Microtopographies control the development of basal protrusions in epithelial sheets - Archive ouverte HAL
Journal Articles Biointerphases Year : 2018

Microtopographies control the development of basal protrusions in epithelial sheets

Abstract

Cells are able to develop various types of membrane protrusions that modulate their adhesive, migratory, or functional properties. However, their ability to form basal protrusions, particularly in the context of epithelial sheets, is not widely characterized. The authors built hexagonal lattices to probe systematically the microtopography-induced formation of epithelial cell protrusions. Lattices of hexagons of various sizes (from 1.5 to 19 μm) and 5–10 μm height were generated by two-photon photopolymerization in NOA61 or poly(ethylene glycol) diacrylate derivatives. The authors found that cells generated numerous, extensive, and deep basal protrusions for hexagons inferior to cell size (3–10 μm) while maintaining a continuous epithelial layer above structures. They characterized the kinetics of protrusion formation depending on scaffold geometry and size. The reported formation of extensive protrusions in 3D microtopography could be beneficial to develop new biomaterials with increased adhesive properties or to improve tissue engineering.
Fichier principal
Vignette du fichier
Coscoy_et_al_Biointerphases2018_sans marque.pdf (28.7 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01936383 , version 2 (31-10-2018)
hal-01936383 , version 1 (27-11-2018)

Identifiers

Cite

Sylvie Coscoy, Sarah Baïz, Jean Octon, Benoît Rhoné, Lucie Perquis, et al.. Microtopographies control the development of basal protrusions in epithelial sheets. Biointerphases, 2018, 13 (4), pp.041003. ⟨10.1116/1.5024601⟩. ⟨hal-01936383v2⟩
216 View
414 Download

Altmetric

Share

More