ xk ` p´1qkξ0,τN and

Ik “

"

rx̃2k´1, x̃2ks if 2k ´ 1 ą N
H otherwise.

Then

Sξp0, τN qpP 1q “ Ykď0Ĩk Y r´ξ0,τN ,`8q, SξpτN , T qpP 2q “ p´8, x̃N s Ykď0 Ĩk.

Note that

x̃k`1 ´ x̃k “ xk`1 ´ xk ` p´1qk2ξ0,τN

is bounded from above by
2 | ξ0,τk | ` p´1qk2ξ0,τN “ 2 | ξτN ,τk |

and, when k ě N ` 2, from below by 2
ˇ

ˇ ξτN ,τk´2

ˇ

ˇ.

Hence, the evolution on rτN , T s is then given as in the case τN “ 0, and we obtain again

Sξp0, T qpP 1q “ r´ξ0,T ,`8q and Sξp0, T qpP 2q “ R.
Taking again txk ´ xk´1 as large as possible yields

ρpξ, T q ě
›

›

›
R̃0,T pξq

›

›

›

TV prτN ,T sq
,

and letting N Ñ ´8 finishes the proof. �

Optimality in one space dimension. We assume d “ 1 and consider x-independent Hamilto-
nians. In this case the representation obtained in Section 2 is even simpler, since only the fully
reduced path is needed.

Proposition 3.2. Let H : RÑ R be continuous and convex. Then

(3.7) up¨, T q “ Sξp0, T q “ SR̃0,T pξqp0, T q,

and

(3.8) ρHpξ, T q ď }H
1}8}R̃0,T pξq}TV pr0,T sq.

Proof. The claim is shown for H smooth and strictly convex in [7] using a regularization argument.
The result extends to convex H by approximation, since (1.1) is stable under the passage to the
limit in H by standard viscosity theory; see [11]. �

When d ě 2, (3.7) is not true in general. Indeed, this can be easily seen by the counter-example
depicted in Figure 3.2 and Figure 3.3, which correspond to the continuous, piece-wise linear path ξ
with

9ξptq “

$

&

%

4 for p0, 1q
´2 on p1, 2q
1 on p2, 3q

and 9̃R0,3pξq “

#

4 on p0, 1q

´ 1
2 on p1, 3q;

it is easy to observe that in this case Sξ
|¨|
p0, 3q ‰ S

R̃0,3pξq

|¨|
p0, 3q.
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Figure 3.2. Evolution of Sξ
|¨|
p0, tq at t “ 0, t “ 1, t “ 2, t “ 3

Figure 3.3. Evolution of S
R̃pξq
|¨|

p0, tq at t “ 0, t “ 1, t “ 3

Note however that the claims in Proposition 3.2 hold in arbitrary dimension for Hppq “ 1
2 |p|

2

(cf. Gassiat and Gess [4]) and more generally for a class of uniformly convex H (cf. Lions and
Souganidis [10]).

Since (3.7) is not valid in general in dimension d ě 2, the speed of propagation may depend on
the total variation of the full reduced path R0,T pξq. Note that we do not know, even for H “ | ¨ |,
if one always has equality in (1.11) in that case. The following proposition gives an example of a

situation where ρHpξ, T q “ }R0,T pξq}TV pr0,T sq ą }R̃0,T pξq}TV pr0,T sq.

Proposition 3.3. Let δ1 ą δ2 ą δ3 ą 0 and ξ continuous on r0, 3s with

9ξ “

$

&

%

δ1 on p0, 1q,
´δ2 on p1, 2q,
`δ3 on p2, 3q.

Then

ρ|¨|pξ, 3q “ δ1 ` δ2 ` δ3 “ }ξ}TV pr0,3sq.

Proof. Fix 0 ă L ă 2δ2 and η ą 0, and consider initial conditions (see Figure 3.5 and Figure 3.4)

P1 “ r0, Ls ˆ t´δ1,`δ1u, P2 “ P1 Y pt´δ1u ˆ Rq.

Then p´η, 0q, pL` η, 0q R Sξ
|¨|
p0, 1qP1, and, hence,

pBδ2p´η, 0q YBδ2pL` η, 0qq X Sξ
|¨|
p0, 2qP1 “ H.

Since L ă 2δ2, for η small enough, the interior of Bδ2p´η, 0qXBδ2pL`η, 0q is non-empty. It follows
that, for all η1 P p0, ηq small enough,

Bδ3pL´ δ2 ` δ3 ´ η1, 0q Ď Bδ2p´η, 0q YBδ2pL` η, 0q,
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Figure 3.4. Evolution of Sξ
|¨|
p0, ¨qP1

Figure 3.5. Evolution of Sξ
|¨|
p0, ¨qP2

and, consequently,

pL´ δ2 ` δ3 ´ η1, 0q R Sξ|¨|p0, 3qP1.

We next note that r´2δ1, Ls ˆ r´2δ1, 2δ1s Ď Sξ
|¨|
p0, 1qP2 and thus

r´2δ1 ` δ2, L´ δ2s ˆ r´2δ1 ` δ2, 2δ1 ´ δ2s Ď Sξ
|¨|
p0, 2qP2.

It follows that

Bδ3pL´ δ2 ` δ3 ´ η, 0q X Sξ
|¨|
p0, 2qP2 ‰ H,

and, hence, for each η ą 0,

pL´ δ2 ` δ3 ´ η, 0q P Sξ|¨|p0, 3qP2.

In conclusion, for all η ą 0 small enough,

pL´ δ2 ` δ3 ´ η, 0q P Sξ|¨|p0, 3qpP
2qzSξ

|¨|
p0, 3qpP 1q

so that ρ|¨|pξ, 3q ě δ1 ` L´ δ2 ` δ3 ´ η. Letting LÑ 2δ2 and η Ñ 0 finishes the proof.
�

4. The Brownian case

We begin with some preliminary discussion and a few results that are needed for the proof of
Theorem 1.3.

The key observation in the proof of Theorem 1.3 is that the length of R0,T pBq on r0, τ0s, where τ0
is given by (1.7), is the same as that of a left-continuous path obtained by removing all excursions
of B between its minimum and maximum.
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We fix an arbitrary continuous path B : r0,`8q Ñ R with Bp0q “ 0. Let Mptq :“ supsďtBpsq,
mptq :“ infsďtBpsq, Rptq :“Mptq ´mptq, recall that for a ě 0

θpaq “ inf tt ě 0, Rptq “ au ,

and, r ě 0, define

Sprq :“ Bpθprqq.

Then S is a left continuous process with right limits, the dynamics of which are simple to describe
(see the proof of Lemma 4.1 below): Away from the jumps, S has a drift given by signpSprqq, and
the jumps are given by ∆Sprq :“ Spr`q ´ Sprq “ ´signpSprqqr. In particular,

(4.1) Lprq :“ }S}TV pr0,rsq “ r `
ÿ

0ďsăr

s1∆Spsq‰0.

The following lemma relates L and R0,T pBq.

Lemma 4.1. For all T ě 0,

}R0,T pBq}TV pr0,τ0sq “ LpRpT qq.

Proof. Recall (1.7), (1.8) and (1.9) and note that

}R0,T pBq}TV pr0,τ0sq “
ÿ

iď0

}R0,T pBq}TV prτi´1,τisq
“

ÿ

iď0

|Bpτi´1q ´Bpτiq| .

Fix i ď 0 and assume that Bpτi´1q “ mpτi´1q ă 0. If r P pRpτi´1q, Rpτiqs, then monotonicity of θ
and the definition of τi give θprq ď θpRpτiqq “ τi, and, hence, mpθprqq “ mpτi´1q.

Moreover, for r P pRpτi´1q, Rpτiqs, we have Bpθprqq “Mpθprqq and thus

r “ Rpθprqq “Mpθprqq ´mpτi´1q “ Bpθprqq ´Bpτi´1q.

In conclusion, for all r P pRpτi´1q, Rpτiqs,

Sprq “ Bpθprqq “ Bpτi´1q ` r “ SpRpτi´1qq ` r,

that is S has a jump of size Rpτi´1q at r “ Rpτi´1q and is affine with slope 1 on pRpτi´1q, Rpτiqs.

If Bpτi´1q “ Mpτi´1q ą 0, the same reasoning shows that S has a jump of size ´Rpτi´1q at
r “ Rpτi´1q and is affine with slope ´1 on pRpτi´1q, Rpτiqs.

Finally we get

LpRpτ0qq “ }S}TV pr0,Rpτ0qsq “
ÿ

iď0

}S}TV prRpτi´1q,Rpτiqsq

“
ÿ

iď0

|Rpτi´1q| ` |Rpτiq ´Rpτi´1q| “
ÿ

iď0

Rpτiq “
ÿ

iď0

|Bpτiq ´Bpτi´1q| .

In view of the definition of τ0 and R we have Rpτ0q “ RpT q and thus LpRpT qq “ LpRpτ0qq, which
finishes the proof. �

Next we assume that B is a linear Brownian motion on a probability space pΩ,F ,Pq and we describe
some of the properties of the time change S that we will use below. The results have been obtained
in Imhof [8, Theorem p. 352] and Vallois [17, Theorem 1].

The first result is that

(4.2) ts ą 0, ∆Spsq ‰ 0u is a Poisson point process on p0,`8q with intensity measure
ds

s
.
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For fixed r ą 0 set σ0prq :“ r and, for all k P N, define the successive jump times by

σk`1prq “ supts ă σkprq : ∆Spsq ‰ 0u,

It follows from (4.2) that

(4.3) pσn`1prq{σnprqqně0

pdq
“ pUnqně0,

where pUnqně0 is a sequence of i.i.d. random variables each with uniform distribution on r0, 1s, and
pdq
“ denotes equality in the sense of distributions.

Moreover, if

θnprq :“ inf tt ě 0, Rptq “ σnprqu ,

then

(4.4) p|Bppθn`1prq ` tq ^ θnprqq ´Bpθn`1prqq| : t ě 0qně0

pdq
“ pXnpt^ ζnprqq; t ě 0qně0

where the processes Xn are i.i.d. 3-dimensional Bessel processes, independent from S, starting from
0 and

ζnprq :“ inf tt ą 0 : Xnptq “ σnprqu .

At this point we recall that, in view of the scaling properties of the Brownian motion, it is enough
to prove Theorem 1.3 with T “ 1, that is to study the reduced path R0,1pBq.

To prove (1.13) we need the following two lemmata.

Lemma 4.2. There exists C ą 0 such that, for all r, x ě 0,

(4.5) P pRp1q ě r|Lprq ´ r ě xq ď C exp
`

´Cx2
˘

.

Proof. Note that Rp1q ě r is equivalent to θprq ď 1.

It follows from (4.3) and (4.4) that there exist i.i.d. uniformly distributed in r0, 1s random variables
Un such that

Lprq “ r `
ÿ

ną1

σnprq “ r

˜

1`
8
ÿ

n“0

U1 ¨ ¨ ¨Un

¸

.

Moreover, in view of the scaling properties of the Bessel processes,

θprq “
ÿ

ně0

pθnprq ´ θn`1prqqq
pdq
“

ÿ

ně0

ζnprqq
pdq
“

ÿ

ně0

pσnprqq
2ζ̃n,

where

ζ̃n “ inf
!

t ą 0 : X̃nptq “ 1
)

.

Since the i.i.d. Bessel random variables X̃n are independent from the random variables Un, it follows
that

pθprq, Lprqq
pdq
“

˜

r2
8
ÿ

n“0

pU1 . . . Unq
2ζ̃n, r

˜

1`
8
ÿ

n“0

U1 ¨ ¨ ¨Un

¸¸

.

Using once again scaling and the fact that Bessel processes have the Gaussian tails, we also find
that, for some C0 ą 0 and all n P N,

(4.6) P
´

ζ̃´1{2
n ě y

¯

“ P
ˆ

sup
0ďtď1

X̃n
t ě y

˙

ď expp´C0y
2q.
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Then, Jensen’s inequality yields that, for any nonnegative sequence αn,
˜

ÿ

ně0

α2
nζ̃n

¸

ě

˜

ÿ

ně0

αn

¸3 ˜
ÿ

ně0

α1{2
n ζ̃´1{2

n

¸´2

.

and thus

P

˜

8
ÿ

n“0

α2
nζ̃n ď s

¸

ď P

¨

˝

ÿ

ně0

α1{2
n ζ̃´1{2

n ě s´1{2

˜

ÿ

ně0

αn

¸3{2
˛

‚.

On the other hand, (4.6), the independence of the ζ̃n and a straightforward Chernoff bound yield,
for all y ě 0 and some C ą 0,

P

˜

ÿ

ně0

α1{2
n ζ̃´1{2

n ě y

¸

ď exp

ˆ

´C
y2

ř

ně0 αn

˙

for some C ą 0, so that

P

˜

8
ÿ

n“0

α2
nζ̃n ď s

¸

ď exp

¨

˝´Cs´1

˜

ÿ

ně0

αn

¸2
˛

‚.

Applying the inequality above with αn “ U1 . . . Un and s “ r´2, we get

P pθprq ď 1|Lprq ´ r ě xq ď exp
`

´Cr2px{rq2
˘

ď expp´Cx2q.

�

Lemma 4.3. There exists C ą 0 such that, for all x ě 2r ě 0 and δ P p0, 1s,

(4.7) P pLprp1` δqq ´ Lprq ´ rδ ě xq ď C exp
´

´
x

2r
| lnpδq|

¯

.

Proof. Note that

Lprp1` δqq ´ Lprq ´ rδ “
ÿ

rďsărp1`δq

s1∆Spsq‰0

ď 2r# ts P rr, rp1` δqq, ∆Spsq ‰ 0u .

In view of (4.2), # ts P rr, rp1` δqq, ∆Spsq ‰ 0u is a Poisson random variable with parameter
ż rp1`δq

r

du

u
“ lnp1` δq ď δ.

In addition, any Poisson random variable P with parameter δ satisfies the classical inequality

PpP ě yq ď inf
γ

 

EreγP se´γy
(

“ inf
γ

expp´γy ` δpeγ ´ 1qq “ expp´y ln
´y

δ

¯

` y ´ δq

ď C expp´y| lnpδq|q.

It follows that

P pLprp1` δqq ´ Lprq ´ rδ ě xq ď C exp
´

´
x

2r
| lnpδq|

¯

.

�

We are now ready for the proof of Theorem 1.3.
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Proof of Theorem 1.3. We begin with (1.14) and note that on the interval r0, θp1qs we have τ0 “
θp1q.

It then follows from the definition of θp1q that Rpτ0q “ Rpθp1qq “ 1 and thus, using Lemma 4.1, we
find

›

›R0,θp1qpBq
›

›

TV pr0,θp1qsq
“ LpRpθp1qqq “ Lp1q.

We further note that, in view of (4.3), we have that

Lp1q
pdq
“ 1` U0 ` U0U1 ` U0U1U2 ` . . . ,

where the random variables Ui are i.i.d. uniformly distributed on r0, 1s.

It now follows from [6, Theorem 3.1] that Lp1q has Poissonian tails, that is,

lim
xÑ8

lnPpLp1q ě xq

x lnx
Ñ ´1.

We present now the proof of (1.13). Throughout the argument below, C will denote a constant
whose value may change from line to line.

We first note that

}R0,1pBq}TV pr0,1sq ď }R0,1pBq}TV pr0,τ0sq ` }R0,1pBq}TV prτ´1,1sq
.

Moreover, the symmetry of Brownian motion under time reversal gives

}R0,1pBq}TV prτ´1,1sq

pdq
“ }R0,1pBq}TV pr0,τ0sq .

It follows that it suffices to bound the tail probabilities of }R0,1pBq}TV pr0,τ0sqq and, hence, in view

of Lemma 4.1, the tail of LpRp1qq.

Fix γ P p0, 2q and let α ă γ be such that γ “ 2p1`αq
3 . For a fixed x ą 0, let r0 :“ x

4 and, for

k P N, rk`1 :“ rkp1 ` e´x
α

q´1. It is immediate that there exists an N such that N ď CeCx
α

and
rN ď x´1.

Moreover,

P pLpRp1qq ě xq ď
N´1
ÿ

k“0

P prk`1 ď Rp1q ď rk;Lprkq ě xq ` P
´

Rp1q ě
x

4

¯

` P pLprN q ě xq .

The second term on the right hand side is bounded by expp´Cx2q since Rp1q has Gaussian tails.

Moreover, Brownian scaling implies that Lpτtq
pdq
“ τLptq for all τ ą 0 and thus

PpLprN q ě xq ď P
ˆ

L
` 1

x

˘

ě x

˙

ď PpLp1q ě x2q ď expp´Cx2q.

In addition, we note that, for k P t0, . . . , N ´ 1u,

P prk`1 ď Rp1q ď rk;Lprkq ě xq

ď P
´

rk`1 ď Rp1q;Lprk`1q ě
x

2

¯

` P
´

rk`1 ď Rp1q;Lprkq ´ Lprk`1q ě
x

2

¯

.

Lemma 4.2 implies that

P
´

rk`1 ď Rp1q;Lprk`1q ě
x

2

¯

ď P
´

rk`1 ď Rp1q;Lprk`1q ´ rk`1 ě
x

4

¯

ď C expp´Cx2q.
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Then, the Cauchy-Schwarz inequality and Lemma 4.3 give

P
´

rk`1 ď Rp1q;Lprkq ´ Lprk`1q ě
x

2

¯

ď P prk`1 ď Rp1qq
1{2 P

´

Lprkq ´ Lprk`1q ě
x

2

¯1{2

ď C expp´Cr2
k`1q exp

ˆ

´C
x1`α

rk`1

˙

ď C exp
´

´Cx
2p1`αq

3

¯

.

It follows that

P pLpRp1qq ě xq ď CeCx
α

e´Cx
γ

ď Ce´Cx
γ

.

�
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