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EXISTENCE OF DENSITIES FOR THE DYNAMIC Φ4
3 MODEL

PAUL GASSIAT AND CYRIL LABBÉ

Abstract. We apply Malliavin calculus to the Φ4
3 equation on the torus and prove existence of

densities for the solution of the equation evaluated at regular enough test functions. We work in the

framework of regularity structures and rely on Besov-type spaces of modelled distributions in order

to prove Malliavin differentiability of the solution. Our result applies to a large family of Gaussian
space-time noises including white noise, in particular the noise may be degenerate as long as it is

sufficiently rough on small scales.
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1. Introduction

Consider the so-called dynamic Φ4
d model

(1.1) ∂tu = ∆u− u3 + ξ, u(0, ·) = u0,

on the d-dimensional torus Td of size 1 and driven by a Gaussian noise ξ. In this paper, we focus on
d = 3 and investigate the existence of densities for the solution. Our main result applies to a large
family of noises that includes, in particular, the space-time white noise, the precise assumptions on
the noise will be specified later on.

This equation has been the object of several recent works in the fields of stochastic PDEs, let us give
a very brief survey of this literature. In dimension 2 and when ξ is a space-time white noise, the solution
of the equation was constructed by means of Dirichlet forms by Albeverio and Röckner [AR91] and
via a change-of-unknown by Da Prato and Debussche [DPD03]. Among several subsequent results, let
us mention that solutions were shown to be global-in-time [MW17] and that existence and uniqueness
of an invariant measure together with convergence to equilibrium were studied in [TW17, RZZ17].
In dimension 3, existence of solutions when ξ is irregular (in particular, a space-time white noise) fell
out of reach of classical theories. The theory of regularity structures [Hai14] and the paracontrolled
calculus [GIP15] provide new frameworks in which existence of solutions of such singular SPDEs
can be tackled. In the case of the Φ4

3 model driven by a white noise, existence of local-in-time
solutions was proved by Hairer [Hai14], and Catellier and Chouk [CC13]. Let us also cite the work
of Zhu and Zhu [ZZ17] that constructs the solution by means of Dirichlet forms. Recently, Mourrat
and Weber [MW16] proved that solutions are actually global-in-time. Notice that the solution has
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space-time Hölder regularity −1/2− in the parabolic scale: therefore, it is not a function but only
a distribution. In the aforementioned constructions of the solution, one actually renormalizes the
equation by means of infinite constants; the equation formally becomes:

∂tu = ∆u− u3 + Cu+ ξ, u(0, ·) = u0

with C = +∞.

In the present paper, we consider a noise ξ which is obtained by convolving space-time white noise
with a kernel R satisfying Assumption 1 and either Assumption 2 or Assumption 3. These assumptions
are precisely presented in Section 2, let us simply mention that Assumption 1 requires the kernel to
be regular enough (not worse than a Dirac), Assumption 2 asks for the associated Cameron-Martin
space to be dense in L2 while Assumption 3 ensures that ξ is “rough enough” (i.e. of Hölder regularity
strictly less than −2). The existence of solutions to (1.1) in that setting is essentially granted by
[CH16] and [Hai14].

To illustrate our assumptions, one can write a Paley-Littlewood type decomposition1 ζ =
∑
n≥0Kn∗

ζ of space-time white noise such that letting ξ = R ∗ ζ with

R =
∑
n≥0

αnKn ,

where αn ∈ R for each n, then one has :

• (αn) bounded ⇒ Assumption 1 is satisfied,
• lim supn→∞ 2nβ |αn| > 0 for some β < 1

2 ⇒ Assumption 3 is satisfied,

see Proposition 2.3 below.

We now state our main result. Let ϕi, i = 1 . . . n be n ≥ 1 linearly independent functions in the

(parabolically scaled) Besov space B1/2+κ
1,∞ (R+ × T3), for some κ > 0, and assume that they are all

supported in (0, T )× T3 for some T > 0.

Theorem 1.1. Assume that the driving noise ξ satisfies Assumption 1 and either Assumption 2 or
Assumption 3 and that the solution u of (1.1) starting from some u0 ∈ C−2/3+ exists up to time T
almost surely. Then, the random variable X = (〈u, ϕ1〉, . . . , 〈u, ϕn〉) admits a density with respect to
the Lebesgue measure on Rn.

There exists already a substantial literature devoted to proving absolute continuity of densities
for SPDEs with degenerate noise (and the often related ergodicity properties), going back to Ocone
[Oco88] for the case of linear equations. In the case of polynomial nonlinearities perturbed by a noise
which is white in time and smooth in space, a rather complete counterpart to the Hörmander finite-
dimensional theory was developped by Mattingly and coauthors ([MP06, HM06, BM07, HM11]). Of
course, we cannot apply these results to (1.1) due to the roughness of the noise, which is actually one
of the important technical difficulties we have to overcome. We also note that in the case of space-time
white noise, the strong Feller property proved in [HM16] implies that for each t > 0, the law of u(t, ·)
is absolutely continuous w.r.t. the invariant measure for (1.1), which is a stronger statement than
simply considering its finite-dimensional projections. Our result however can be applied to noises
which are not white in time, where the Markovian theory is of course not accessible. In addition, we
obtain densities for averages of our solution in space and time, and not just at a fixed time which is the
case considered in virtually all of the litterature. (Note that the existence of densities for space-time
averages is in principle a strictly stronger statement than densities for a fixed time, as soon as the

1The Fourier transform K̂n of Kn is concentrated on frequencies of order 2n, but unlike the standard Paley-

Littlewood decomposition, Kn (and not K̂n) is compactly supported.
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regularity required for the test functions allows for Dirac masses in t. For technical reasons this is
however not the case in our theorem).

Let us comment on our assumption on the existence of solutions up to time T . Mourrat and
Weber [MW16] showed that the explosion time of the solution is actually infinite when the driving
noise is a space-time white noise. Their proof should carry through if we replaced the white noise by a
more general driving noise satisfying the hypothesis considered in the present paper: consequently, the
assumption on the existence of the solution up to time T is probably not restrictive at all. Actually, we
can disregard this assumption and show that the r.v. of the statement of the theorem, conditionally
given the event {T < Texplo}, admits a density. To prove this more general statement, one needs to
take care of the differentiability of the r.v. 1{T<Texplo}X: this can be done using the same techniques

as in [CFG17, Section 5.2]. In order not to clutter this article, we preferred not to work in this level
of generality.

Outline of the proof. We rely on the theory of regularity structures [Hai14] to construct solutions
to (1.1). The proof of the theorem is split into two main parts, corresponding to the two main
assumptions required by the classical Bouleau-Hirsch criterion for existence of densities. First, we
show that the random variable of the statement is Malliavin differentiable. Second, we prove that its
Malliavin derivative is almost surely non-degenerate.

To carry out the first task, we start by constructing solutions of (1.1) associated to a shifted noise
ξ + h:

(1.2) ∂tu = ∆u− u3 + ξ + h , u(0, ·) = u0

where h lies in the Cameron-Martin space associated to ξ (under our assumptions, this is always a
subspace of L2(R+×T3)), and of the associated tangent equation (formally obtained by differentiating
u w.r.t. h):

(1.3) ∂tv = ∆v − 3u2v + h , v(0, ·) = 0.

Then, we prove that X is Malliavin differentiable and identify its derivative in direction h as being(
〈v, ϕ1〉, . . . , 〈v, ϕn〉

)
.

To construct solutions of the above equations in the framework of regularity structures, one can think
of two approaches. In the first approach, one adds a new abstract symbol H in the regularity structure
and builds the associated enlarged model. In the case of the generalized parabolic Anderson model,
this strategy of proof was followed in [CFG17] since the action of the model on only three new (but
similar to each other) symbols needed to be defined. In the case of the Φ4

3 model, the action of the
model on many more new symbols would need to be defined so that a construction by hand would be
very tedious. In the second approach, that we actually follow in this paper, one lifts the convolution
of h with the heat kernel into an appropriate space of modelled distributions and solves the equation
within the original regularity structure.
Working with “classical” L∞-type spaces of modelled distributions as introduced in [Hai14] would
require to view h as an element of Cα = Bα∞,∞. Classical embedding theorems show that α < −5/2
so that the convolution of h with the heat kernel would not even be a function and the lift in the
polynomial regularity structure would be ill-defined.
On the other hand, working with L2-type spaces of modelled distributions as introduced in [HL17]
allows to lift the convolution of h with the heat kernel into the polynomial regularity structure without
losing regularity. However, one then needs to solve the equation in such an L2-type space and the
interplay of the cubic non-linearity with the L2-type bounds may cause some difficulties. Fortunately,
the embedding theorems for spaces of modelled distributions proved in [HL17] offer the necessary
tools to make sense of these non-linear terms.
At a technical level, the spaces considered in [HL17] are not weighted near t = 0 so that we have
to adapt the analytical results presented therein to weighted spaces. Let us also mention that we
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work with space and time L2-type norms: this is problematic for iterating fixed point arguments
since one needs to restart the equation from the already obtained solution evaluated at a given time
(this requires to embed the solution into an L∞-type space in the time variable, thus losing too much
regularity). This difficulty is circumvented by patching together solutions in a different manner, we
refer to the discussion below Proposition 4.3.

To carry out the second task, following [Oco88] (and also [MP06, BM07]), we work with a backward

representation of the Malliavin derivative, namely for a given test function ϕ ∈ B1/2+κ
1,∞ supported in

(0, T )× T3, we consider w which is (formally) solution to

(1.4) (−∂t −∆)w = −3u2w + ϕ, w(T, ·) = 0

(note that the product u2w is actually ill-defined, so to make rigorous sense of this equation we work
again in a suitable set of modelled distributions), and we are then reduced to proving(

〈w, h〉L2([0,T ]×T3) = 0 ∀h ∈ H
)
⇒ ϕ = 0,

where H is the Cameron-Martin space associated to the noise. Using the equation satisfied by w, a
simple induction argument gives the implication

w = 0⇒ ϕ = 0,

so that when H is dense in L2 (Assumption 2) the result follows immediately. When the noise is
degenerate, one has near each point z the local expansion for the r.h.s. of (1.4)

−3u2w + ϕ = −3w(z) +Rz

where is the (renormalized) square = ( )2, with (∂t −∆) = ξ, and our roughness assumption
(Assumption 3) implies that Rz is of homogeneity near z strictly greater than that of −3 w. By
testing against suitable localized elements of H, we can then separate the contributions of the two
terms to obtain that under the orthogonality condition, w = 0 a.e.. Note that this type of argument
based on the separation of scales appears frequently in this context (of proving the non-degeneracy of
Malliavin derivatives), and is already present in the classical Malliavin proof of Hörmander’s theorem
(via the uniqueness in the decomposition of a continuous semimartingale as the sum of a martingale
and a bounded variation process). The precise argument then takes a different form based on the
structure of the problem under consideration, for instance in the context of rough differential expan-
sions this led to the notion of “true roughness”, cf. [HP13, FS13, FH14]. The theory of regularity
structures is particularly well-suited for this kind of argument, since as soon as the theory is used to
solve an equation, it automatically gives a Taylor-like expansion (with terms of successively higher
homogeneity) for the solutions.

Other SPDEs. Our method is not specific to the dynamic Φ4 model and can in principle be applied
to other singular SPDEs. The main requirement is that one can set up a fixed point argument for the
shifted and tangent equations (1.2), (1.3) in an L2-type space of modelled distributions. For instance,
our method should apply to a generalized KPZ equation of the form:

∂tu = ∂2
xu+ f(u)(∂xu)2 + ξ ,

where ξ is space-time white noise on R+ × T1.
However, it seems that there are SPDEs that fall into the scope of the theory of regularity structures
for which our method would not apply, for instance the generalized KPZ equation with multiplicative
noise [Bru15, Hai16].
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Organisation of the paper. In Section 2, we present the assumptions on the driving noise ξ. In
Section 3, we introduce the regularity structure associated with the Φ4

3 model, together with the
appropriate spaces of modelled distributions we will work with. We also state the main analytical
tools that we will need, and postpone their technical (but rather classical) proofs to Section 6. In
Section 4, we prove Malliavin differentiability of the r.v. X of the statement. In Section 5, we prove
that the associated Malliavin derivative is almost surely non-degenerate and thus complete the proof
of our main theorem.

Notations. In this paper, the underlying space will always be the torus T3 of size 1. It is convenient
to work with functions defined on the whole space R3 but which have the periodicity of the torus.
From now on, we will call periodic any such map. Notice that we will deal with space-time maps:
periodicity will always refer to the space variable.
Some of our intermediate results hold in arbitrary space dimension so at several occasions in the
paper, we will write d for the space dimension.
We will be working in the so-called parabolic scaling s = (2, 1, 1, 1) where s0 = 2 refers to time-
direction, and s1, . . . , s3 to space-directions. We set |s| = s0 + . . . + s3. We consider the so-called
s-scaled metric |z|s = |z| = supi=0,...,3 |zi|1/si for all z ∈ R4. For λ ∈ R and z ∈ R4 we let λ · z =

(λsizi)i=0,...,3. For a function φ on R4 and a given (λ, z) we define φλz : y 7→ |λ|−|s|φ(λ−1 · (y − z))
(if z = 0 we just write φλ, and if λ = 1 we just write φz), note that this transformation preserves

the L1-norm. For a multi-index k ∈ N4, we let |k| = |k|s =
∑3
i=0 siki. For any k ∈ Nd+1, we set

∂k =
∏d+1
i=0 ∂

ki
zi .

We let Cr = Cr(R4) denote the space of all functions on R4 that admit continuous derivatives of
order k, for all k ∈ N4 such that |k| < r. We further let Br be the subset of Cr whose elements are
supported in the s-scaled unit ball and have a Cr-norm smaller than or equal to 1.
Similarly we let Bαp (R4) = Bαp,∞(R4) be the s-scaled Besov space as defined in [HL17, Def. 2.1]: notice
that the parameter q in the Besov scale will always be taken equal to +∞ so we omit writing it.
For every n ∈ Z, we define the dyadic grid of s-scaled mesh 2−n

Λn := {(k02−2n, k12−n, k22−n, k32−n) : k = (k0, . . . , k3) ∈ Z4} .

The Fourier transform of a tempered distribution f ∈ S ′(R4) is denoted by f̂ , it is defined by〈
f̂ , φ

〉
=
〈
f, φ̂
〉

with

φ̂(ξ) =

∫
R4

φ(z)e−iξ·zdz

for φ in S(R4).
The Fourier transform of a smooth function φ on R× T3 is defined as the function

φ̂(ξ) =

∫
R×T3

φ(z)e−iξ·zdz

where the argument ξ takes values in R× (2πZ)3. (Note : this is not exactly the same as the Fourier
transform of φ viewed as a distribution on R4. There will hopefully be no confusion by which transform
we mean).

One then has the isometry

‖f‖L2(R×T3) =
∥∥∥f̂∥∥∥

L2(R×(2πZ)3;m̂)

where the measure m̂ is defined by

(1.5)

∫
φ(ξ0, ξ1, ξ2, ξ3)m̂(dξ) =

1

2π

∫
R
dξ0

∑
(k1,k2,k3)∈Z3

φ(ξ0, 2πk1, 2πk2, 2πk3)
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Given f and g two distributions such that the convolution f ∗ g makes sense (say f is compactly
supported), if g is periodic then so is f ∗ g. Therefore it makes sense to view f ∗ g as a distribution
on R× T3, and in that case one has

f̂ ∗ g = f̂ ĝ.

For a function g : R1+d → R decaying sufficiently fast at infinity, its periodization gper is defined
by

gper(t, x) =
∑
x0∈Zd

g(t, x− x0).

One then has for all periodic f (identified with a function on R× Td)

(1.6) 〈f, g〉L2(R×Rd) = 〈f, gper〉L2(R×Td) .

Finally, the notation A . B means that A ≤ cB for some constant c > 0 which does not depend on
the parameters appearing in A and B.

Acknowledgements. The authors are supported by the ANR grant SINGULAR ANR-16-CE40-
0020-01. PG would like to thank Yvain Bruned for a helpful discussion.

2. Assumptions on the noise

We consider a Gaussian noise ξ with covariance given by

E [〈ξ, φ〉 〈ξ, ψ〉] = 〈R ∗ φ,R ∗ ψ〉

(i.e. ξ is the convolution of space-time white noise with R).
On R we assume the following

Assumption 1. One has the decomposition R =
∑
n≥0Rn (the series is assumed to converge in the

sense of distributions) where each Rn is an even smooth function, supported in {|x|s ≤ C2−n} for
some constant C. In addition, there exists β ≥ 0, s.t. for each multiindex k, there exists Ck > 0 with

(2.1) ‖∂kRn‖L∞ ≤ Ck2n(|s|+|k|−β),

and if β = 0 one further has
∫
Rn(x)dx = 0 for n ≥ 1.

The assumption essentially says that ξ has regularity no worse than white noise. The Cameron-
Martin space H associated to ξ is then given by

H = {R ∗R ∗ φ, φ ∈ C∞c (R× T3)},

the closure being taken with respect to the norm

‖R ∗R ∗ φ‖H = ‖R ∗ φ‖L2(R×T3) .

In fact one also has

‖ψ‖H := inf{‖φ‖L2(R×T3), ψ = R ∗ φ}
and

H = {R ∗ φ, φ ∈ C∞c }
(this can for instance be checked via the Fourier transform).

The next proposition then shows that under our assumption, H is a subset of L2.

Proposition 2.1. Under Assumption 1, there exists C > 0 such that

(2.2) ∀φ ∈ L2(R× T3), ‖R ∗ φ‖L2 ≤ C ‖φ‖L2 .
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Proof. When β > 0, R is in L1 so that the result is obvious. Hence we now assume β = 0. It is
enough to prove that R̂ is bounded.

Using the support property of Rn, by a Bernstein-type lemma (e.g. one can adapt the proof of
[BCD11, Lemma 2.1] to our parabolic setting) one has∥∥∥∂kR̂n∥∥∥

L∞
. 2−n|k|

∥∥∥R̂n∥∥∥
L∞
≤ 2−n|k| ‖Rn‖L1 . 2−n|k|

so that, for n ≥ 1, since R̂n(0) =
∫
Rn = 0, one obtains∣∣∣R̂n(ξ)

∣∣∣ . (2−n|ξ|) ∧ 1.

In addition, for all i = 0, . . . , 3,

sup
ξ

∣∣∣R̂n(ξ)|ξi|
∣∣∣ . ∥∥∥∂̂ziRn∥∥∥

L∞
≤ ‖∂ziRn‖L1 . 2nsi

so that we also have ∣∣∣R̂n(ξ)
∣∣∣ . 2n|ξ|−1 ∧ 1

and combining these two bounds yields that R̂ =
∑
n≥0 R̂n is bounded. �

To obtain non-degeneracy of the Malliavin derivative we will need that one of two additional
assumptions holds. The first assumption is a density assumption on the Cameron-Martin space :

Assumption 2. The set
{
h|[0,T ]×T3 , h ∈ H

}
is dense in L2([0, T ]× T3).

To formulate the second assumption we need some notations. For C > 1 and n ≥ 0, let

ACn =
{
C−12n ≤ |ξ| ≤ C2n

}
and

BCn =
{

(ξ, ξ′), ξ, ξ′, ξ + ξ′ ∈ ACn
}
.

The assumption is then written as

Assumption 3. One has β < 1
2 and for some C ≥ 1,

(2.3) lim sup
n→∞

23nβ sup
(ξ,ξ′)∈BCn

∣∣∣R̂(ξ)R̂(ξ′)R̂(ξ + ξ′)
∣∣∣ > 0.

The following simple lemma will be needed in the proof of Theorem 1.1.

Lemma 2.2. Under Assumption 1, (2.3) is equivalent to

(2.4) lim sup
n→∞

22n(3β−|s|)
∫
BCn

m̂(dξ)m̂(dξ′)
∣∣∣R̂(ξ)R̂(ξ′)R̂(ξ + ξ′)

∣∣∣2 > 0.

(recall that the measure m̂ is defined by (1.5)).

Proof. We only prove that (2.3) implies (2.4) since the converse implication is immediate (and we will
in fact not need it).

One first checks that for any i in 0, . . . , 3,

(2.5)
∣∣∣∂ξiR̂(ξ)

∣∣∣ . |ξ|−si .
To prove this, we write ∣∣∣∂ξiR̂(ξ)

∣∣∣ ≤ ∑
0≤n≤n0

∣∣∣∂ξiR̂n(ξ)
∣∣∣+

∑
n>n0

∣∣∣∂ξiR̂n(ξ)
∣∣∣
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with n0 such that 2n0 ≤ |ξ| ≤ 2n0+1 . As in the proof of Proposition 2.1, by Bernstein’s lemma it
holds that ∑

n>n0

∥∥∥∂ξiR̂n∥∥∥
L∞
.
∑
n>n0

2−nsi . |ξ|−si

For the other sum, we note that for N > si,

sup
ξ

∣∣∣∂ξiR̂n(ξ)|ξj |N
∣∣∣ ≤ sup

ξ

∣∣∣∂zi (R̂n(ξ)(ξj)
N
)∣∣∣+ sup

ξ

∣∣∣R̂n(ξ)∂ξi(ξj)
N
∣∣∣

. 2−nsi
∥∥∥∂NξjRn∥∥∥

L1
+ 1i=j

∥∥∥∂N−1
ξi

Rn

∥∥∥
L1

. 2n(Nsj−si),

from which we deduce ∣∣∣∂ξiR̂n(ξ)
∣∣∣ . 2−nsi

(
|ξ|−N2nN ∧ 1

)
.

Hence we obtain ∑
n≤n0

∣∣∣∂ξiR̂n(ξ)
∣∣∣ . ∑

n≤n0

2n(N−si)|ξ|−N . |ξ|−si ,

which concludes the proof of (2.5).
From (2.5) and Taylor’s formula ([Hai14, Prop. A.1]), if (ζn, ζ

′
n) ∈ BCn is such that

23nβ
∣∣∣R̂(ζn)R̂(ζ ′n)R̂(ζn + ζ ′n)

∣∣∣ ≥ K > 0

then there exists δ > 0 such that

|R̂(ξ)R̂(ξ′)R̂(ξ + ξ′)| ≥ K

2
whenever

(ξ, ξ′) ∈ B′n := {(ξ, ξ′) s.t. |ξ − ζn| ≤ 2nδ, |ξ′ − ζ ′n| ≤ 2nδ} .
and we note that

lim sup
n→∞

2−2n|s| (m̂⊗ m̂)
(
B′n ∩BCn

)
= K ′ > 0.

It follows that

lim sup
n→∞

22n(3β−|s|)
∫
BCn

m̂(dξ)m̂(dξ′)
∣∣∣R̂(ξ)R̂(ξ′)R̂(ξ + ξ′)

∣∣∣2 ≥ K2K ′

4
> 0.

�

In the following proposition, we give an example of a Littlewood-Paley type decomposition
∑
n≥0 ζn

of space-time white noise ζ, such that if one considers the noise ξ =
∑
n≥0 αnζn, there exist simple

sufficient conditions on the sequence (αn)n≥0 for the previous assumptions to be fulfilled.

Proposition 2.3. Assume that ρ is a smooth, even, compactly supported function with
∫
R4 ρ = 1,

such that, letting η(x) = ρ(x)− 2−|s|ρ(2−1 · x), there exists ξ0 in R4 such that

(2.6) |η̂(ξ0)| −
∑

n∈Z\{0}

2−nβ
∣∣η̂(2−n · ξ0)

∣∣ > 0.

Then for any bounded sequence (αn)n≥0, the kernel

R := α0ρ+
∑
n≥1

αnη
2−n .

satisfies Assumption 1 for any β such that lim supn→∞ 2nβ |αn| < ∞. In addition, if β < 1
2 and

lim supn→∞ 2nβ |αn| ∈ (0,∞) then Assumption 3 is satisfied.

Note that if αn ≡ 1 then R = δ0 which corresponds to space-time white noise.
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Proof. The fact that R satisfies Assumption 1 with R0 = α0ρ and Rn = αnη
2−n for n ≥ 1 is a

straightforward consequence of scaling.
We now prove the second point. We note C := lim supn→∞ 2nβ |αn| so that 2nβ |αn| = C + εn with

lim supn→∞ εn = 0. We then have

2nβ
∣∣∣R̂(2n · ξ0)

∣∣∣ ≥ 2nβ |αn| |η̂(ξ0)| −
∑

m≥1−n;m6=0

2nβ |αn+m|
∣∣η̂(2−m · ξ0)

∣∣− 2nβ |α0|ρ̂(2n · ξ0)|

≥ Cδ + εn |η̂(ξ0)| −
∑

m≥1−n;m 6=0

2−mβεn+m

∣∣η̂(2−m · ξ0)
∣∣− 2nβ |α0|ρ̂(2n · ξ0)|

where we have let δ = |η̂(ξ0)| −
∑
m∈Z\{0} 2−mβ |η̂(2−m · ξ0)| > 0.

Note that the last term in the inequality above goes to 0 as n → ∞ since ρ̂ decays rapidly at
infinity. For the sum

∑
m 2−mβεn+m |η̂(2−m · ξ0)|, we note that by similar arguments as in the proof

of Proposition 2.1, we have that
η̂(ζ) . |ζ| ∧ |ζ|−N

for N arbitrarily large (N > β will suffice), so that we can bound uniformly (in n) each summand by
a term of an absolutely convergent series (in m). Hence we can interchange limits and obtain

lim sup
n→∞

∑
m≥1−n

2−mβεn+m

∣∣η̂(2−m · ξ0)
∣∣− 2nβ |α0|ρ̂(2n · ξ0)|

=
∑
m 6=0

lim sup
n→∞

εn+m2−mβ
∣∣η̂(2−m · ξ0)

∣∣ = 0.

Finally we have

lim sup
n→∞

2nβ
∣∣∣R̂(2n · ξ0)

∣∣∣ > 0,

and (2.3) will be satisfied for any C such that (ξ0, ξ0) ∈ BC0 . �

For completeness we prove that such dyadic partitions of unity (with compact support in the space
variable) exist.

Lemma 2.4. There exists ρ satisfying the assumptions of Proposition 2.3.

Proof. We first proceed as for a standard dyadic partition of unity and define ρ0 to be an even
Schwartz function s.t.

ρ̂0 ≡ 1 on |ξ| ≤ 1, ρ̂0 ≡ 0 on |ξ| ≥ 2, ρ̂ ∈ [0, 1] everywhere.

Letting η̂0(ξ) = ρ̂0(ξ)− ρ̂0(2ξ), it is clear that (2.6) holds since in fact if we fix ξ0 such that |ξ0| = 1,
then

η̂0(ξ0) = 1, and ∀n ∈ Z \ {0}, η̂0(2−n · ξ0) = 0.

Of course the issue is that ρ0 is not compactly supported, so we fix φ smooth, even, compactly
supported with φ(0) = 0, and let ρδ := ρ0φ(δ·), and η̂δ(ξ) = ρ̂δ(ξ)− ρ̂δ(2ξ). Then we note that

ρ̂δ = ρ̂0 ∗ φ̂δ,

and since
∥∥∥φ̂δ∥∥∥

L1
does not depend on δ, we have for all multi-indices k

sup
δ∈(0,1]

∥∥∂kρ̂δ∥∥L∞ . sup
δ∈(0,1]

∥∥∂kρ̂0

∥∥
L∞

∥∥∥φ̂δ∥∥∥
L1
. 1.

In addition, using that for all multi-indices k one has for δ ≤ 1
∥∥∂kρδ∥∥L1 .

∑
l≤k
∥∥∂lρ0

∥∥
L1 , we obtain

(using the same arguments as in the proof of Proposition 2.1) that for arbitrary N > 0

sup
δ∈(0,1]

|ρ̂δ(ξ)| . |ξ|−N ∧ 1
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and combining these two bounds yields

sup
δ∈(0,1]

∣∣η̂δ(2−n · ξ0)
∣∣ . 2−n ∧ 2nN .

Hence we can pass to the limit and obtain

lim
δ→0

|η̂δ(ξ0)| −
∑

n∈Z\{0}

2−nβ
∣∣η̂δ(2−n · ξ0)

∣∣ = 1.

It then suffices to take δ small enough and let

ρ =
ρδ∫
R4 ρδ

.

�

3. The regularity structure setting

3.1. Regularity structures. A regularity structure is a triplet (A, T ,G) where:

• A, the so-called set of homogeneities, is a subset of R assumed to be locally finite and bounded
from below,

• T = ⊕ζ∈ATζ is a graded normed vector space,
• G is a group of continuous linear maps on T which is such that, for every Γ ∈ G, we have

Γτ − τ ∈ T<β := ⊕ζ∈A,ζ<βTζ whenever τ ∈ Tβ for some β ∈ A.

We will denote by Qζ the projection from T to Tζ and we will use the notation |τ |ζ = |Qζτ |.

The regularity structure T we consider is an extension of the usual regularity structure for (Φ4
3)

defined in [Hai14], since we need additional symbols to solve the dual backward equation (5.1). In

particular, we need an abstract integration operator Ĩ associated to the backward heat kernel. T can
be described as

T = U ∪RU ∪W ∪RW
where U ,RU ,W,RW are the smallest sets of symbols such that

Xk ∈ U ∩RU ∩W ∩RW ∀k ∈ N4

Ξ ∈ RU ,
τ1, τ2, τ3 ∈ U ⇒ τ1τ2τ3 ∈ RU

τ ∈ RU ⇒ I(τ) ∈ U
τ1, τ2 ∈ U , ρ ∈ W ⇒ τ1τ2ρ ∈ RW

τ ∈ RW ⇒ Ĩ(τ) ∈ W
where as usual we take I(Xk) = Ĩ(Xk) = 0 for all multiindices k.

The homogeneity of elements of T is defined by letting

|Ξ| = −|s|
2

+ β − κ, |1| = 0,

for some fixed positive κ small enough, and then recursively

|I(τ)| = |τ |+ 2,
∣∣∣Ĩ(τ)

∣∣∣ = |τ |+ 2, |τ1τ2| = |τ1|+ |τ2| .

To save space we omit the details of the construction of the structure group G since we will not
need them here, and refer instead to [Hai14].

We will frequently use the tree notation to describe elements of T : Ξ is represented by a dot,
the integration maps I and Ĩ are represented by respectively straight lines and dotted lines, and the
product of two symbols is represented by joining the corresponding trees at the root. For example :

I(Ξ)2 = , Ĩ(I(Ξ)2)I(Ξ)2 = .
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3.1.1. The heat kernel. From now on, r is an arbitrary integer larger than 5/2. Recall that we denote
by P the usual heat kernel defined on the whole space R×R3. By [Hai14, Lemma 7.7], for any given
T > 0 there exists a collection of smooth compactly supported functions P− and (Pm)m≥0 which
vanish at all negative times and satisfy the following properties:

(1) P ∗ f(z) = P− ∗ f(z) +
∑
m≥0 Pm ∗ f(z) for all z ∈ (−∞, T ]× R3 and every periodic map f ,

(2) P0 is supported in B(0, 1),
(3) we have for all z = (t, x) ∈ R× R3 and all m ≥ 1

Pm(z) = 2m(|s|−2)P0(t22m, x12m, . . . , x32m) ,

(4) P0 annihilates polynomials of scaled degree r.

Roughly speaking, P− stands for the smooth part of the heat kernel while for every m ≥ 0, Pm
essentially coincides with P in an annulus of radius 2−m around 0 and vanishes elsewhere.

As a consequence of these properties, we deduce that for any k ∈ Nd+1, there exists a constant
C ′ > 0 such that for all m ≥ 0 and all z ∈ (0,∞)× Rd we have∣∣∂kPm(z)

∣∣ ≤ C ′2m(d+|k|) .

In the sequel we will denote P+ =
∑
m≥0 Pm. We will also denote by P̃ (t, x) := P (−t, x) the

backward heat kernel and define similarly the functions P̃− and P̃+.

3.1.2. Admissible models. Let us now recall the notion of admissible model. A pair (Π,Γ) is called an
admissible model if it satisfies the following assumptions:

• For every z ∈ Rd+1, Πz is a linear map from T into the space of Schwartz distributions
D′(Rd+1) and we have the bound

(3.1) ‖Π‖K := sup
z∈K

sup
λ∈(0,1]

sup
ζ∈A<γ

sup
τ∈Tζ

sup
η∈Br

∣∣〈Πzτ, η
λ
z 〉
∣∣

|τ |λζ
<∞ ,

for every bounded domain K ⊂ Rd+1.
• For every z, z′ ∈ Rd+1, Γz,z′ is an element of G and we have

‖Γ‖K := sup
z,z′∈K,|z−z′|≤1

sup
β≤ζ

sup
τ∈Tζ

∣∣Γz,z′τ ∣∣β
|τ ||z − z′|ζ−β

<∞ ,

for every bounded domain K ⊂ Rd+1.
• For all z, z′ ∈ Rd+1, ΠzΓz,z′ = Πz′ .
• For every multiindex k ∈ Nd+1, it holds

ΠzX
k(z′) = (z′ − z)k ,

ΠzIτ(z′) = 〈Πzτ, P+(z′ − ·)〉 −
∑

|k|<|τ |+2

(z′ − z)k

k!
〈Πzτ, ∂

kP+(z − ·)〉 ,

ΠzĨτ(z′) = 〈Πzτ, P̃+(z′ − ·)〉 −
∑

|k|<|τ |+2

(z′ − z)k

k!
〈Πzτ, ∂

kP̃+(z − ·)〉 .

In order to set up a solution theory for (1.1) we also need the following conditions (cf [Hai14,
Section 9.4])

(3.2) sup
s∈R

∥∥1{t>s}ΠΞ
∥∥
C−
|s|
2
−κ(K)

<∞

(3.3) sup
t∈[0,T ]

‖(P+ ∗ΠΞ)(t, ·)‖
C−

1
2
−κ(K′)

<∞
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for all compact sets K ⊂ R× R3 and K ′ ⊂ R3, all T > 0 and any κ > 0. Here Cα(K) stands for the
space of s-scaled α-Hölder distributions on K.

We let M be the space of admissible models satisfying all of the above, and we equip it with the
topology associated with the corresponding system of semi-norms.

We will consider a model Π obtained by renormalizing smooth canonical models as described in full
generality in [CH16] (note however that our case is only a simple extension of the one in [Hai14], since
our noise does not have worse regularity than white noise and the only additional tree of negative

regularity in our structure compared to [Hai14] is which is renormalized in the exact same way as

).
For a given smooth function ζ on R × T3, the canonical model associated to ζ is the unique

admissible model defined by letting ΠzΞ = ζ, and then recursively by letting Πz(ττ
′) = (Πzτ)(Πzτ

′),
for τ , τ ′ such that ττ ′ ∈ T .

We now fix a sequence of mollifiers ρε = ε−|s|ρ(ε−1·), where ρ is a smooth compactly supported
function integrating to 1, and we let ξε = ξ ∗ ρε be regularizations of our noise. The models Πε are
then defined as the canonical models associated to ξε.

It is well known that the sequence Πε does not converge as ε→ 0, and that one needs to introduce
a renormalization. In our case, the renormalization we need to consider can be described by the group
R of transformations on T of the form exp (−C1L1 − C2L2 − C3L3), where the Li’s are determined
by the substitutions

L1 : 7→ 1, L2 : 7→ 1, L3 : 7→ 1

(i.e. each Li acts on a tree τ in T by replacing formally each occurence of the associated tree in τ by
1).

One can then define a renormalized model ΠM for each M in R, and for each admissible model Π.
We will not need the precise definition of ΠM , but in our case one has for each smooth model Π the
relation

(3.4)
(
ΠM
z τ
)

(z) = (Πz(Mτ)) (z), ∀z ∈ R× T3

which is useful to determine the equations satisfied by (reconstructions of the) solutions to the abstract
fixed point equations.

In our case, we let Mε correspond to the constants

Cε1 =

∫
(Kε(z))

2dz,

Cε2 =

∫
dz1dz2dz3P+(z1)Kε(z3 − z1)Kε(z2 − z1)Kε(z3)Kε(z2)

Cε3 =

∫
dz1dz2dz3P+(−z1)Kε(z3 − z1)Kε(z2 − z1)Kε(z3)Kε(z2)

(where Kε = R ∗ P+ ∗ ρε).
In fact, it holds that

(3.5) Cε2 = Cε3

as can be seen by the change of variables (z′1, z
′
2, z
′
3) = (−z1, z2 − z1, z3 − z1)

The renormalized models then converge as ε→ 0 :

Theorem 3.1. Let Π̂ε := (Πε)Mε , then there exists an admissible model Π such that Π̂ε → Π in
probability in M. In addition, Π does not depend on the particular choice of ρ.

Proof. Convergence of the models is a special case of the results in [CH16] (and is essentially already
contained in [Hai14, section 10.5], although our noise is not exactly the same).

The fact that convergence also holds w.r.t. the bounds (3.2) (3.3) follows exactly as in [Hai14,
Proposition 9.5] :



EXISTENCE OF DENSITIES FOR Φ4
3 13

• The first bound follows by the exact same proof as in [Hai14], using (2.2).
• The second bound again follows from the proof in [Hai14], once we note that P+ ∗R satisfies

the same scaling assumptions as P+ (cf. e.g. [Hai14, Lemma 10.14, Lemma 10.16]), and these
are the only properties of P+ used in the proof).

�

3.2. Weighted spaces of Besov modelled distributions. We first recall the definition of the
(unweighted) spaces of Besov modelled distributions introduced in [HL17].

Definition 3.2. Take γ ∈ R. We let Dγp be the Banach space of all periodic maps f : R×R3 → T<γ
such that for all ζ ∈ A<γ , we have:∥∥∥∣∣f(z)

∣∣
ζ

∥∥∥
Lp(R×T3,dz)

<∞ , sup
h∈B(0,1)

∥∥∥∥
∣∣f(z + h)− Γz+h,zf(z)

∣∣
ζ

|h|γ−ζ

∥∥∥∥
Lp(R×T3,dz)

<∞ .

We let |||f ||| be the corresponding norm.

Remark 3.3. For the sake of consistency with [HL17], we should have denoted our spaces by Dγp,q
with q = ∞. Since the parameter q will always be taken equal to +∞ in the present work, we omit
writing it.

Let us now introduce spaces of modelled distributions with weights near t = 0+. The reason for
considering such weights is twofold: first, it allows to start the equation at stake from some irregular
initial condition, second playing around with the weight parameter η will eventually allow us to obtain
contractivity of the fixed point map.

Definition 3.4. Let γ ∈ R, T > 0 and η ≤ γ. We let Dγ,η,Tp be the space of all periodic maps

f : (0, T )× R3 → T<γ such that for all ζ ∈ A<γ : ∥∥∥∣∣f(z)
∣∣
ζ

t
η−ζ
2

∥∥∥
Lp((0,T )×T3,dz)

<∞ ,

sup
h∈B(0,1)

∥∥∥∥
∣∣f(z + h)− Γz+h,zf(z)

∣∣
ζ

|h|γ−ζ t η−γ2

∥∥∥∥
Lp((3|h|2,T−|h|2)×T3,dz)

<∞ .

(3.6)

We let |||f ||| be the corresponding norm.

Notice that the exponent of the weight of the local terms is η−ζ
2 , and not (η−ζ)∧0

2 as in [Hai14,
Section 6]. The reason for this choice is simple: the forthcoming embedding theorems would not hold

true with (η−ζ)∧0
2 . Let us mention here that this has some technical consequences: some arguments

in the original proof of the convolution with a singular kernel [Hai14, Thm 6.16] need to be adapted,
see in particular the refined bound (6.1) that we will need.

When we are given two models (Π,Γ) and (Π̄, Γ̄), we will need to compare elements f and f̄ that
belong respectively to the spaces Dγ,η,Tp and D̄γ,η,Tp . To that end, we set:

‖f − f̄‖ := sup
ζ∈A<γ

∥∥∥∣∣f(z)− f̄(z)
∣∣
ζ

t
η−ζ
2

∥∥∥
Lp((0,T )×T3,dz)

,

as well as

|||f ; f̄ ||| := ‖f−f̄‖+ sup
h∈B(0,1)

∥∥∥∥
∣∣f(z + h)− f̄(z + h)− Γz+h,zf(z) + Γ̄z+h,z f̄(z)

∣∣
ζ

|h|γ−ζ t η−γ2

∥∥∥∥
Lp((3|h|2,T−|h|2)×T3,dz)

.

We now present the main analytical tools associated to these spaces that are needed in the con-
struction of the solution as well as for the proof of the Malliavin differentiability. In order not to
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clutter the presentation, we postpone the proofs of the forthcoming statements to Section 6 but make
some comments on the differences with their original versions (in the Hölder setting) in [Hai14].

Recall that r is an integer taken larger than 5/2.

3.2.1. Reconstruction. Since we are dealing with modelled distributions defined on the time interval
(0, T ) only, we need to introduce appropriate Besov-type spaces. To that end, let us introduce some
notations. We let Br be the set of all Cr functions from R×Rd into R, which are compactly supported
in B(0, 1) and whose Cr-norm is less than or equal to 1. We then define Br

n as the subset of Br whose
elements annihilate all polynomials of scaled degree at most n ∈ N.

Definition 3.5. Fix T > 0. If β < 0, we let Bβ,Tp be the set of all periodic distributions ξ acting on

test functions supported in (−∞, T )× Rd such that

(3.7) sup
λ∈(0,1]

∥∥∥ sup
ϕ∈Br

∣∣〈ξ, ϕλz 〉∣∣
λβ

∥∥∥
Lp((−∞,T−λ2)×Td,dz)

<∞ .

If β ≥ 0, we let Bβ,Tp be the set of all periodic distributions ξ acting on test functions supported in

(−∞, T )× Rd such that
(3.8)∥∥∥ sup

ϕ∈Br

∣∣〈ξ, ϕz〉∣∣∥∥∥
Lp((−∞,T−1)×Td,dz)

<∞ , sup
λ∈(0,1]

∥∥∥ sup
ϕ∈Br

bβc

∣∣〈ξ, ϕλz 〉∣∣
λβ

∥∥∥
Lp((−∞,T−λ2)×Td,dz)

<∞ .

The following fundamental result asserts the existence and uniqueness of a linear operator that
associates to every modelled distribution a genuine distribution.

Theorem 3.6 (Reconstruction). Let γ > 0, η ∈ R, T > 0 and set α := minA\N. Assume that
α∧ η > −2(1− 1

p ). We set ᾱ = α∧ η if α∧ η 6= 0, otherwise we let ᾱ be any arbitrary negative value.

There exists a unique continuous linear map R : Dγ,η,Tp → Bᾱ,Tp such that 〈Rf, ϕ〉 = 0 whenever the

support of ϕ lies in (−∞, 0]× Td, and such that

(3.9) sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈Br

∣∣〈Rf −Πzf(z), ϕλz 〉
∣∣

λγ t
η−γ
2

∥∥∥∥
Lp((3λ2,T−λ2)×Td,dz)

. |||f ||| ,

uniformly over all f ∈ Dγ,η,Tp .

In the case where there are two models (Π,Γ), (Π̄, Γ̄), we get the following counterpart of (3.9)

sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈Br

∣∣〈Rf − R̄f̄ −Πzf(z) + Π̄z f̄(z), ϕλz 〉
∣∣

λγ t
η−γ
2

∥∥∥∥
Lp((3λ2,T−λ2)×Td,dz)

. |||f ; f̄ |||‖Π‖(1 + ‖Γ‖) + |||f̄ |||
(
(‖Π− Π̄)(1 + ‖Γ‖) + ‖Π̄‖‖Γ− Γ̄‖

)
,

(3.10)

uniformly over all f, f̄ in Dγ,η,Tp , D̄γ,η,Tp .

The proof of this result relies on the reconstruction theorem for unweighted modelled distributions,
see [HL17, Thm 3.1]. Indeed, since the spaces of weighted and unweighted modelled distributions are
locally similar, and since the reconstruction operator is local, one can apply the operator constructed
in the aforementioned reference to weighted modelled distributions when tested against test functions
supported away from the hyperplane t = 0. Then, one needs to patch together in a consistent way
these distributions in order to get an element in Bβ,Tp : this raises the restriction η ∧ α > −2(1− 1/p)
of the statement. Notice that this is in line with the restriction α ∧ η > −2 of [Hai14, Prop 6.9] in
the setting of Hölder distributions (p =∞).
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3.2.2. Embedding. Classical Besov spaces enjoy embedding properties: in particular, one can improve
the integrability of a function/distribution at the cost of losing some regularity. In [HL17], embedding
theorems were established for unweighted Besov-type modelled distributions (Definition 3.2). Notice
that in the context of regularity structures, the regularity parameter which is traded off against
integrability is no longer the actual regularity of the function/distribution but rather the parameter γ
(which stands for the order of the generalized Taylor expansion at stake). Below, we extend the scope
of the embedding theorems of [HL17] to the case of weighted spaces near t = 0 (since the parameter
q is set to +∞ in this paper, we do not treat the embedding properties associated with q). The main
difference with the original version is that one also needs to decrease the value of η (by the same
amount as γ) in order to improve integrability.

Theorem 3.7 (Embeddings with weights). The space Dγ,η,Tp is continuously embedded into Dγ
′,η′,T
p′

in any of the following situations:

(1) p′ < p, γ′ = γ and η′ = η,
(2) p′ > p, γ′ < γ − |s|

(
1
p −

1
p′

)
and η′ = η + γ′ − γ.

3.2.3. Product. The notion of sector is introduced in [Hai14, Def 2.5]: roughly speaking, a sector V
of regularity α is a “sub-regularity structure” whose smallest level is α. Two sectors V1 and V2 are
said to be γ-regular if Γ(τ1τ2) = Γτ1Γτ2 for all Γ ∈ G and all τi ∈ Tζi ∩ Vi such that the ζi’s satisfy
ζ1 + ζ2 < γ. We denote by Dγ,η,Tp (V ) the subspace of Dγ,η,Tp whose elements take values in V .

Theorem 3.8 (Multiplication). Let fi ∈ Dγi,ηi,Tpi (Vi), i = 1, 2, where V1, V2 are γ-regular sectors of

regularity α1, α2. Then f := f1f2 belongs to Dγ,η,Tp , where

γ = (γ1 + α2) ∧ (γ2 + α1) , η = η1 + η2 ,
1

p
=

1

p1
+

1

p2
.

If we are given two models (Π,Γ) and (Π̄, Γ̄), then we have the bound

|||f1f2; g1g2||| . ‖Γ‖2‖f1 − g1‖|||f2|||+ ‖Γ− Γ̄‖
(
|||g1||||||f2|||+ |||g2||||||f1|||

)
+ |||f1; g1||||||f2|||

+ ‖Γ‖|||f1||||||f2; g2|||+ |||g1|||‖f2 − g2‖+ ‖Γ̄‖‖f1 − g1‖|||g2||| ,

uniformly over all fi ∈ Dγi,ηipi (Vi) and all gi ∈ D̄γi,ηipi (Vi).

This result is in the flavour of [Hai14, Prop 6.12]. The main difference is that η is not given by the
infimum of η1 +α2, η2 +α1 and η1 + η2 but is equal to the latter. This is a consequence of our choice

of exponents for the weights in the local terms: η−ζ
2 , and not (η−ζ)∧0

2 as in [Hai14].

3.2.4. Convolution with the heat kernel. Recall the decomposition of the heat kernel introduced in
Section 3. For convenience, we set P+ :=

∑
m≥0 Pm and call this function the singular part of the

heat kernel, by opposition to P− that we call the smooth part of the heat kernel. The goal of the
present section is to lift the convolution with the heat kernel at the level of the spaces Dγ,η,Tp . This
will be carried out separately for the singular part and the smooth part.

We start with the former, which is the most involved. We set for any f ∈ Dγ,η,Tp

Pγ+f(z) := I(f(z)) +
∑
ζ∈Aγ

∑
k∈Nd+1:|k|<ζ+2

Xk

k!
〈ΠzQζf(z), ∂kP+(z − ·)〉

+
∑

k∈Nd+1:|k|<γ+2

Xk

k!
〈Rf −Πzf(z), ∂kP+(z − ·)〉 .
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Theorem 3.9 (Convolution - singular part). Let α := minA\N. Fix γ > 0 and η ≤ γ, and let
γ′ = γ + 2 and η′ < η + 2. Assume that γ′ /∈ N and α ∧ η > −2(1− 1

p ). Then, the operator Pγ+ is a

continuous linear map from Dγ,η,Tp into Dγ′,η′,Tp and we have for all f ∈ Dγ,η,Tp

RPγ+f = P+ ∗ Rf .

If (Π̄, Γ̄) is another admissible model, then uniformly over all f, f̄ in Dγ,ηp , D̄γ,ηp we have

|||Pγ+f,P
γ
+f̄ ||| . ‖Π‖(1 + ‖Γ‖)|||f, f̄ |||+ (‖Π− Π̄‖(1 + ‖Γ̄‖) + ‖Π̄‖‖Γ− Γ̄‖)|||f̄ ||| .

Remark 3.10. If β := minA and if f ∈ Dγ,η,Tp , then Pγ+f takes values in a sector of regularity
(β + 2) ∧ 0.

Remark 3.11. Notice that in the original version of the convolution theorem [Hai14, Th. 5.12], the
parameter η is sent onto (η∧α)+2 after convolution. As we will be working in situations where η > α,
our result provides a better weight index. Let us also mention that if we had chosen an L∞-norm in
time in our spaces of modelled distributions (as this is the case in the original version of the theorem),
then we would have improved the weight index by 2 and not 2−.

We turn to the convolution with the smooth part of the heat kernel. For every f ∈ Dγ,η,Tp , we set

Pγ−f(z) :=
∑

k∈Nd+1:|k|<γ+2

Xk

k!
〈Rf, ∂kP−(z − ·)〉 .

Theorem 3.12 (Convolution - smooth part). In the context of Theorem 3.9, the operator Pγ− is a

continuous linear map from Dγ,η,Tp into Dγ′,η′,Tp and we have

RPγ−f = P− ∗ Rf .

We then define the operator Pγ := Pγ+ + Pγ− which is a continuous linear map from Dγ,η,Tp into

Dγ′,η′,Tp such that

RPγf = P ∗ Rf .

3.2.5. Convolution of the shift. For any function h ∈ L2((0, T )× Td), we define

Ph(z) :=
∑

k∈Nd+1:|k|<2

Xk

k!
〈h, ∂kP (z − ·)〉 .

Although an operator P acting on Dγ,η,Tp was already introduced in the previous subsection, we prefer
to keep the same notation for the present operator as they both refer to the convolution with the heat
kernel.

Lemma 3.13. For any h ∈ L2((0, T )×T3) and any κ > 0, the restriction of Ph to T<2−κ defines an

element of D2−κ,2−κ,T
2 .

4. Malliavin differentiability

4.1. The Bouleau-Hirsch criterion. Let Ω be a separable Banach space, let P be the law of a
zero-mean Gaussian field with full support on Ω and let H be the associated Cameron-Martin space.
We also let F be the Borel σ-field associated with Ω, completed with P-null sets.

Definition 4.1. A random variable X on (Ω,F ,P) is said to be locally H-differentiable if there exists
an almost surely positive r.v. q such that h 7→ X(ω + h) is Fréchet differentiable on {h ∈ H : ‖h‖H <
q(ω)}. For all ω such that q(ω) > 0, we call DX(ω) the differential at h = 0 of the above map.
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In our context, Ω is taken to be the Hölder space Cα((0, T )× Td) with α < −5/2 and P is the law
of the noise ξ.

We then have the following result, essentially due to Bouleau and Hirsch: we refer to [CFG17,
Section 2] for details and references.

Theorem 4.2. Let X be an Rn-valued random variable on (Ω,F ,P). Assume that X is locally H-
differentiable and that P almost surely, DX : H → Rn is onto. Then X admits a density w.r.t.
Lebesgue measure on Rn.

4.2. Fixed points.

4.2.1. Solution theory for (Φ4
3). Let us first recall the theory for the fixed point equation for U

(4.1) U = P
(
−U3 + 1{t>0}Ξ

)
+Gu0

Here u0 ∈ Cη(T3) is the initial condition, and Gu0 is the lift into the polynomial regularity structure
of the convolution with the heat kernel of the initial condition:

Gu0(t, x) :=
∑

k∈Nd+1:|k|<γ′

Xk

k!
〈u0, ∂

kP (t, x− ·)〉 ,

see [Hai14, Lemma 7.5].
By [Hai14, Proposition 9.8], for any model (Π,Γ) ∈M, any u0 ∈ Cη(T3) with η ∈ (−2/3,−1/2−κ)

and any γ > 1, there exists a time Texpl > 0 such that (4.1) admits a solution U ∈ Dγ,η,T∞ for each
T < Texpl, and if Texpl < +∞ one has

lim
t→Texpl

‖(RU)(t, ·)‖Cη(T3) = +∞.

In addition, the map (Π,Γ) 7→ U is continuous in the sense that if Πε → Π in M, then

lim inf
ε

Texpl(Π
ε) ≥ Texpl(Π)

and for each T < Texpl(Π),
lim
ε
|||Uε;U |||Dγ,η,T∞

= 0,

where Uε = U(Πε), U = U(Π).

Furthermore, if Π̂ε is the model obtained from ξ by renormalization and regularization as described
in Section 3.1.2, then one can show that uε := RU(Π̂ε) is the solution to

(∂t −∆)uε = Cεuε − u3
ε + ξε, uε(0, ·) = u0,

with Cε = 3Cε1 − 9Cε2 .
For a fixed sequence (εk)k≥0 converging to 0, we let

Ω0 :=
{
ξ,∃Π, s.t. Π̂εk(ξ)→ Π in M

}
and note that by Theorem 3.1, at least for a certain choice of (εk), one has P(Ω0) = 1.

We further let
Ω0,T = Ω0 ∩ {T < Texpl(Π(ξ))}

and we will assume throughout that
P(Ω0,T ) = 1.

We further let
Ω1,T :=

{
ξ,∃u, s.t. uεk → u in C([0, T ], Cη(T3))

}
and note that Ω0,T ⊂ Ω1,T . Throughout the rest of the paper, by u we will mean the random variable
defined on Ω1,T as the limit of the uε’s and arbitrarily (say 0) on Ωc1,T .
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4.2.2. Shifted equations. From now on, we let U0 ∈ Dγ0,η0,T∞ denote the solution of (4.1) associated to
a model (Π,Γ) and an initial condition u0 ∈ Cη0(T3) with

γ0 > 1 , −1/2− κ > η0 > −2/3 .

Notice that the homogeneity of the lowest level on which U0 takes values is −1/2− κ.
Our first goal is to extend the solution theory to the shifted equation and then to the tangent

equation. We start with the former; we aim at solving the following equation:

(4.2) Yh = −P(3U2
0Yh + 3U0Y

2
h + Y 3

h ) + P(h) .

Notice that Uh = U0 + Yh is then the solution of (4.1) where Ξ is replaced by Ξ + h.

Proposition 4.3. Take γ ∈ ( 7
4 +2κ, 2−2κ). Then, for any admissible model Π such that Texpl(Π) > T

there exists q = q(Π) > 0 such that for all h in the ball of radius q in L2(0, T ), there exists a unique

solution Yh ∈ Dγ,γ,T2 to (4.2). Furthermore, the map (Π, h) 7→ Yh is locally Lipschitz.

Although the statement of this proposition is classical in the framework of the theory of regularity
structures, the proof presents a specific difficulty. Indeed, we are working with spaces of modelled
distributions of Lp-type in space and time so that to evaluate the solution at some given time t,
one needs to embed it into a space of modelled distributions of L∞-type in time: this decreases
tremendously the regularity of the corresponding function of space, and unfortunately, prevents us
from iterating a fixed point argument. To circumvent this difficulty, we build the iterations in a
different manner: after having obtained a fixed point on (0, T∗) for some T∗ > 0, we iterate the fixed
point argument on the interval (T∗/2, 3T∗/2) but with a slightly different map which takes into account
the fixed point already obtained on (0, T∗). The key point is that everything depends continuously
on the L2-norm of the shift h, so that reducing the latter one can always obtain contractivity.

Proof. For S ≤ T , consider the map

MS : Y 7→ −P(3U2
0Y + 3U0Y

2 + Y 3) + P(h) .

Let Y,RY be the smallest sets of symbols such that Xk ∈ Y for all k ∈ N4 and, for all τ1, τ2, τ3 ∈ U
and all ρ1, ρ2, ρ3 ∈ Y, we have

τ1τ2ρ1 ∈ RY , τ1ρ1ρ2 ∈ RY , ρ1ρ2ρ3 ∈ RY ,

and for all ρ ∈ RY we have I(ρ) ∈ Y. It is simple to check that Y then contains only symbols with
non-negative homogeneities.The proof is now split into five steps.

Step 1. Let us show that MS goes from Dγ,γ,S2 into Dγ+ε,γ+ε,S
2 for some ε > 0. To that end,

we look at every single term appearing in MS(Y ) and show that it belongs to some Dγ
′,η′,S

2 with

γ′ > γ and η′ > γ. Since Dγ
′,η′,S

2 can be continuously embedded into Dγ
′′,η′′,S

2 if γ′′ ≤ γ′, η′′ ≤ η′ and
γ′′ /∈ A, this is enough to obtain the desired property.

Applying successively the Embedding Theorem (Th. 3.7), the Multiplication Theorem (Th. 3.8)
and the Convolution Theorems (Th. 3.9 and 3.12), we obtain the following: (for the sake of readability,
we drop the superscript S)

Y ∈ Dγ,γ2 ⇒ Y ∈ Dγ−
5
3−κ,γ−

5
3−κ

6 ⇒ Y 3 ∈ Dγ−
5
3−κ,3γ−5−3κ

2 ⇒ P(Y 3) ∈ Dγ+ 1
3−κ,3γ−3−4κ

2 ,

as well as

Y ∈ Dγ,γ2 ⇒ Y ∈ Dγ−
5
4−κ,γ−

5
4−κ

4 ⇒ Y 2 ∈ Dγ−
5
4−κ,2γ−

5
2−2κ

2

⇒ Y 2U0 ∈ D
γ− 7

4−2κ,2γ− 5
2−2κ+η0

2 ⇒ P(Y 2U0) ∈ Dγ+ 1
4−2κ,2γ− 1

2−3κ+η0
2 ,
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and

Y ∈ Dγ,γ2 ⇒ Y U2
0 ∈ D

γ−1−2κ,γ+2η0
2 ⇒ P(Y U2

0 ) ∈ Dγ+1−2κ,γ+2η0+2−κ
2 .

Finally, P(h) ∈ D2−κ,2−κ
2 by Lemma 3.13.

This shows that MS goes from Dγ,γ,S2 into Dγ+ε,γ+ε,S
2 for some ε > 0. Notice that the embedding

from Dγ+ε,γ+ε,S
2 into Dγ,γ,S2 has a norm of order Sε: we will use this fact below to get a fixed point.

Step 2. In the forthcoming equations, ||| · ||| will refer to the Dγ,γ,S2 -norm. By the analytical results
of Subsection 3.2, there exists C > 0 such that

|||MS(Y )||| ≤ CSε
(
|||Y |||+ |||Y |||2 + |||Y |||3 + ‖h‖L2((0,S)×T3)

)
,

and

|||MS(Y )−MS(Y ′)||| ≤ CSε|||Y − Y ′|||
(
1 + |||Y − Y ′|||+ |||Y − Y ′|||2

)
,

uniformly over all S ≤ T and all Y, Y ′ ∈ Dγ,γ,S2 . Consequently, for any R > 0, one can choose T∗ and
q small enough so thatMT∗ maps the centered ball of radius R into the centered ball of radius R/2 in

Dγ,γ,T∗2 and is 1/2-Lipschitz there, uniformly over all ‖h‖L2(0,T ) ≤ q. Fix R > 0 and let Y ∗ = Y ∗(h)
be the corresponding fixed point for any h such that ‖h‖L2 ≤ q. A simple computation shows that

|||Y ∗(h)||| ≤ C ′T ∗ε‖h‖L2 .

Step 3. We “extend” Y ∗ into an element Y ext of Dγ,γ,3T∗/22 that satisfies:

Y ext(t, ·) = Y∗(t, ·) , ∀t ∈ (0, 2T∗/3) ,

and

Y ext(t, ·) = 0 , ∀t ∈ (3T∗/4, 3T∗/2) .

To do so, we consider a smooth function of t which equals 1 on (0, 2T∗/3) and 0 after 3T∗/4, and we

lift it into the polynomial regularity structure up to level bγ + 2c. The Dγ+2,0,3T∗/2
∞ -norm of such a

function is of order T−γ−2
∗ and we can apply Theorem 3.8 to take the product of this function with

Y ∗. Notice that |||Y ext||| . T−γ−2
∗ |||Y ∗(h)|||.

Step 4. Let us now iterate this fixed point procedure. We introduce the space D̃γ,γ,T∗2 of maps on

(T∗/2, 3T∗/2) × T3 which vanish on (T∗/2, 2T∗/3) × T3 and satisfy the bounds of the Dγ,γ,T∗2 -norm
but shifted by T∗/2 in time: in particular the weights are given by powers of t − T∗/2 instead of t.

We then consider the following map defined on D̃γ,γ,T∗2,0 :

M̃T∗ : Y 7→ − P(3U2
0Y + 3U0Y

2 + Y 3)− P(6U0Y
extY + 3Y ext2Y + 3Y extY 2) + P(h1t≥2T∗/3)

− P(3U2
0Y

ext + 3U0Y
ext2 + Y ext3)− Y ext + P(h1t<2T∗/3) .

Notice that the second line vanishes on (T∗/2, 2T∗/3] since Y ext coincides with the fixed point Y ∗ of

MT∗ on this interval. The map M̃T∗ then takes values in D̃γ,γ,T∗2 .

Up to diminishing the value of q, one can check that for any arbitrary δ > 0, M̃T∗ maps the centred

ball of radius R in D̃γ,γ,T∗2 into the centered ball of radius R/2+δ in D̃γ,γ,T∗2 and is (1/2+δ)−Lipschitz

there. Indeed, compared toMT∗ , the norms of the additional terms appearing in M̃T∗ all depend on
the L2-norm of h so that their contributions can be made as small as desired by simply diminishing
the latter.
This yields a fixed point Y ∗∗. Since it vanishes on (T∗/2, 2T∗/3], it can be extended into an element

of Dγ,γ,3T∗/22 by simply setting its value to 0 before time T∗/2, and one can check that Yext + Y∗∗ is
a fixed point of the map M3T∗/2. Iterating this procedure k times, one obtains a fixed point on the
interval [0, (k + 1)T∗/2] so that we can get as close as desired to time T .
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Step 5. The lower-semicontinuity of the maximal time (Π,Γ) 7→ T ensures that we can find a
neighbourhood of (Π,Γ) where the maximal time is uniformly larger than T . The local Lipschitz
continuity of the solution map (Π,Γ, h) 7→ Yh is then a consequence of the bounds obtained in
Theorems 3.6, 3.7, 3.8 and 3.9 applied to the fixed points associated with the model (Π,Γ) and some
close-by model (Π̄, Γ̄). �

In the sequel, we let Uh = U0 + Yh. As these two terms do not live in the space, we will need to
treat them separately in the next analytical bounds.

We then have the following consistency result:

Proposition 4.4. For all ξ ∈ Ω0,T , for all h ∈ H s.t. ‖h‖ < q(ξ) where q is given by Proposition
4.3 for the model Π(ξ), one has ξ + h ∈ Ω1,T and

u(ξ + h) = RUh(Π(ξ))).

Proof. By applying the same arguments identifying the equation satisfied by uε (cf. [Hai14, Proposi-

tion 9.10]), one can show that uεh := RUh(Π̂ε) satisfies the equation

(∂ −∆)uεh = −(uεh)3 + (3Cε1 − 9Cε2)uεh + ξε + h, uεh(0, ·) = u0.

Comparing with the equation satisfied by uε, we obtain that

uε(ξ + h) = uεhε

where hε = h ∗ ρε. Taking the limit and using continuity of (Π, h) 7→ Uh, we obtain the result. �

We then consider the tangent equation

(4.3) V := P(−3U2
h0
V ) + Ph .

Proposition 4.5. Take γ ∈ ( 7
4 +2κ, 2−2κ). Then, for any admissible model Π such that Texpl(Π) ≥ T

for all h0 in the ball of radius q in L2(0, T ) and for all h ∈ L2(0, T ), there exists a unique solution

Vh0,h ∈ D
γ,γ,T
2 to (4.3). Furthermore, the map (Π, h0, h) 7→ Vh0,h is locally Lipschitz.

Proof. The arguments are essentially the same as those presented in the proof of Proposition 4.3. The
main difference is that (4.3) is linear in V so that the solution is itself linear in h: therefore, there is
no constraint on the L2-norm of h for existence of solutions. �

We also identify the equation satisfied by Vh0,h in the case of a regularized model :

Proposition 4.6. vh0,h,ε := RVh0,h(Π̂ε) satisfies

(4.4) (∂t −∆)vh0,h,ε = −3(uh0,ε)2vh0,h,ε + (3Cε1 − 9Cε2)vh0,h,ε + h, vh0,h,ε(0, ·) = 0.

Proof. We fix h0 and h, and for ease of notation we let U = Uεh0
, V = V εh0,h

and u, v their respective
reconstructions. Recall that from the definition of U one gets that

U = + u11− + (> 1−),

where by (> 1−) we mean a sum of symbols of degree 1− or higher. In particular

u = (P ∗ ξε) + u1

and also

U2 = + 2u1 − 2 + u2
11 + (> 0).

From (4.3) we get

V = v1− 3v +

3∑
i=1

viXi + (> 3/2−),
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and

−3U2V = −3v − 6u1v + 6v − 3u2
1v1 + 9v − 3

3∑
i=1

viXi + (> 0).

Since R(−3U2V )(z) = Π̂ε
z(−3U2V )(z), using (3.4) we obtain

R(−3U2V ) = −3v
(
(P ∗ ξε)2 − Cε1

)
− 6u1v(P ∗ ξε)− 3u2

1v − 9vCε2 = −3u2v + 3Cε1v − 9Cε2v

and since (∂t−∆)(RPf) = Rf for any modelled distribution f , it follows that RV satisfies (4.4). �

4.3. Malliavin differentiability of the solutions. Let ϕi, i = 1, . . . , n be functions in the Besov

space B1/2+
1 and assume that they are compactly supported in (0, T ).

Remark 4.7. The regularity of the test functions has to be larger than 1/2 by a quantity related to κ:
we prefer not to write precisely the relationship with κ to avoid dealing with many different constants
times κ in the arguments.

We claim that for all ξ ∈ Ω0,T , for all h lying in the ball of radius q(ξ), the random variable
〈u(ξ + h), ϕi〉 makes sense. Indeed, recall that we have u(ξ + h) = RU0 + R(Yh). The first term

lies in the space B−1/2−,T
∞ (at least far from t = 0+) so that it can be tested against ϕi (which

vanishes near t = 0+). On the other hand, Yh ∈ D2−,2−,T
2 ⊂ D0+,0+,T

10− so that R(Yh) ∈ B0+,T
10− while

ϕi ∈ B1/2+
1 ⊂ B0+

10
9 +

so that 〈R(Yh), ϕi〉 makes sense.

Proposition 4.8. The random variable ξ 7→ (〈u(ξ), ϕ1〉, . . . , 〈u(ξ), ϕn〉) ∈ Rn is locally H-differentiable
in the sense of Definition 4.1.

Proof. Fix ξ ∈ Ω0,T . For any h0 whose L2(0, T ) norm is smaller than the parameter q(ξ) of Proposition
4.3, we introduce the map

F : L2(0, T )×Dγ,γ,T2 −→ Dγ,γ,T2

(h, Y ) 7−→ Y + P
(
(Y + Uh0)3 − U3

h0

)
− P(h) .

It can be checked that F is Fréchet differentiable and that its partial derivatives satisfy:

∂1F (h, Y )(g) = −Pg ,
∂2F (h, Y )(Z) = Z + 3P((Y + Uh0)2Z) .

Notice that the differential depends continuously on h, Y . Let us prove that Z 7→ ∂2F (h, Y )(Z) is a
bounded, linear isomorphism.
The linearity is immediate and the boundedness is a consequence of the analytic results on products
and convolution, see Theorems 3.8, 3.9 and 3.12. To prove that Z 7→ ∂2F (h, Y )(Z) is a bijection, we

proceed as follows. Let X ∈ Dγ,γ,T2 be given and consider the fixed point equation:

(4.5) Z = −3P((Y + Uh0)2Z) + λX .

If we prove that this equation admits a unique solution for all λ > 0 small enough, then the linearity
in Z of the equation ensures that uniqueness holds for all λ > 0 and, in turn, we deduce that
Z 7→ ∂2F (h, Y )(Z) is a bijection (surjectivity follows from the existence of solutions, injectivity
follows from the uniquess of the solution for X = 0). The proof of the claim then follows from exactly
the same arguments as in the proof of Proposition 4.3: the tuning parameter in that proof was the
L2-norm of h while, in the present case, one decreases the parameter λ in order to get contractivity
of the solution map.
We know that F (0, 0) = 0 so that we can apply the Implicit Function Theorem that ensures the
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existence of a ball B(0, ε) in L2(0, T ) and of a differentiable function θ : B(0, ε) 7→ Dγ,γ,T2 such that
F (h, θ(h)) = 0 for all h ∈ B(0, ε). Furthermore,

(4.6) Dθ(h) = −
(
∂2F (h, θ(h))

)−1(
∂1F (h, θ(h))

)
.

Comparing the identities F (h, θ(h)) = 0 and (4.2), we deduce from the uniqueness part of Proposition
4.3 that θ(h) = Yh0+h − Yh0

for all h ∈ B(0, ε). Similarly, comparing the identities (4.6) and (4.3),
we deduce from the uniqueness part of Proposition 4.5 that Dθ(0)(h) = Vh0,h for all h ∈ L2(0, T ).
Putting everything together, we get

|||Yh0,h − Vh0,h||| = |||θ(h)− θ(0)−Dθ(0)(h)||| = o(‖h‖)

uniformly over all h whose L2(0, T )-norm is smaller than ε.
Recall that u(ξ + h0 + h) = RU0 +RYh and that v(ξ)h0,h = RVh0,h. Consequently,

u(ξ + h0 + h)− u(ξ + h0)− v(ξ)h0,h = R(Yh0+h − Yh0
− Vh0,h) .

Composing with the continuous map

f 7→ (〈f, ϕ1〉, . . . , 〈f, ϕn〉) ,

this yields the asserted differentiability at any point ξ+ h0 such that ξ ∈ Ω0,T and the L2(0, T )-norm
of h0 is smaller than q(ξ). The differential at ξ + h0 is equal to

h 7→
(
〈v(ξ)h0,h, ϕ1〉, . . . , 〈v(ξ)h0,h, ϕn〉

)
.

By Proposition 4.5 this map is continuous in h0 (within the ball of radius q(ξ)), we deduce the asserted
Fréchet differentiability, thus concluding the proof. �

5. Existence of densities

We want to study the density of X = (〈u, φ1〉, . . . , 〈u, φn〉) with φ1, . . . , φn linearly independent

elements of B1/2+
1 with support in (0, T )× T3.

Recall that by the results of the previous section, the Malliavin derivative of X is given by

DX : h 7→
(
〈vh, φ1〉, . . . , 〈vh, φn〉

)
where vh = RV h with V h = V0,h defined as above.

The a.s. surjectivity of DX is then equivalent to proving that a.s. one has

〈vh,
∑
i

λiφi〉 = 0 ∀h ∈ H =⇒ λ1 = · · · = λn = 0.

5.1. The dual equation. Fix T > 0. We need to introduce spaces of modelled distributions which
are amenable to solving SPDEs going backward in time from time T .
For γ > 0, η ≤ γ, p ∈ [1,∞] and T ′ ≤ T , we introduce the space D̃γ,η,T ′p as the set of all modelled

distributions f : (T ′, T ) × Td → T<γ that satisfy the bounds (3.6) with (0, T ) and (3|h|2, T − |h|2)

replaced by (T ′, T ) and (T ′ − |h|2, T − 3|h|2), and with the weights t(η−ζ)/2 and t(η−γ)/2 replaced
by (T − t)(η−ζ)/2 and (T − t)(η−γ)/2. The calculus presented in Subsection 3.2 finds naturally its

counterpart backward in time: we denote by R̃ and P̃ the associated operators acting on the spaces
D̃.

For δ > 1/2, let ϕ ∈ Bδ1(R×T3) be a function whose support lies in (0, T )×T3. One can naturally
lift this function into the polynomial regularity structure by setting

Φ(z) :=
∑

k∈Nd+1:|k|<δ

Xk

k!
∂kϕ(z) .
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This defines an element of D̃δ,δ,T1 : notice that we can take the parameter η in this space to be equal
to δ since our function ϕ vanishes before time T . Applying Theorems 3.9 and 3.12, we deduce that

P̃Φ ∈ Dδ+2,δ+2−κ,T
1 .

We want to study the backward equation which is dual to that of V h, given by

(5.1) W = P̃(−3U2
0W ) + P̃Φ .

Proposition 5.1. Let Π be an admissible model such that Texpl(Π) ≥ T and set γ̃ = η̃ = 2 + δ − κ.

For every T ′ ∈ (0, T ), there exists a unique solution W ∈ D̃γ̃,η̃,T
′

1 to (5.1). Furthermore, the map
Π 7→W is locally Lipschitz. Finally, we have the following estimate:

|||W |||D̃γ̃,η̃,T ′1

. (T ′)η0−γ0 ,

uniformly over all T ′ ∈ (0, T ).

Proof. Observe that the restriction of U0 to (T ′, T ) belongs to D̃γ0,η0,T ′∞ and that its norm satisfies:

|||U0|||D̃γ0,η0,T ′∞
. (T ′)

η0−γ0
2 |||U0|||Dγ0,η0,T∞

,

uniformly over all T ′ ∈ (0, T ).
Applying the analytical results of Subsection 3.2, we deduce the following:

W ∈ D̃2+δ−κ,2+δ−κ,T ′
1 ⇒WU2

0 ∈ D̃
2+δ−1−3κ,2+δ−κ+2η0,T

′

1 ⇒ P̃(WU2
0 ) ∈ D̃2+δ+1−3κ,4+δ−2κ+2η0,T

′

1 ,

so that the map MT ′ : W 7→ P̃(−3U2
0W ) + P̃Φ goes from D̃γ̃,η̃,T

′

1 into D̃γ̃+ε,η̃+ε,T ′

1 for some ε > 0.
At this point, we introduce a parameter λ > 0 and consider the modified map MT ′ : W 7→
P̃(−3U2

0W ) + λP̃Φ. Following the same steps as in the proof of Proposition 4.3, we obtain a fixed
point to this map: the only difference is that instead of decreasing the norm of h in order to get
contractivity, here we decrease the value of λ. Hence we obtain a unique solution with Φ replaced
by λΦ in the definition of MT ′ for some λ > 0 potentially very small. Since the equation is actually
linear in W , we easily recover the solution for Φ. �

Since W takes values in non-negative levels only, R̃W is a function on (T ′, T ) × T3 with T ′ > 0
arbitrarily small: it therefore defines a function on (0, T )× T3 and we have the following result.

Proposition 5.2. Let vh = RVh, wφ = RW , then it holds that

(5.2) ∀(h, φ) ∈ L2 × B
1
2 +
1 , 〈vh, φ〉 = 〈h, 1(0,T )w

φ〉.

In particular, wφ is in L2((0, T )× T3).

Proof. By continuity of everything w.r.t the model, it is enough to prove this identity for the approx-
imating smooth renormalized models. Recall that by Proposition 4.6 we know that in that case the
equation satisfied by vh is given by

(∂t −∆)vhε = (−3u2
ε + Cε)v

h
ε + h, vh(0, ·) = 0

with Cε = 3Cε1 − 9Cε2 . To identify the equation satisfied by wφ, we proceed as in the proof of
Proposition 4.6 and obtain that

W = wφ1− 3wφ +
∑
i

wiXi + (> 3/2−)

and

−3U2W = −3w − 6u1w + 6w − 3u2
1w1 + 9w − 3

3∑
i=1

viXi + (> 0).

As in the proof of Proposition 4.6 this yields that w satisfies

(−∂t −∆)wφ = (−3u2
ε + C̃ε)w

φ + φ, wφ(T, ·) = 0.
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where C̃ε = 3Cε1 − 9Cε3 = Cε (recalling (3.5)), and from there a standard integration by parts leads
to (5.2). �

5.2. Existence of densities. We will now prove the main result of this paper, Theorem 1.1. The
proof relies on the following crucial result.

Proposition 5.3. Let φ ∈ B1/2+
1 supported in (0, T )×T3, W the solution to the fixed point equation

(5.1) and w = RW . If w = 0 a.e. on [0, T ]× T3, then one has φ = 0.

Proof. Assume that W = 0, then by (5.1) we obtain P̃ ∗ φ = 0, hence φ = 0. We therefore only need
to prove that W = 0 as soon as w = RW = 〈W,1〉 = 0, which we now assume.

Let
δ = inf{|τ |, τ ∈ W |〈W, τ〉| is not a.e. 0}

and assume δ < γ. Each symbol in W which is not a polynomial is of the form τ = Ĩ(ρ1ρ2τ
′), with

ρ1, ρ2 ∈ U and τ ′ ∈ W, so that

|τ | = 2 + |ρ1|+ |ρ2|+ |τ ′| ≥ 1 + 2β − 2κ+ |τ ′| > |τ ′|,
and in addition by the fixed point equation one has

〈W, τ〉 = −3〈U, ρ1〉〈U, ρ2〉〈W, τ ′〉
so that if 〈W, τ ′〉 = 0 a.e. the same holds for 〈W, τ〉. Hence it follows that δ is an integer. But then by

letting W ′ = Q<γ′W where sup(0, γ′)∩A = δ, W ′ is an element of Dγ
′

1 taking value in the polynomial
regularity structure, so that by [HL17, Prop.3.4] RW ′ = 0⇒W ′ = 0, a contradiction. �

Recall that in order to prove Theorem 1.1, by the Bouleau-Hirsch criterion, it suffices to check that
a.s., for all (λ1, . . . , λn),(

∀h ∈ H,

〈
vh,
∑
i

λiφi

〉
= 0

)
⇒ λ1 = . . . = λn = 0.

By Proposition 5.2 (and linearity of φ 7→ wφ), this is equivalent to proving that a.s.

(5.3) ∀φ ∈ span(φ1, . . . , φn),
(
∀h ∈ H,

〈
h,wφ1[0,T ]

〉
= 0
)
⇒ φ = 0.

We will in fact prove the stronger fact that a.s., the above implication holds for all φ ∈ B1/2+
1 with

support in (0, T )× T3.

Proof of Theorem 1.1 under Assumption 2. This is immediate combining the fact that under Assump-
tion 2, (

∀h ∈ H,
〈
h,wφ1[0,T ]

〉
= 0
)
⇒ wφ1[0,T ] = 0

and Proposition 5.3. �

The proof under Assumption 3 is more involved and we prepare it with a preliminary result.

Lemma 5.4. Let ϕ be a smooth, compactly supported function with vanishing moments up to order
one, then one has for all z

(5.4) E
[〈

Πz , ϕz

〉2
]

= 2‖L(ϕ)‖2L2

where

L(ϕ)(z1, z2) =

∫
dz(P+ ∗ ϕ)(z)(P+ ∗R)(z − z1)(P+ ∗R)(z − z2).

The Fourier transform of L(ϕ) is equal to

L̂(ϕ)(ξ1, ξ2) = (P̂+ϕ̂)(ξ1 + ξ2)(P̂+R̂)(−ξ1)(P̂+R̂)(−ξ2).
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Proof. By stationarity of the model, it suffices to take z = 0. For the first assertion, note that since
ϕ has vanishing moments, one has〈

Π , ϕ
〉

= 〈P+(−·) ∗Π( ), ϕ〉 = 〈Π( ), P+ ∗ ϕ〉 .

One then checks via standard Gaussian computations and the definition of Π that for any test function
ψ one has

E
[
〈Π( ), ψ〉2

]
= 2

∫
dz1dz2ψ(z1)ψ(z2) 〈P+ ∗R(z1 − ·), P+ ∗R(z2 − ·)〉2

and the result follows.
For the second assertion, we write

L̂(ϕ)(ξ1, ξ2) =

∫
dz2dz1dz e−i〈ξ1,z1〉e−i〈ξ2,z2〉(P+ ∗ ϕ)(z)(P+ ∗R)(z − z1)(P+ ∗R)(z − z2)

=

∫
dz1dz e−i〈ξ1,z1〉(P+ ∗ ϕ)(z)(P+ ∗R)(z − z1)e−i〈ξ2,z〉(P̂+R̂)(−ξ2)

=

∫
dz e−i〈ξ1+ξ2,z〉(P+ ∗ ϕ)(z)(P̂+R̂)(−ξ1)(P̂+R̂)(−ξ2)

= (P̂+ϕ̂)(ξ1 + ξ2)(P̂+R̂)(−ξ1)(P̂+R̂)(−ξ2).

�

Proof of Theorem 1.1 under Assumption 3. Recall that it suffices to prove that P-a.s., for all φ ∈
B1/2+

1 supported in (0, T )× T3, if W is the solution to

W = −P̃(3U2W ) + P̃(Φ)

and w := RW is in H⊥, then w = 0 (which implies W = 0 and Φ = 0 by Proposition 5.3).
By Assumption 3 and Lemma 2.2, there exists a sequence nk →∞ s.t.,

(5.5) lim
k→∞

22nk(3β−|s|)
∫
Bnk

m̂(dξ1)m̂(dξ2)
∣∣∣R̂(ξ1 + ξ2)R̂(ξ1)R̂(ξ2)

∣∣∣2 > 0.

Now letting λk = 2−nk , we fix ϕkz = R ∗ηλkz where η is compactly supported, with vanishing moments
up to order r′ ∈ N with r′ > r + 4 + β and such that

inf
A0

|η̂| > 0.

Then by Lemma 5.4, one has

E
[〈

Πz , ϕkz

〉2
]

= 2‖L(ϕk)‖2L2 = 2‖L̂(ϕk)‖2L2

≥ 2

∫
Bnk

m̂(dξ1)m̂(dξ2)
∣∣∣(P̂+R̂)(ξ1 + ξ2)(P̂+R̂)(−ξ1)(P̂+R̂)(−ξ2)η̂(λk(ξ1 + ξ2))

∣∣∣2
& 2−12nk

∫
Bnk

m̂(dξ1)m̂(dξ2)
∣∣∣R̂(ξ1 + ξ2)R̂(ξ1)R̂(ξ2)

∣∣∣2
& 22nk(−1−3β)

(
22nk(3β−|s|)

∫
Bnk

m̂(dξ1)m̂(dξ2)
∣∣∣R̂(ξ1 + ξ2)R̂(ξ1)R̂(ξ2)

∣∣∣2)
& 22nk(−1−3β).

where we have used in the second inequality that
∣∣P̂+(ξ)

∣∣ & |ξ|−2 and (5.5) in the last inequality.
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We now fix γ and γ′ such that

(5.6) 1 + 2β < γ′ < γ <
3

2
+ β − κ

(This is possible for κ small enough since β < 1
2 .)

Now since
〈

Πz , ϕkz

〉
is an element of a Gaussian chaos of order 2, by the Carbery-Wright inequality

[CW01, Theorem 8] there exists C > 0 such that for each A > 0,

P
(

2nk(γ′+β)
∣∣∣〈Πz , ϕkz

〉∣∣∣ ≤ A) ≤ CA1/22−
nk
2 (γ′+β)

E
[〈

Πz , ϕkz

〉2
]1/4

. A1/22−
nk
2 (γ′−1−2β).

It follows by the Borel-Cantelli Lemma that for any z,

P
(

lim
k→∞

∣∣∣〈Πz , ϕkz

〉∣∣∣ 2nk(γ′+β) = +∞
)

= 1

and by Fubini’s Theorem that almost surely

(5.7)

{
z ∈ (0, T )× T3 : lim

k→∞

∣∣∣〈Πz , ϕkz

〉∣∣∣ 2nk(γ′+β) = +∞
}

has full measure.

Note that ϕkz = (Rλ
−1
k ∗η)λkz and we will use the following inequality (the proof of which is deferred

to Lemma 5.5 below) :

(5.8)
∣∣∣(Rλ−1

k ∗ η)(z)
∣∣∣ . λβk(|z|+ 1)−|s|−r

′+β .

We now need to localize W to obtain an element of an unweighted space. Let θε = θε(t) be a
smooth function equal to 0 on (−∞, 0) and to 1 on [ε,+∞), and such that ‖θε‖Cγ . ε−γ . We can
then lift it to a modelled distribution Θε and consider the product W ·Θε. It is simple to check that
W ·Θε belongs to the unweighted space Dγ1 = Dγ1,∞ from Definition 3.2 and that we have the bound:

‖W ·Θε‖Dγ1 . ε
−δ uniformly over all ε > 0, where δ = γ + γ0 − η0.

Now for each z ∈ (0, T )× Td one has using (1.6) that〈
w1(0,T ), ϕ

k
z

〉
L2(R4)

=
〈
w1(0,T ),

(
ϕkz
)per〉

L2(R×T3)
= 0

since
(
ϕkz
)per

=
(
R ∗ ηλkz

)per
= R ∗

(
ηλkz
)per

is in H, so that

0 =
〈
w, 1(0,T )ϕ

k
z

〉
=

〈
w,
(
1(0,T ) − θεk

)
ϕkz
〉

+
〈
R(WΘεk)−Πz(WΘεk)(z), ϕkz

〉
+
〈
Πz(WΘεk)(z), ϕkz

〉
=: Ak1(z) +Ak2(z) +Ak3(z)

where we will take εk = | log(λk)|−1. Hence we have

(5.9) 0 = lim inf
k→∞

∫
(0,T )×T3

dz1{t≥2εk}λ
−γ′−β
k

∣∣Ak1(z) +Ak2(z) +Ak3(z)
∣∣

We will bound the first two terms from above and the third from below to obtain that w = 0 a.e..
First note that letting z = (t, x), by (5.8) one has that

|ϕkz | . λ
−|s|+β
k

(
1 +

(t− εk)
1/2
+

λk

)−|s|−r′+β
on the support of 1(0,T ) − θε,

so that for t ≥ 2εk we have by the Cauchy-Schwarz inequality∣∣Ak1(z)
∣∣ ≤ ‖w‖L2

∥∥(1(0,T ) − θεk
)
ϕkz
∥∥
L2 . λr

′

k ε
−|s|−r′+β+1

2

k
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and we obtain

(5.10) lim sup
k→∞

∫
(0,T )×T3

dz1{t≥2εk}λ
−γ′−β
k

∣∣Ak1(z)
∣∣ . lim sup

k→∞
λ−γ

′−β+r′

k ε
−|s|−r′+β+1

2

k = 0.

For the second term, we use Lemma 5.6 below (with p = 1). Indeed, by Lemma 5.5 the function

Rλ
−1
k ∗ η belongs to N r,r′−r−β

λk
and since r′ − r − β > 4 > γ − |Ξ|, Lemma 5.6 yields

For the second term, we observe that the function Rλ
−1
k ∗η is supported in a centered ball of radius

of order λ−1
k and satisfies by Lemma 5.5

‖Rλ
−1
k ∗ η‖Cr(B(z,1)) . λ

β
k (1 + |z|)−(|s|+c)

with c = r′ − r − β. Since r′ − r − β > 4 > γ − |Ξ|, Lemma 5.6 yields

(5.11)

lim sup
k→∞

∫
(0,T )×T3

dz1{t≥2εk}λ
−γ′−β
k

∣∣Ak2(z)
∣∣ . lim sup

k→∞
‖W ·Θε‖Dγ1 λ

γ−γ′
k . lim sup

k→∞
ε−δk λγ−γ

′

k = 0.

For the third term, the expansion of W up to order γ gives

W (z) = w(z)1− 3w(z) +

3∑
i=1

wi(z)Xi

(the next term in the expansion would be a factor of which is of homogeneity 3
2 + β−κ > γ). Since

ϕkz has vanishing moments, it holds that〈
Πz(WΘεk)(z), ϕkz

〉
= −3w(z)θε(z)

〈
Πz , ϕkz

〉
and by Fatou’s Lemma and (5.7)

lim inf
k→∞

∫
dz1{t≥2εk}λ

−γ′−β
k

∣∣Ak3(z)
∣∣ ≥ 3

∫
dz|w(z)|

(
lim inf
k→∞

λ−γ
′−β

k

∣∣∣〈Πz , ϕkz

〉∣∣∣)
=

∫
dz|w(z)| · ∞ .

Combining this inequality with (5.9), (5.10) and (5.11), we see that necessarily w = 0 a.e., which
finishes the proof. �

Lemma 5.5. Let R satisfy Assumption 1, and η be a compactly supported, smooth function, with
vanishing moments up to order ρ > β − |s|. Then it holds that for λ ∈ (0, 1], z ∈ R4,∣∣(Rλ−1

∗ η)(z)
∣∣ . λβ(1 + |z|)−|s|−ρ+β .

Proof. We first prove that

‖Rλ
−1

∗ η‖L∞ . λβ ,
distinguishing between the cases β = 0 and β > 0. When β = 0, we note that for any L2 function g,
one has (using Proposition 2.1)∥∥∥Rλ−1

∗ g
∥∥∥
L2

= λ|s|/2
∥∥R ∗ gλ∥∥

L2 . λ
|s|/2 ∥∥gλ∥∥

L2 = ‖g‖L2 ,

so that by Gagliardo-Nirenberg inequality

‖Rλ
−1

∗ η‖L∞ . ‖Rλ
−1

∗ η‖1/2L2 ‖Rλ
−1

∗D4η‖1/2L2 . ‖η‖1/2L2 ‖D4η‖1/2L2 . 1.

In the case β > 0, we fix n0 s.t. 2−n0 ∼ λ and we write(
Rλ
−1

∗ η
)

(z) =
∑

0≤n≤n0

(
Rλ
−1

n ∗ η
)

(z) +
∑
n>n0

(
Rλ
−1

n ∗ η
)

(z).
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The second sum is easily found to be of order λβ , using that(
Rλ
−1

n ∗ η
)

(z) .
∥∥∥Rλ−1

n

∥∥∥
L1
‖η‖L∞ . 2−nβ .

We set for all z, y and all smooth φ:

Tρ,z(φ)(y) =
∑

k∈Nd+1:|k|<ρ

∂kφ(z)
yk

k!
.

For 0 ≤ n ≤ n0, we note that since η has vanishing moments up to order ρ, one has(
Rλ
−1

n ∗ η
)

(z) =

∫ (
Rλ
−1

n (z − y)− Tρ,z(Rλ
−1

n )(−y)
)
η(y)dy

and for |y| . 1, by the Taylor formula from [Hai14, Proposition A.1], it holds that∣∣∣Rλ−1

n (z − y)− Tρ,z(Rλ
−1

n )(−y)
∣∣∣ . sup

ρ≤|l|≤ρ+2

‖∂lRλ
−1

n ‖L∞ . λ|s|+ρ2n(|s|+ρ−β).

Hence ∑
n≤n0

∣∣∣ (Rλ−1

n ∗ η
)

(z)
∣∣∣ . λ|s|+ρ ∑

n≤n0

2n(|s|+ρ−β) . λβ .

Finally, let Cη be such that η is supported in B(0, Cη), and C > 0 be as given in Assumption 1,
we remark that when |z| ≥ 2Cη,

C2−n <
λ|z|

2
⇒ C2−n < λ(|z| − Cη)

so that for such n, for all y in supp(η), Rλ
−1

n (z − y) = 0, and
(
Rλ
−1

n ∗ η
)

(z) = 0.

Hence it holds that (
Rλ
−1

∗ η
)

(z) =
∑

n:2−n&λ|z|

∫
Rλ
−1

n (z − y)η(y)dy

so that the same estimate as above gives(
Rλ
−1

∗ η
)

(z) . λ|s|+ρ
∑

n:2−n&λ|z|

2n(|s|+ρ−β) . λβ |z|−|s|−ρ+β .

�

Lemma 5.6. Take N r,c
λ as the space of all functions ϕ supported in B(0, λ−1) such that ‖ϕ‖Cr(B(z,1)) ≤

(1 + |z|)−(|s|+c)
, with c > p (γ − inf A). Then, we have

sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈N r,c

λ

∣∣〈Rf −Πzf(z), ϕλz 〉
∣∣

λγ

∥∥∥∥
Lp(R+×Td,dz)

. |||f |||Dγp ,

uniformly over all f ∈ Dγp .

Proof. Let ψ : Rd+1 → R be a smooth function, supported in B(0, 1), that defines a partition of unity∑
y∈Λ0

ψy(·) = 1. We can decompose

ϕ =
∑

y∈Λ0:|y|≤λ−1+1

ψyϕ =:
∑

y∈Λ0:|y|≤λ−1+1

ηy(· − y) ,

where each ηy is supported in B(0, 1) and such that

‖ηy‖Cr ≤ (1 + |y|)−(|s|+c)
.
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We now rely on the reconstruction theorem [HL17, Th 3.1] in unweighted spaces. We have〈
Rf −Πzf(z), ϕλz

〉
=

∑
y∈Λ0

〈
Rf −Πzf(z), (ηy)λz+λy

〉
=

∑
y∈Λ0:|y|≤λ−1+1

〈
Rf −Πz+λyf(z + λy), (ηy)λz+λy

〉
+

∑
y∈Λ0:|y|≤λ−1+1

〈
Πz+λy (f(z + λy)− Γz+λy,zf(z)) , (ηy)λz+λy

〉
.

We then bound ∫
dz sup

ϕ∈N r,c
λ

∣∣〈Rf −Πzf(z), ϕλz
〉∣∣p

by bounding separately the two terms above. For the first one, we have∫
dz sup

ϕ∈N r,c
λ

∣∣∣∣∣∣
∑
y∈Λ0

〈
Rf −Πz+λyf(z + λy), (ηy)λz+λy

〉∣∣∣∣∣∣
p

≤
∫
dz

∣∣∣∣∣∣
∑
y∈Λ0

1

(1 + |y|)|s|+c
sup
φ∈Br

∣∣ 〈Rf −Πz+λyf(z + λy), φλz+λy
〉 ∣∣∣∣∣∣∣∣

p

.
∫ ∑

y∈Λ0

dz′
1

(1 + |y|)|s|+c

∣∣∣∣∣ sup
φ∈Br

∣∣ 〈Rf −Πz′f(z′), φλz′
〉 ∣∣∣∣∣∣∣

p

. λγp

where we have used Jensen’s inequality and the change of variables z′ = z + λy. For the second one,
note that〈

Πz+λy (f(z + λy)− Γz+λy,zf(z)) , (ηy)λz+λy
〉
.
∑
ζ<γ

|f(z + λy)− Γz+λy,zf(z)|ζ (1 + |y|)−|s|−c λζ

(the sums being taken over elements ζ in A), so that we obtain

∑
ζ<γ

∫
dz

∣∣∣∣∣∣
∑

y∈Λ0:|y|≤λ−1+1

|f(z + λy)− Γz+λy,zf(z)|ζ (1 + |y|)−|s|−c λζ
∣∣∣∣∣∣
p

.
∑
ζ<γ

∫
dz

∑
y∈Λ0:|y|≤λ−1+1

λpζ

(1 + |y|)|s|+c
|f(z + λy)− Γz+λy,zf(z)|pζ

. λpγ
∑
y∈Λ0

|y|p(γ−ζ)

(1 + |y|)|s|+c
|||f |||pDγp . λpγ

where we have again used Jensen’s inequality and the fact that we assumed c > p(γ − β) for all
β ∈ A. �

6. Some technical proofs

6.1. Reconstruction. In addition to the Reconstruction Theorem, we will need (in the proof of the
Convolution Theorem) a technical result on the regularity of the image of the reconstruction operator
near the hyperplane t = 0. For simplicity, we let Lp(n0) denote the space Lp((2−2n0 ∧ T, 2−2(n0−1) ∧
T )× Td, dz) for every n0 ∈ Z. Let nT ∈ Z be the unique integer such that 2−2nT ≤ T < 2−2(nT−1).
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Proposition 6.1. In the context of Theorem 3.6, for any given ε > 0 and for every multiindex
k ∈ Nd+1, we have the following bounds:

(6.1)

( ∑
n0≥nT

∥∥∥ ∑
0≤m≤n0+4

∣∣〈Rf, ∂kPm(z − ·)〉
∣∣

2−n0(η+2−ε−|k|)

∥∥∥p
Lp(n0)

) 1
p

. |||f ||| ,

and

(6.2)

( ∑
n0≥nT

∥∥∥∣∣〈Rf, ∂kP−(z − ·)〉
∣∣

2−n0(η+2−ε−|k|)

∥∥∥p
Lp(n0)

) 1
p

. |||f ||| ,

uniformly over all f ∈ Dγ,η,Tp . In the case of two models, bounds similar to (3.10) hold.

We now present the proofs of Theorem 3.6 and Proposition 6.1 jointly. For notational simplicity,
we take T = 1, although the arguments carry through if T > 0 is arbitrary. The proof of Theorem
3.6 and Proposition 6.1 relies on three main arguments. First, we use the reconstruction theorem
in unweighted spaces of modelled distributions [HL17, Thm 3.1]. Indeed, any element f ∈ Dγ,η,Tp ,

restricted (by a localisation argument) to a ball B(z, λ) with z = (t, x) and 3λ2 < t, belongs to Dγp
and the norm of the injection is of order t

η−γ
2 . This allows to reconstruct f away from the hyperplane

t = 0.
Second, we show that a distribution on the set of test functions supported away from the hyperplane
t = 0 can uniquely be extended to test functions supported on this hyperplane as soon as the regu-
larity index is not too low.
Third, we obtain the specific regularity index near the hyperplane t = 0 by an accurate analysis of
the interplay between the regularity of the model and the growth/decay of the weights.

The second and third steps are the contents of the following lemmas.

Lemma 6.2. Take β 6= 0 and assume that β > −2(1 − 1
p ). Let ξ be a distribution on the set of all

test functions whose supports lie in
(
(−∞, 0) ∪ (0, T )

)
× Rd. Assume that 〈ξ, ϕ〉 = 0 whenever the

support of ϕ lies in (−∞, 0)× Rd. In addition, assume that:

• if β < 0, ξ satisfies the bound (3.7) with (−∞, T − λ2) replaced by (3λ2, T − λ2)
• if β > 0, ξ satisfies the bounds (3.8) with (−∞, T −λ2) replaced by (3λ2, T −λ2), and for any
c′ > 0 we have the additional bound

sup
m≥0

∥∥∥ sup
ϕ∈Br

∣∣〈ξ, ϕ2−m

z 〉
∣∣

2−mβ

∥∥∥
Lp
(

(3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td,dz
) <∞ .

Then, there exists a unique extension of ξ that belongs to the space Bβ,Tp .

Proof. The proof consists in two steps: first we show uniqueness of the extension and second we
construct the extension. For further use, we let χ : R → R be a smooth function, supported in a
compact subset [a,A] with a > 15 and such that for all t > 0∑

n∈Z
χ(22nt) = 1 .

Uniqueness. If β > 0, then any element ξ of Bβ,Tp is a function in Lp, see for instance [HL17,
Lemma 2.7]; consequently, ξ is completely determined by its evaluations away from t = 0.
Let us now consider the case β < 0. Let In0

(t) := 1−
∑
n≤n0

χ(22nt)−
∑
n≤n0

χ(−22nt) and observe

that In0
is a smooth function, supported in [−2−2n0R, 2−2n0R] for some R > 0 that does not depend

on n0. If we show that

(6.3)
∣∣〈ξ, ϕ(0,x0) · In0

〉
∣∣ . 2−2n0(1− 1

p )−n0β |||ξ|||Bβ,Tp ,
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uniformly over all n0 large enough, all x0 ∈ Td, all ϕ ∈ Br and all ξ ∈ Bβ,Tp , then we deduce that

any ξ ∈ Bβ,Tp is completely characterised by its evaluations away from the hyperplane t = 0 as soon

as β > −2
(
1− 1

p

)
.

Therefore, we are left with proving (6.3). We consider a smooth function ψ : Rd+1 → R, supported
in B(0, 1), that defines a partition of unity:∑

z̄∈Λ0

ψz̄(z) = 1 , ∀z ∈ Rd+1 ,

as well as its rescaled version ψn0
z̄ (·) := ψ(2n0s(· − z̄)) which defines a partition of unity at scale 2−n0 :∑

z̄∈Λn0

ψn0
z̄ (z) = 1 , ∀z ∈ Rd+1 .

We thus have for any test function ϕ ∈ Br and any x0 ∈ Td

ϕ(0,x0) · In0 =
∑
z̄∈Λn0

|t̄|≤(R+1)2−2n0

|x̄|≤3

ϕ · In0 · ψ
n0
z̄ .

For any z̄ ∈ Λn0 and any z ∈ B(z̄, 2−n0), the function ϕIn0ψ
n0
z̄ can be written as 2−n0|s|η2−(n0−1)

z for
some function η ∈ Br and up to some multiplicative constant which is uniformly bounded over all
the parameters at stake. (Recentering the function at z instead of z̄ is convenient to recover Lp norms
later on). Using Jensen’s inequality at the second line, we get∣∣〈ξ, ϕ(0,x0) · In0

〉
∣∣ . ∑

z̄∈Λn0

|t̄|≤(R+1)2−2n0

|x̄|≤3

∫
z∈B(z̄,2−n0 )

2n0|s| sup
η∈Br

2−n0|s|
∣∣〈ξ, η2−(n0−1)

z 〉
∣∣dz

.

( ∑
z̄∈Λn0

|t̄|≤(R+1)2−2n0

|x̄|≤3

2−n0(|s|−2)

∫
z∈B(z̄,2−n0 )

2n0|s| sup
η∈Br

(
2−2n0

∣∣〈ξ, η2−(n0−1)

z 〉
∣∣)pdz) 1

p

. 2−2n0(1− 1
p )

(∫
z∈(−(R+2)2−2n0 ,(R+2)2−2n0 )×Td

sup
η∈Br

∣∣〈ξ, η2−(n0−1)

z 〉
∣∣pdz) 1

p

. 2−2n0(1− 1
p )−n0β‖ξ‖Bβ,Tp ,

uniformly over all n0 ≥ 0 such that (R + 2)2−2n0 < T , all x0 ∈ Td and all ϕ ∈ Br. The asserted
bound follows, so that the uniqueness part of the statement is proved.

Existence. For all n ∈ Z and all z̄ ∈ Λn, we set

ψ̃nz̄ (z′) := χ(22nt′)ψnz̄ (z′) , z′ = (t′, x′) ∈ Rd+1 ,

and we observe that
∑
n∈Z

∑
z̄∈Λn

ψ̃nz̄ (z′) = 1 for all z′ ∈ (0,∞)×Rd. We need to define 〈ξ, ϕλz 〉 when

the support of ϕλz overlaps the hyperplane t = 0. Since ξ vanishes on (−∞, 0) × Rd, it is natural to
set

〈ξ, ϕλz 〉 :=
∑
n∈Z

∑
z̄∈Λn

〈ξ, ϕλz ψ̃nz̄ 〉 ,

for all λ ∈ (0, 1], all z ∈ (−λ2, 3λ2] and all ϕ ∈ Br. Let us show that

sup
λ∈(0,1]

∥∥∥ sup
ϕ∈Br

∣∣〈ξ, ϕλz 〉∣∣
λβ

∥∥∥
Lp((−λ2,3λ2]×Td,dz)

<∞ .
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holds whatever the sign of β. Notice that for β < 0 this is what we need, while for β > 0 this is
stronger than what is required since ϕ is not assumed to annihilate polynomials here.
Observe that ϕλz ψ̃

n
z̄ vanishes as soon as 2−n > λ: indeed, the cutoff function χ(22n·) is supported in

[a2−2n, A2−2n], the function ϕλz vanishes in [4λ2,∞)× Rd and 4λ2 < aλ2 ≤ a2−2n. Furthermore, for

all z′ ∈ B(z̄, 2−n), the function ϕλz ψ̃
n
z̄ coincides with 2−n|s|λ−|s|ρ2−(n−1)

z′ for some function ρ ∈ Br up
to a multiplicative factor uniformly bounded over all the parameters. Then, for every n ≥ 0 such that
2−n ≤ λ, we have∥∥∥ ∑

z̄∈Λn

sup
ϕ∈Br

∣∣〈ξ, ϕλz ψ̃nz̄ 〉∣∣
λβ

∥∥∥
Lp((−λ2,3λ2)×Td,dz)

.
∥∥∥ ∑

z̄∈Λn
|z−z̄|≤λ+2−n

t̄∈[(a−1)2−2n,(A+1)2−2n]

∫
z′∈B(z̄,2−n|s|)

2n|s| sup
ρ∈Br

∣∣〈ξ, ρ2−(n−1)

z′ 〉
∣∣

λβ
dz′2−n|s|λ−|s|

∥∥∥
Lp
(

(−λ2,3λ2)×Td,dz
) ,

The number of non-zero contributions coming from the sum over z̄ is of order λd2nd uniformly over
all the parameters. Hence, by Jensen’s inequality we get

. λ−22−2n
(∫

z∈(−λ2,3λ2)×Td

∑
z̄∈Λn

|z−z̄|≤λ+2−n

t̄∈[(a−1)2−2n,(A+1)2−2n]

2−ndλ−d

×
∫
z′∈B(z̄,2−n|s|)

2n|s|
(

sup
ρ∈Br

∣∣〈ξ, ρ2−(n−1)

z′ 〉
∣∣

λβ

)p
dz′ dz

) 1
p

. λ−22−2n
(∫

z∈(−λ2,3λ2)×Td

∫
z′=(t′,x′)

t′∈[3·2−2n,c′2−2n]

|z′−z|≤λ+c′2−n

λ−d22n
(

sup
ρ∈Br

∣∣〈ξ, ρ2−(n−1)

z′ 〉
∣∣

λβ

)p
dz′dz

) 1
p

,

for some c′ > 0. Since for every given z′ in the last integral, the integral over z ∈ (−λ2, 3λ2)× Td of
the indicator of |z′ − z| ≤ λ+ c′2−n gives a term of order λ|s| we deduce the following bound

. λ−2
(

1− 1
p

)
−β2−2n

(
1− 1

p

)
−nβ

(∫
z′∈[3·2−2n,c′2−2n]×Td

(
sup
ρ∈Br

∣∣〈ξ, ρ2−(n−1)

z′ 〉
∣∣

2−nβ

)p
dz′
) 1
p

,

uniformly over all n ≥ 0 such that 2−n ≤ λ. Henceforth, we find∥∥∥ sup
ϕ∈Br

∣∣〈ξ, ϕλz 〉∣∣
λβ

∥∥∥
Lp
(

(−λ2,3λ2)×Td,dz
)

.
∑

n:2−n≤λ

∥∥∥ ∑
z̄∈Λn

sup
ϕ∈Br

∣∣〈ξ, ϕλz ψ̃nz̄ 〉∣∣
λβ

∥∥∥
Lp
(

(−λ2,3λ2)×Td,dz
)

.
∑

n:2−n≤λ

λ−2
(

1− 1
p

)
−β2−2n

(
1− 1

p

)
−nβ × sup

n:2−n≤λ

(∫
z′∈[3·2−2n,c′2−2n]×Td

(
sup
ρ∈Br

∣∣〈ξ, ρ2−(n−1)

z′ 〉
∣∣

2−nβ

)p
dz′
) 1
p

. 1 ,

as desired. �
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Lemma 6.3. In the context of Lemma 6.2, take β′ < β such that β′ > −2(1− 1
p ). Then we have the

following bounds for every multiindex k ∈ Nd+1

(6.4)

( ∑
n0≥0

∥∥∥ ∑
0≤m≤n0+4

∣∣〈ξ, ∂kPm(z − ·)〉
∣∣

2−n0(β′−|k|+2)

∥∥∥p
Lp(n0)

) 1
p

<∞ ,

(6.5)

( ∑
n0≥0

∥∥∥∣∣〈ξ, ∂kP−(z − ·)〉
∣∣

2−n0(β′−|k|+2)

∥∥∥p
Lp(n0)

) 1
p

<∞ .

Proof. We only prove (6.4), (6.5) can be obtained by similar arguments. We adapt the proof of
Lemma 6.2 to this specific test function. First of all, we have for all z ∈ (2−2n0 , 2−2(n0−1))× Td and
all 0 ≤ m ≤ n0 + 4

∂kPm(z − z′) =
∑
n≥n0

∑
z̄∈Λn

∂kPm(z − z′)ψ̃nz̄ (z′) , ∀z′ ∈ (0,∞)× Rd .

We observe that the terms in the sum over z̄ vanish except when t̄ ∈ [(a−1)2−2n, (A+1)2−2n] and |x̄−
x| < C2−m for some constant C > 0 depending on the sizes of the supports of P0 and ψ̃. Furthermore,

for all z′′ ∈ B(z̄, 2−n), the function ∂kPm(z−·)ψ̃nz̄ (·) can be viewed as 2m(|k|+d)2−n|s|ρ2−(n−1)

z′′ for some
function ρ ∈ Br, up to a multiplicative constant which is uniformly bounded over all the parameters.
This being given, we write∥∥∥∥

∣∣〈ξ, ∂kPm(z − ·)〉
∣∣

2−n0(β′−|k|+2)

∥∥∥∥
Lp(n0)

. 2(m−n0)|k|
∑
n≥n0

2−(n−n0)(β′+2)

×
∥∥∥∥ ∑

z̄∈Λn
t̄∈[(a−1)2−2n,(A+1)2−2n]

|x̄−x|≤C2−m

2(m−n)d

∫
z′′∈B(z̄,2−n)

2n|s| sup
ρ∈Br

∣∣〈ξ, ρ2−(n−1)

z′′ 〉
∣∣

2−nβ′
dz′′
∥∥∥∥
Lp(n0)

.

Then, using Jensen’s inequality we get∥∥∥ ∑
z̄∈Λn

t̄∈[(a−1)2−2n,(A+1)2−2n]

|x̄−x|≤C2−m

2(m−n)d

∫
z′′∈B(z̄,2−n)

2n|s| sup
ρ∈Br

∣∣〈ξ, ρ2−(n−1)

z′′ 〉
∣∣

2−nβ′
dz′′
∥∥∥
Lp(Dn0

,dz)

.

(∫
z∈Dn0

∑
z̄∈Λn

t̄∈[(a−1)2−2n,(A+1)2−2n]

|x̄−x|≤C2−m

2(m−n)d

∫
z′′∈B(z̄,2−n)

2n|s| sup
ρ∈Br

(∣∣〈ξ, ρ2−(n−1)

z′′ 〉
∣∣

2−nβ′

)p
dz′′ dz

) 1
p

.

(∫
z′′∈[(a−2)2−2n,(A+2)2−2n]×Td

22(n−n0) sup
ρ∈Br

(∣∣〈ξ, ρ2−(n−1)

z′′ 〉
∣∣

2−nβ′

)p
dz′′
) 1
p

,

uniformly over all 0 ≤ m ≤ n0 + 4 and all n0 ≤ n. Observe that the last bound does not depend on
m.
We now argue separately according as k = 0 or |k| > 0. In the case k = 0 and let us introduce
β′′ ∈ (β′, β). The quantity ∑

0≤m≤n0+4

∑
n≥n0

1

n0
2−(n−n0)(β′′+2−2/p) ,
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is uniformly bounded over all n0 ≥ 0. Therefore, using Jensen’s inequality on the sums over m and n
we get ( ∑

n0≥0

∥∥∥ ∑
m≤n0+4

∣∣〈ξ, ∂kPm(z − ·)〉
∣∣

2−n0(β′−|k|+2)

∥∥∥p
Lp(Dn0

,dz)

) 1
p

.

( ∑
n0≥0

∑
0≤m≤n0+4

∑
n≥n0

1

n0
2−(n−n0)(β′′+2− 2

p )

×
∫
z′′∈[(a−2)2−2n,(A+2)2−2n]×Td

sup
ρ∈Br

(
2−n0(β′′−β′)n0

∣∣〈ξ, ρ2−(n−1)

z′′ 〉
∣∣

2−nβ′′

)p
dz′′
) 1
p

.

(∑
n≥0

∫
z′′∈[(a−2)2−2n,(A+2)2−2n]×Td

sup
ρ∈Br

(∣∣〈ξ, ρ2−(n−1)

z′′ 〉
∣∣

2−nβ′′

)p
dz′′
) 1
p

.

By concavity of x 7→ x1/p on R+, the last term is bounded by∑
n≥0

(∫
z′′∈[

(a−2)
4 2−2n,

(A+2)
4 2−2n]×Td

sup
ρ∈Br

(∣∣〈ξ, ρ2−n

z′′ 〉
∣∣

2−nβ′′

)p
dz′′
) 1
p

.
∑
n≥0

2−n(β−β′′) sup
n≥0

((∫
z′′∈[3·2−2n,c′·2−2n]×Td

sup
ρ∈Br

(∣∣〈ξ, ρ2−n

z′′ 〉
∣∣

2−nβ

)p
dz′′
) 1
p

,

which is finite by assumption. The case k > 0 is simpler: we don’t need to introduce β′′ since∑
m≤n0+4

∑
n≥n0

2(m−n0)|k|2−(n−n0)(β′+2−2/p) ,

is bounded uniformly over all n0 ≥ 0. A similar calculation as before allows to complete the proof. �

Proof of Theorem 3.6 and Proposition 6.1. First of all, we set 〈Rf, ϕ〉 := 0 whenever ϕ is supported
in {t < 0} × Rd. Second, take z = (t, x) and λ ∈ (0, 1] such that t ∈ (3λ2, T − λ2), and observe that
f satisfies locally the bound of the unweighted space Dγp :∥∥∥∣∣f(z′)

∣∣
ζ

∥∥∥
Lp(D,dz′)

+ sup
h∈B(0,λ)

∥∥∥∥
∣∣f(z′ + h)− Γz′+h,z′f(z′)

∣∣
ζ

|h|γ−ζ

∥∥∥∥
Lp(Dh,dz′)

. t
η−γ
2 |||f |||η,T,D ,(6.6)

where

D = [t− 2λ2, t+ λ2]×B(x, 2λ) , Dh = [t− 2λ2 + |h|2, t+ λ2 − |h|2]×B(x, 2λ− |h|) ,
and |||f |||η,T,D stands for the Dγ,η,Tp -norm where the integrals are restricted to the set D. A careful
inspection of the proof of the reconstruction theorem [HL17, Th 3.1] in the unweighted space Dγp shows

that for constructing the quantities 〈Rf, ϕλz 〉 for all ϕ ∈ Br, the finiteness of the l.h.s. of (6.6) suffices.
This defines a distribution Rf on the set of all test functions supported in

(
(−∞, 0) ∪ (0, T )

)
× Rd:

indeed, any such test function can be decomposed into a sum of finitely many test functions of the
form ϕλz satisfying the assumption above and on which the action of Rf has been defined. The
reconstruction bound from [HL17, Th 3.1] together with (6.6) ensures that (3.9) is satisfied.
We now aim at applying Lemma 6.2. If α ∧ η < 0, then for all ζ ∈ A we have ζ − α ∧ η ≥ 0 and
therefore∥∥∥∥ sup
ϕ∈Br

∣∣〈Πzf(z), ϕλz 〉
∣∣

λα∧η

∥∥∥∥
Lp((3λ2,T−λ2)×Td,dz)

.
∑
ζ

∥∥∥∥ sup
ϕ∈Br

∣∣〈Πzfζ(z), ϕ
λ
z 〉
∣∣

λζ t
η−ζ
2

λζ−α∧η

t
ζ−η
2

∥∥∥∥
Lp((3λ2,T−λ2)×Td,dz)

. |||f |||η,T .
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If α ∧ η = 0, then the same type of computation with α ∧ η replaced by ᾱ < 0 still applies.
If α∧η > 0, then minA = 0 so that the same computation works with α∧η replaced by 0. Furthermore,
if the test function ϕ belongs to Br

bα∧ηc then 〈Πzf(z), ϕλz 〉 =
∑
ζ≥α∧η〈Πzfζ(z), ϕ

λ
z 〉, and the same

computation as above carries through with α ∧ η. Finally, for any c′ > 0 we have:∥∥∥ sup
ϕ∈Br

∣∣〈Πzf(z), ϕ2−m

z 〉
∣∣

2−mη

∥∥∥
Lp
(

(3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td,dz
)

.
∑
ζ∈A

∥∥∥ |f(z)|ζ
2−m(η−ζ)

∥∥∥
Lp
(

(3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td,dz
)

.
∑
ζ∈A

∥∥∥ |f(z)|ζ
t
η−ζ
2

∥∥∥
Lp
(

(3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td,dz
) ,

so that bounding the `∞-norm by the `p-norm, we get:

sup
m≥0

∥∥∥ sup
ϕ∈Br

∣∣〈Πzf(z), ϕ2−m

z 〉
∣∣

2−mη

∥∥∥
Lp
(

(3·2−2m∧(T−2−2m),c′·2−2m∧(T−2−2m))×Td,dz
) .∑

ζ∈A

∥∥∥ sup
ϕ∈Br

|f(z)|ζ
t
η−ζ
2

∥∥∥
Lp((0,T )×Td,dz)

.

In any case, by combining the bounds we have just obtained with the reconstruction bound (3.9), we
deduce that the conditions required in Lemma 6.2 are met, thus yielding the extension of Rf as an
element of Bᾱ,Tp with ᾱ as in the statement of the theorem.
Applying Lemma 6.3, we deduce the statement of Proposition 6.1 in the case of a single model.
Finally, we treat the case where we are given two models by using the bound already obtained in the
unweighted case [HL17, Th 3.1]: the bound (3.10), as well as the two-models counterpart of (6.1) and
(6.2), easily follow using the same argument as above. �

6.2. Embedding Theorem. For classical Besov spaces, the difficulty of the proof of the embed-
ding theorem varies according to the definition of the Besov-norm one opted for: when the norm is
“countable”, the proof is simple as it essentially relies on the embedding properties of `p-type spaces.
In [HL17, Th 5.1], embedding theorems were obtained for the unweighted spaces Dγp,q. The main

idea of the proof therein is the following: if one defines a space of averages D̄γp,q (whose elements are

defined on a countable set that approximates R × Rd) endowed with a “countable” norm, then the
proof of the embedding theorem at the level of this space is simple. The important step is then the
equivalence between the space of averages and the space Dγp,q.

We adapt this proof to our setting. In comparison with the original proof, the main technical
difficulty comes from the weights near t = 0+ which need some extra care. For simplicity, we assume
that T = 1 in this subsection and we drop the superscript T in the spaces Dγ,η,Tp . This is a harmless
assumption since the general case T > 0 can be treated by considering the smallest nT ∈ Z such that
T ≥ 2−2nT and by considering the slightly modified grids Λn = {(k02−2nT, k12−n

√
T , . . . , kd2

−n
√
T ) :

k ∈ Zd+1} for every n ≥ nT .

For every n ≥ 0, we introduce the grid

Λn := {(k02−2n, k12−n, k22−n, k32−n) : k = (k0, . . . , k3) ∈ Z4} ,

as well as the set

En :=
{
h ∈ Λn : 0 < |h|s ≤ 2−n|s|

}
.

For every n0 ≥ 0, we introduce the following restriction of the grid

Λ̃n := Λn ∩ [3 · 2−2n, 1− 2 · 2−2n]× Td ,
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as well as the associated “boundary”:

∂Λ̃n := Λ̃n ∩
(

[3 · 2−2n, 3 · 2−2(n−1)]× Td
)
.

We then denote by `pn(Λ̃n) the set of all sequences u(z), z ∈ Λ̃n such that

‖u‖`pn =
( ∑
z∈Λ̃n

2−n|s||u(z)|p
) 1
p

<∞ .

We take a similar definition for `pn(∂Λ̃n).
With these notations at hand, we recast the definition of the space of averages in our context with

weights. We let D̄γ,ηp be the set of all sequences (f̄
n

)n≥0 of maps f̄
n

: Λ̃n → T<γ such that for all
ζ ∈ Aγ we have:

(1) Local bound: (∑
n≥0

∥∥∥ |f̄ n(z)|ζ
t
η−ζ
2

∥∥∥p
`pn(∂Λ̃n)

) 1
p

<∞ ,

(2) Translation bound:

sup
n≥0

sup
h∈En

∥∥∥ |f̄ n(z + h)− Γz+h,z f̄
n

(z)|ζ
2−n(γ−ζ)t

η−γ
2

∥∥∥
`pn(Λ̃n)

<∞ ,

(3) Consistency bound:

sup
n≥0

∥∥∥ |f̄ n(z)− f̄ n+1

(z)|ζ
2−n(γ−ζ)t

η−γ
2

∥∥∥
`pn(Λ̃n)

<∞ .

We denote by |||f̄ ||| the corresponding norm. We now follow the strategy of proof of [HL17, Th 5.1]
by adapting the intermediary results.
Observe that if we set ECn := {h ∈ Λn : 0 < |h|s ≤ C2−n}, then we have for any given C > 0 the
bound

(6.7) sup
n≥0

sup
h∈ECn

∥∥∥1{z+h∈Λ̃n}
|f̄ n+1

(z + h)− Γz+h,z f̄
n

(z)|ζ
2−n(γ−ζ)t

η−γ
2

∥∥∥
`pn(Λ̃n)

<∞ .

We first show that the spaces Dγ,ηp and D̄γ,ηp are essentially equivalent. Let us set

B(z, r)+ := B(z, r) ∩ {z′ = (t′, x′) ∈ Rd+1 : t′ ≥ t} .

Notice that the volume of B(z, 2−n) is 2d+12−n|s|, while the volume of B(z, 2−n)+ is 2d2−n|s|.

Proposition 6.4. Let f ∈ Dγ,ηp and set for every n ≥ 0

f̄
n

(z) :=

∫
B(z,2−n)+

2−d2n|s|Γz,z′f(z′)dz′ , z ∈ Λ̃n .

Then f̄ ∈ D̄γ,ηp .

Conversely, let f̄ ∈ D̄γ,ηp and set

fn(z) = Γz,zn f̄
n

(zn) ,

where zn is the nearest point to z on the grid Λ̃n. Then, for every n0 ≥ 0, the sequence (fn)n≥n0

converges in Lp((3 · 2−2n0 , 1)× Td) to an element f ∈ Dγ,ηp .

If f̄ is obtained from some f ∈ Dγ,ηp as in the first part of the statement, then the sequence fn
converges to the same map f .
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Proof. We start with the first part of the proposition. To get the local bound on f̄ , we write∥∥∥ |f̄ n(z)|ζ
t
η−ζ
2

∥∥∥
`pn(∂Λ̃n)

≤
∥∥∥∫

B(z,2−n)+
2−d2n|s|

|Γz,z′f(z′)|ζ
t
η−ζ
2

dz′
∥∥∥
`pn(∂Λ̃n)

.
∑
β≥ζ

∥∥∥∫
B(z,2−n)+

2−d2n|s|
|f(z′)|β
t
η−β

2

dz′
∥∥∥
`pn(∂Λ̃n)

,

where we have used the fact that t is of order 2−2n in the above integral. Applying Jensen’s inequality
on the integral over z′, we obtain the further bound

.
∑
β≥ζ

(∫
z′∈
(

(3·2−2n,13·2−2n)∩(0,1)
)
×Td

( |f(z′)|β
(t′)

η−β
2

)p
dz′
) 1
p

,

uniformly over all n ≥ 0. Consequently, we find(∑
n≥0

∥∥∥ |f̄ n(z)|ζ
t
η−ζ
2

∥∥∥p
`pn(∂Λ̃n)

) 1
p

.
∑
β

∥∥∥ |f(z)|β
t
η−β

2

∥∥∥
Lp((0,1)×Td

) ,

as required. We turn to the translation bound. For all h ∈ En we write

f̄
n

(z + h)− Γz+h,z f̄
n

(z) =

∫
u∈B(0,2−n)+

2−d2n|s|Γz+h,z+h+u

(
f(z + h+ u)− Γz+h+u,z+uf(z + u)

)
du .

Therefore, using Jensen’s inequality at the first line we get∥∥∥ |f̄ n(z + h)− Γz+h,z f̄
n

(z)|ζ
2−n(γ−ζ)t

η−γ
2

∥∥∥
`pn(Λ̃n)

.

( ∑
z∈Λ̃n

∫
u∈B(0,2−n)+

(∣∣∣Γz+h,z+h+u

(
f(z + h+ u)− Γz+h+u,z+uf(z + u)

)∣∣∣
ζ

|h|γ−ζt η−γ2

)p
du

) 1
p

.
∑
β≥ζ

(∫
z∈(3·2−2n,1−2−2n)×Td

(∣∣f(z + h)− Γz+h,zf(z)
∣∣
β

|h|γ−βt η−γ2

)p
dz

) 1
p

.

Therefore (∑
n≥0

∥∥∥ |f̄ n(z + h)− Γz+h,z f̄
n

(z)|ζ
2−n(γ−ζ)t

η−γ
2

∥∥∥p
`pn(Λ̃n)

) 1
p

. |||f ||| ,

as required. The consistency bound is obtained similarly so we skip the details.
Let us now prove the second part of the statement. We first show that (fn)n≥n0

is a Cauchy sequence
in Lp((3 · 2−2n0 , 1)× Td). Fix n0 ≥ 0. We have for every n ≥ n0:∥∥∥∣∣fn+1(z)− fn(z)

∣∣
ζ

t
η−ζ
2

∥∥∥
Lp((3·2−2n0 ,1)×Td)

=
∥∥∥∣∣Γz,zn+1

(
f̄
n+1

(zn+1)− Γzn+1,zn f̄
n

(zn)
)∣∣
ζ

t
η−ζ
2

∥∥∥
Lp((3·2−2n0 ,1)×Td)

.
∑
β≥ζ

2−n(β−ζ)
(∫

z∈(3·2−2n0 ,1)×Td

(∣∣f̄ n+1

(zn+1)− Γzn+1,zn f̄
n

(zn)
∣∣
β

t
η−ζ
2

)p
dz
) 1
p

.
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At this point, we use the fact that there exists C > 0 such that |zn+1 − zn| is bounded by C2−(n+1)

uniformly over all z. We thus get the further bound

.
∑
β≥ζ

2−n(β−ζ)
( ∑
zn∈Λ̃n∩(3·2−2n0 ,1)×Td

2−n|s|
∑

h∈ECn+1

(∣∣f̄ n+1

(zn + h)− Γzn+h,zn f̄
n

(zn)
∣∣
β

t
η−ζ
2

)p) 1
p

.
∑
β≥ζ

2−n(γ−ζ) sup
h∈ECn+1

( ∑
zn∈Λ̃n∩(3·2−2n0 ,1)×Td

2−n|s|
(∣∣f̄ n+1

(zn + h)− Γzn+h,zn f̄
n

(zn)
∣∣
β

|h|γ−βt η−γ2 t
γ−ζ
2

)p) 1
p

. 2−(n−n0)(γ−ζ)
∑
β≥ζ

sup
h∈ECn+1

( ∑
zn∈Λ̃n∩(3·2−2n0 ,1)×Td

2−n|s|
(∣∣f̄ n+1

(zn + h)− Γzn+h,zn f̄
n

(zn)
∣∣
β

|h|γ−βt η−γ2

)p) 1
p

,

where we have used the fact that t ≥ 2−2n0 at the last line. We deduce that (fn)n≥n0
is a Cauchy

sequence in Lp([3 · 2−2n0 , 1]× Td), for every n0 ≥ 0. We then get an element f ∈ Lp((0, 1)× T3) and
it remains to show that it actually belongs to Dγ,ηp . The local bound is already proved, let us focus

on the translation bound. For every h ∈ B(0, 1) and every z ∈ [3 · |h|2, 1 − |h|2] × Td, let n0 ≥ 0 be
the smallest integer such that 6 · 2−2n0 ≤ 2|h|2. Then, we write

f(z + h)− Γz+h,zf(z) =
(
f(z + h)− fn0(z + h)

)
+
(
fn0(z + h)− Γz+h,zfn0(z)

)
+
(
Γz+h,z(fn0(z)− f(z))

)
.

(6.8)

We bound separately the three terms appearing on the r.h.s. Regarding the first term, we use the
previous calculation to get∥∥∥∣∣f(z + h)− fn0

(z + h)
∣∣
ζ

|h|γ−ζt η−γ2

∥∥∥
Lp((3·|h|2,1−|h|2)×Td)

≤
∑
n≥n0

∥∥∥∣∣fn+1(z + h)− fn(z + h)
∣∣
ζ

|h|γ−ζt η−γ2

∥∥∥
Lp((3·|h|2,1−|h|2)×Td)

≤
∑
n≥n0

∥∥∥∣∣fn+1(z)− fn(z)
∣∣
ζ

|h|γ−ζt η−γ2

∥∥∥
Lp((3·2−2n0 ,1)×Td)

≤
∑
n≥n0

2−(n−n0)(γ−ζ)|||f̄ ||| ,

so it is bounded by a term of order |||f̄ ||| as required. The bound of the third term of (6.8) is similar.
Let us now consider the second term of (6.8). We have∥∥∥∣∣fn0

(z + h)− Γz+h,zfn0
(z)
∣∣
ζ

|h|γ−ζt η−γ2

∥∥∥
Lp([3·|h|2,1−|h|2]×Td)

≤
∑
β≥ζ

sup
h̃∈ECn0

∥∥∥2−n0(β−ζ)

∣∣f̄ n0
(zn0 + h̃)− Γzn0

+h̃,zn0
f̄
n0

(zn0
)
∣∣
β

|h|γ−ζt η−γ2

∥∥∥
Lp((3·|h|2,1−|h|2)×Td)

≤
∑
β≥ζ

sup
h̃∈ECn0

∥∥∥∣∣f̄ n0
(z + h̃)− Γz+h̃,z f̄

n0
(z)
∣∣
β

|h|γ−βt η−γ2

∥∥∥
`p(Λ̃n0

)
,

which is bounded by |||f̄ ||| uniformly over all n0 ≥ 0, as required. This completes the proof of the
translation bound.
Finally, if f̄ is constructed from some element f ∈ Dγ,ηp , then a simple computation shows that the

sequence (f − fn)n≥n0
converges to 0 in Lp([3 · 2−2n0 , 1]× Td) for every n0 ≥ 0. This completes the

proof of the proposition. �



EXISTENCE OF DENSITIES FOR Φ4
3 39

Let us state a useful bound for the sequel. For all p ≤ p′ ∈ [1,∞], we have

(6.9)
∥∥∥u(z)

∥∥∥
`p
′
n (Λ̃n)

≤ 2
n|s|( 1

p−
1
p′ )
∥∥∥u(z)

∥∥∥
`pn(Λ̃n)

,

uniformly over all sequences u(z), z ∈ Λ̃n. Of course, this remains true if Λ̃n is replaced by ∂Λ̃n.

We have all the elements at hand to prove the embedding theorem.

Proof of Theorem 3.7. The first embedding is a direct consequence of the boundedness of the under-
lying space which implies the continuous inclusion Lp ⊂ Lp′ whenever p′ < p.
The second embedding is more involved and relies on the spaces of averages D̄γ,ηp . If we establish the
embedding at the level of these spaces, namely

|||f̄ |||γ′,η′,p′ . |||f̄ |||γ,η,p ,

uniformly over all f̄ ∈ D̄γ,ηp , then the equivalence stated in Proposition 6.4 yields the desired result.

Let us introduce the notation: (γ, η, p) (γ′, η′, p′) if we have η′ − η = γ′ − γ as well as

γ′ = γ − |s|
(1

p
− 1

p′
)
, p′ <∞ ,

or

γ′ ≤ γ − |s|
p
, p′ =∞ .

Notice that, for all ζ < γ, there is a unique p(ζ) ∈ [p,∞] such that (γ, η, p) (ζ, η + ζ − γ, p(ζ)).

We let ζ1 > ζ2 > . . . be the elements of Aγ listed in decreasing order. The proof of the embedding
derives from a simple recursion applied to the following two properties:

(1) If γ′, η′, p′ are such that γ′ ∈ (ζ1, γ), p′ ∈ (p,∞] and (γ, η, p) (γ′, η′, p′), then f̄ ∈ D̄γ
′,η′

p′ .

(2) If γ′ ∈ (ζ2, ζ1) and if η′ − η = γ′ − γ, then f̄ ∈ D̄γ
′,η′

p(ζ1).

Let us prove (1). We start with the local bound. Applying (6.9) and using the fact that t is of order

2−2n for all z = (t, x) ∈ ∂Λ̃n, we get∥∥∥ |f̄ n(z)|ζ
t
η′−ζ

2

∥∥∥
`p
′
n (∂Λ̃n)

≤ 2
n|s|( 1

p−
1
p′ )
∥∥∥ |f̄ n(z)|ζ

t
η′−ζ

2

∥∥∥
`pn(∂Λ̃n)

.
∥∥∥ |f̄ n(z)|ζ

t
η−ζ
2

∥∥∥
`pn(∂Λ̃n)

.

Using the classical embedding from `p into `p
′
, we deduce the following bound(∑

n≥0

∥∥∥ |f̄ n(z)|ζ
t
η′−ζ

2

∥∥∥p′
`p
′
n (∂Λ̃n)

) 1
p′

.

(∑
n≥0

∥∥∥ |f̄ n(z)|ζ
t
η−ζ
2

∥∥∥p
`pn(∂Λ̃n)

) 1
p

.

We pass to the translation bound. Applying (6.9), we obtain∥∥∥ |f̄ n(z + h)− Γz+h,z f̄
n

(z)|ζ
2−n(γ′−ζ)t

η′−γ′
2

∥∥∥
`p
′
n (Λ̃n)

. 2
n|s|( 1

p−
1
p′ )
∥∥∥ |f̄ n(z + h)− Γz+h,z f̄

n

(z)|ζ
2−n(γ′−ζ)t

η′−γ′
2

∥∥∥
`pn(Λ̃n)

.
∥∥∥ |f̄ n(z + h)− Γz+h,z f̄

n

(z)|ζ
2−n(γ−ζ)t

η−γ
2

∥∥∥
`pn(Λ̃n)

,

as required. The consistency bound is obtained similarly. This completes the proof of (1).

Instead of proving (2) directly, we show the following:

(2’) For all ε > 0 and all γ′′ ∈ (ζ2, ζ1), we have f̄ ∈ D̄γ
′′,η′′

p(ζ1+ε) where η′′ = η + γ′′ − γ.
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If (2’) holds true, then we can apply (1) and deduce that f̄ ∈ D̄γ(ε),η(ε)
p(ζ1) with

γ(ε) = γ′′ − |s|
( 1

p(ζ1 + ε)
− 1

p(ζ1)

)
, η(ε) = η′′ + γ(ε)− γ′′ .

Since γ(ε) ↑ γ′′ and η(ε) ↑ η′′ as ε ↓ 0, Property (2) follows.
We are left with proving (2’). The local bound follows from exactly the same argument as in the
proof of (1). Let us focus on the translation bound. We let f̄<ζ1 be the restriction of f̄ to T<ζ1 . We
have for all ζ < ζ1:∣∣f̄ n<ζ1(z + h)− Γz+h,z f̄

n

<ζ1(z)
∣∣
ζ
≤
∣∣f̄ n(z + h)− Γz+h,z f̄

n

(z)
∣∣
ζ

+
∣∣Γz+h,z f̄ nζ1(z)

∣∣
ζ
.(6.10)

We will bound the contributions to the translation bound of these two terms separately. Applying
(6.9) and since ζ1 + ε− γ ≤ −|s|(1/p− 1/p(ζ1 + ε)), we get for all h ∈ En∥∥∥∣∣f̄ n(z + h)− Γz+h,z f̄

n

(z)
∣∣
ζ

|h|γ′′−ζt η
′′−γ′′

2

∥∥∥
`
p(ζ1+ε)
n (Λ̃n)

. 2
n|s|
(

1
p−

1
p(ζ1+ε)

)∥∥∥∣∣f̄ n(z + h)− Γz+h,z f̄
n

(z)
∣∣
ζ

|h|γ′′−ζt η−γ2

∥∥∥
`pn(Λ̃n)

. 2n(γ′′−ζ1−ε)
∥∥∥∣∣f̄ n(z + h)− Γz+h,z f̄

n

(z)
∣∣
ζ

|h|γ−ζt η−γ2

∥∥∥
`pn(Λ̃n)

,

uniformly over all n ≥ 0. This ensures that the supremum over n of the l.h.s. is bounded by a term
of order |||f̄ |||.
We turn to the contribution coming from the second term of (6.10). We have∥∥∥∣∣Γz+h,z f̄ nζ1(z)

∣∣
ζ

|h|γ′′−ζt η
′′−γ′′

2

∥∥∥
`
p(ζ1+ε)
n (Λ̃n)

. 2−n(ζ1−γ′′)
∥∥∥∣∣f̄ n(z)

∣∣
ζ1

t
η−γ
2

∥∥∥
`
p(ζ1+ε)
n (Λ̃n)

,

uniformly over all h ∈ En and all n ≥ 0. At this point, we subdivide Λ̃n into the union of its
components on Dn0 = [3 · 2−n0 , 3 · 2−(n0−1)]× Td with n0 = 0, 1, . . . , n, and we bound separately the

corresponding `
p(ζ1+ε)
n norm: ∥∥∥∣∣f̄ n(z)

∣∣
ζ1

t
η−γ
2

∥∥∥
`
p(ζ1+ε)
n (Λ̃n∩Dn0

)
.

Fix such an n0. For every z ∈ Λ̃n, we let vz := inf{v ∈ Λ̃n−1 : v ≥ z} with respect to the lexicographic
order and we use the following decomposition

f̄
n

ζ1(z) = f̄
n−1

ζ1 (vz) + f̄
n

ζ1(z)− f̄
n−1

ζ1 (vz) .

We have ‖f̄ nζ1(z)/t
η−γ
2 ‖

`
p(ζ1+ε)
n (Λ̃n∩Dn0

)
≤ A1(n) +A2(n) where

A1(n) =
( ∑
z∈Λ̃n∩Dn0

2−n|s|
∣∣∣ f̄ n−1

ζ1
(vz)

t
η−γ
2

∣∣∣p(ζ1+ε)) 1
p(ζ1+ε)

,

A2(n) =
( ∑
z∈Λ̃n∩Dn0

2−n|s|
∣∣∣ f̄ nζ1(z)− f̄ n−1

ζ1
(vz)

t
η−γ
2

∣∣∣p(ζ1+ε)) 1
p(ζ1+ε)

.

Since for every vertex v = (s, y) ∈ Λ̃n−1, there are at most 2|s| vertices z ∈ Λ̃n such that vz = v, and
since η − γ ≤ 0, we get whenever n > n0

A1(n) ≤
( ∑
v∈Λ̃n−1∩Dn0

2−(n−1)|s|
∣∣∣ f̄ n−1

ζ1
(v)

s
η−γ
2

∣∣∣p(ζ1+ε)) 1
p(ζ1+ε)

=
∥∥∥ f̄ n−1

ζ1
(z)

t
η−γ
2

∥∥∥
`
p(ζ1+ε)
n−1 (Λ̃n−1∩Dn0 )

.
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Regarding A2(n), using the fact that ζ1 = maxAγ and (6.9) at the third line, we get whenever n > n0:

A2(n) . sup
h∈ECn

( ∑
v∈Λ̃n−1∩Dn0

2−(n−1)|s|
∣∣∣ f̄ nζ1(v + h)− f̄ n−1

ζ1
(v)

s
η−γ
2

∣∣∣p(ζ1+ε)) 1
p(ζ1+ε)

. 2−n(γ−ζ1) sup
h∈ECn

( ∑
v∈Λ̃n−1∩Dn0

2−(n−1)|s|
∣∣∣ ∣∣f̄ n(z)− Γz,z+hf̄

n−1

(z + h)
∣∣
ζ1

2−n(γ−ζ1)s
η−γ
2

∣∣∣p(ζ1+ε)) 1
p(ζ1+ε)

. 2−nε sup
h∈ECn

( ∑
v∈Λ̃n−1∩Dn0

2−(n−1)|s|
∣∣∣ ∣∣f̄ n(z)− Γz,z+hf̄

n−1

(z + h)
∣∣
ζ1

2−n(γ−ζ1)s
η−γ
2

∣∣∣p) 1
p

,

Iterating this, we get∥∥∥∣∣f̄ n(z)
∣∣
ζ1

t
η−γ
2

∥∥∥
`
p(ζ1+ε)
n (Λ̃n∩Dn0 )

≤
∥∥∥∣∣f̄ n0

(z)
∣∣
ζ1

t
η−γ
2

∥∥∥
`
p(ζ1+ε)
n0

(Λ̃n0∩Dn0 )

+ C ′
n−1∑
m=n0

sup
h∈ECm

2−mε
( ∑
v∈Λ̃m∩Dn0

2−m|s|
∣∣∣ ∣∣f̄ m+1

(v)− Γv,v+hf̄
m

(v + h)
∣∣
ζ1

2−m(γ−ζ1)s
η−γ
2

∣∣∣p) 1
p

.

Applying (6.9) and using the fact that t is of order 2−n0 in Dn0
, we find∥∥∥∣∣f̄ n0

(z)
∣∣
ζ1

t
η−γ
2

∥∥∥
`
p(ζ1+ε)
n0

(Λ̃n0
∩Dn0

)
. 2−n0ε

∥∥∥∣∣f̄ n0
(z)
∣∣
ζ1

t
η−ζ1

2

∥∥∥
`pn0

(Λ̃n0
∩Dn0

)
,

uniformly over all n0 ≥ 0. Putting everything together, we thus get∥∥∥∣∣f̄ n(z)
∣∣
ζ1

t
η−γ
2

∥∥∥
`
p(ζ1+ε)
n (Λ̃n)

≤
( n∑
n0=0

∥∥∥∣∣f̄ n(z)
∣∣
ζ1

t
η−γ
2

∥∥∥p
`
p(ζ1+ε)
n (Λ̃n∩Dn0

)

) 1
p

. |||f̄ ||| ,

uniformly over all n ≥ 0. We thus get the desired translation bound. The consistency bound is
obtained similarly. This concludes the proof of (2’). �

6.3. Product.

Proof of Theorem 3.8. Regarding the local bound, we have∥∥∥ |f |ζ(z)
t
η−ζ
2

∥∥∥
Lp((0,T )×Td)

.
∑

ζ1+ζ2=ζ

∥∥∥ |f1|ζ1(z)

t
η1−ζ1

2

|f2|ζ2(z)

t
η2−ζ2

2

∥∥∥
Lp((0,T )×Td)

,

so that Hölder’s inequality yields the required bound.
We turn to the translation bound, and write

f(z + h)− Γz+h,zf(z) =−
(
f1(z + h)− Γz+h,zf1(z))(f2(z + h)− Γz+h,zf2(z)

)
+ Γz+h,zf1(z)Γz+h,zf2(z)− Γz+h,z

(
f1(z)f2(z)

)
+ f1(z + h)

(
f2(z + h)− Γz+h,zf2(z)

)
+ f2(z + h)

(
f1(z + h)− Γz+h,zf1(z)

)
,

(6.11)

and bound these four terms separately.
The bound of the first term follows from Hölder’s inequality. Regarding the second term, we note

that the γ-regularity of the sectors ensures the following identity:

Γz+h,zf1(z)Γz+h,zf2(z)− Γz+h,z(f1(z)f2(z)) =
∑

β1+β2≥γ

(Γz+h,zQβ1
f1(z))(Γz+h,zQβ2

f2(z)) .
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Fix β1, β2 < γ such that β1 + β2 ≥ γ. For any ζi ≤ βi such that ζ = ζ1 + ζ2 < γ, we get

sup
h∈B(0,1)

∥∥∥∥
∣∣(Γz+h,zQβ1

f1(z))ζ1(Γz+h,zQβ2
f2(z))ζ2

∣∣
|h|γ−ζ1−ζ2t η−γ2

∥∥∥∥
Lp((3|h|2,T−|h|2)×Td)

. sup
h∈B(0,1)

∥∥∥∥( |h|√t
)β1+β2−γ

∣∣f1(z)
∣∣
β1

t
η1−β1

2

∣∣f2(z)
∣∣
β2

t
η2−β2

2

∥∥∥∥
Lp((3|h|2,T−|h|2)×Td)

. sup
h∈B(0,1)

∥∥∥ |f1(z)|β1

t
η1−ζ1

2

∥∥∥
Lp1 ((3|h|2,T−|h|2)×Td)

∥∥∥ |f2(z)|β2

t
η2−ζ2

2

∥∥∥
Lp2 ((3|h|2,T−|h|2)×Td)

. |||f1|||η1,T |||f2|||η2,T ,

uniformly over all f1, f2.
We turn to the third term, we have for any ζ = ζ1 + ζ2 < γ:

sup
h∈B(0,1)

∥∥∥∥Qζ1f1(z + h)Qζ2(f2(z + h)− Γz+h,zf2(z))

|h|γ−ζ1−ζ2t η−γ2

∥∥∥∥
Lp((3|h|2,T−|h|2)×Td)

≤
∥∥∥ |f1(z)|ζ1
t
η1−ζ1

2

∥∥∥
Lp1

sup
h∈B(0,1)

∥∥∥∥ |f2(z + h)− Γz+h,zf2(z)|ζ2
|h|γ2−ζ2t

η2−γ2
2

t
γ−γ2−ζ1

2 |h|γ2+ζ1−γ
∥∥∥∥
Lp2 ((3|h|2,T−|h|2)×Td)

.

Since |h| ≤
√
t in the integral above and since γ ≤ γ2 + α1 ≤ γ2 + ζ1, we deduce that

t
γ−γ2−ζ1

2 |h|γ2+ζ1−γ ≤ 1 ,

so that the last quantity is bounded by a term of order |||f1|||η1,T |||f2|||η2,T . By symmetry, the fourth
term of (6.11) is bounded in exactly the same way as the third.
In the case where we have two models, the bound of the local terms derives from the same type of
arguments as above. On the other hand, to control the translation term, we write

f1f2(z + h)− g1g2(z + h)− Γz+h,z(f1f2)(z) + Γ̄z+h,z(g1g2)(z) = A+B ,

where

A = f1f2(z + h)− g1g2(z + h)− Γz+h,zf1(z)Γz+h,zf2(z) + Γ̄z+h,zg1(z)Γ̄z+h,zg2(z) ,

B = Γz+h,zf1(z)Γz+h,zf2(z)− Γ̄z+h,zg1(z)Γ̄z+h,zg2(z)− Γz+h,z(f1f2)(z) + Γ̄z+h,z(g1g2)(z) ,

and we bound separately A and B. Regarding A, we write

A =
(
f1(z + h)− g1(z + h)− Γz+h,zf1(z) + Γ̄z+h,zg1(z)

)
f2(z + h)

+ Γz+h,zf1(z)
(
f2(z + h)− g2(z + h)− Γz+h,zf2(z) + Γ̄z+h,zg2(z)

)
+ Γ̄z+h,z

(
g1(z)− f1(z)

)(
Γ̄z+h,zg2(z)− g2(z + h)

)
+
(
Γ̄z+h,zf1(z)− Γz+h,zf1(z)

)(
Γ̄z+h,zg2(z)− g2(z + h)

)
+
(
g1(z + h)− Γ̄z+h,zg1(z)

)(
f2(z + h)− g2(z + h)

)
,

and the bound of the terms on the r.h.s. can be obtained using similar arguments as before. We turn
to B, which can be written as the sum over β1 + β2 ≥ γ of(

Γz+h,zQβ1
f1(z)Γz+h,zQβ2

f2(z)− Γ̄z+h,zQβ1
g1(z)Γ̄z+h,zQβ2

g2(z)
)

= Γz+h,zQβ1

(
f1(z)− g1(z)

)
Γz+h,zQβ2f2(z)

+
(
Γz+h,z − Γ̄z+h,z

)
Qβ1g1(z)Γz+h,zQβ2f2(z)

− Γ̄z+h,zQβ1g1(z)
(
Γ̄z+h,z − Γz+h,z

)
Qβ2g2(z) .

(6.12)
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Let us bound the first term on the r.h.s. We have for all ζ1 + ζ2 = ζ < γ∥∥∥∣∣Γz+h,zQβ1

(
f1(z)− g1(z)

)∣∣
ζ1

∣∣Γz+h,zQβ2
f2(z)

∣∣
ζ2

t
η−γ
2 |h|γ−ζ

∥∥∥
Lp((3|h|2,T−|h|2)×Td)

.
∥∥∥∣∣f1(z)− g1(z)

∣∣
β1

t
η1−β1

2

∥∥∥
Lp1 ((3|h|2,T−|h|2)×Td)

∥∥∥∣∣f2(z)
∣∣
β2

t
η2−β2

2

|h|β1+β2−γ

t
β1+β2−γ

2

∥∥∥
Lp1 ((3|h|2,T−|h|2)×Td)

,

which is bounded by a term of order ‖f1 − g1‖‖f2‖ since β1 + β2 − γ ≥ 0 and since |h| ≤
√
t in the

integral above. The bound of the other two terms in (6.12) is obtained similarly. �

6.4. Convolution with the heat kernel. Let us introduce some notations first. We set

(6.13) P k,γ
′

m,z,z̄(·) := ∂kPm(z − ·)−
∑

`∈Nd+1:|k+`|<γ′

(z − z̄)`

`!
∂k+`Pm(z̄ − ·) ,

as well as P k,γ
′

z,z̄ =
∑
m≥0 P

k,γ′

m,z,z̄. Recall that γ′ is not an integer. We introduce

∂γ′ := {` ∈ Nd+1 : |`| > γ′, |`− em(`)| < γ′} ,

where ei is the unit vector of Rd+1 in the direction i ∈ {0, . . . , d} and m(`) := inf{i : `i 6= 0} for all
` ∈ Nd+1. By [Hai14, Prop 11.1], there exists a signed measure µ`(z − z̄, du) on Rd+1, supported in

the set {u ∈ Rd+1 : ui ∈ [0, zi − z̄i]} with total mass equal to (z−z̄)`
`! and such that

(6.14) P k,γ
′

m,z,z̄(·) =
∑

`:k+`∈∂γ′

∫
Rd+1

∂k+`Pm(z̄ + u− ·)µ`(z − z̄, du) .

Recall also that Lp(n0) stands for the space Lp((2−2n0 ∧T, 2−2(n0−1)∧T )×Td, dz). Finally, we set for
every m ≥ 0:

Pmf(z) :=
∑
ζ∈Aγ

∑
k∈Nd+1:|k|<ζ+β

Xk

k!
〈ΠzQζf(z), ∂kPm(z − ·)〉

+
∑

k∈Nd+1:|k|<γ+2

Xk

k!
〈Rf −Πzf(z), ∂kPm(z − ·)〉 .

This is convenient since for every k ∈ Nd+1 we have

QkPγ+f(z) =
∑
m≥0

QkPmf(z) .

Proof of Theorem 3.9. We subdivide the proof into three steps: first we bound the local terms of the
Dγ,η,Tp -norm, second the translation terms and finally we establish the convolution identity. We only
consider the case where we work with a single model. The bounds in the case where we have two
models can easily be obtained using the following two identities:

ΠzQζτ − Π̄zQζ τ̄ = ΠzQζ(τ − τ̄) + (Πz − Π̄z)Qζ τ̄ ,(
Πz+hQζΓz+h,z − Π̄z+hQζ Γ̄z+h,z

)
τ̄ = Πz+hQζ(Γz+h,z − Γ̄z+h,z)τ̄ + (Πz+h − Π̄z+h)Qζ Γ̄z+h,z τ̄ .

For notational convenience, we take T = 1 in the proof. It is plain that the proof carries through if
T is arbitrary.

First step: local terms.
At non-integer levels ζ ∈ Aγ , we have for all z ∈ (0, T )× Td∣∣Pγ+f(z)

∣∣
ζ+2

t
η′−ζ−2

2

=

∣∣I(f(z))
∣∣
ζ+2

t
η′−ζ−2

2

≤

∣∣f(z)
∣∣
ζ

t
η−ζ
2

,
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so that the required bound follows at once. Let us now consider integer levels: we fix k ∈ Nd+1 such
that |k| < γ′. We have∥∥∥ ∑

m≥0

∣∣Qk(Pmf)(z)
∣∣

t
η′−|k|

2

∥∥∥
Lp((0,1)×Td)

.

( ∑
n0≥1

∥∥∥ ∑
m≥0

∣∣Qk(Pmf)(z)
∣∣

2−n0(η′−|k|)

∥∥∥p
Lp(n0)

) 1
p

.

The bound is carried out differently according to the relative values of n0 and m. First, we assume
that n0 + 2 ≥ m and we write

k!Qk(Pmf)(z) = 〈Rf, ∂kPm(z − ·)〉 −
∑

ζ≤|k|−2

〈ΠzQζf(z), ∂kPm(z − ·)〉 .

By (6.1), we immediately get the desired bound for the first term on the r.h.s. Regarding the second
term, we only have to consider non-integer values of ζ: indeed, for integer values of ζ the corresponding
terms vanish since Pm is assumed to annihilate polynomials. We write for all ζ ≤ |k| − 2 (necessarily
ζ < |k| − 2 from the previous observation)∥∥∥∣∣〈ΠzQζf(z), ∂kPm(z − ·)〉

∣∣
2−n0(η′−|k|)

∥∥∥
Lp(n0)

.
∥∥∥ |f(z)|ζ2−m(2−|k|+ζ)

2−n0(η′−|k|)

∥∥∥
Lp(n0)

. 2−(n0−m)(|k|−2−ζ)
∥∥∥ |f(z)|ζ
t
η−ζ
2

∥∥∥
Lp(n0)

,

uniformly over all m ≤ n0 + 2 and all n0 ≥ 1. Hence( ∑
n0≥1

∥∥∥ ∑
m≤n0+2

∣∣〈ΠzQζf(z), ∂kPm(z − ·)〉
∣∣

2−n0(η′−|k|)

∥∥∥p
Lp(n0)

) 1
p

.
∥∥∥ |f(z)|ζ
t
η−ζ
2

∥∥∥
Lp((0,1)×Td,dz)

,

as required.
We turn to the case where n0 + 2 < m and we write

k!Qk(Pmf)(z) = 〈Rf −Πzf(z), ∂kPm(z − ·)〉+
∑

ζ>|k|−2

〈ΠzQζf(z), ∂kPm(z − ·)〉 .

The bound of the second term proceeds analogously to the bound of the second term in the previous
case: the change of sign of n0 + 2−m is compensated by the change of sign of |k| − 2− ζ so that the
series in m converges. To bound the first term, we use Theorem 3.6 to get∥∥∥∣∣〈Rf −Πzf(z), ∂kPm(z − ·)〉

∣∣
2−n0(η′−|k|)

∥∥∥
Lp(n0)

. 2−(m−n0)(γ+2−|k|)
∥∥∥ sup
ϕ∈Br

∣∣〈Rf −Πzf(z), ϕ2−m

z 〉
∣∣

2−mγ2−n0(η−γ)

∥∥∥
Lp(n0)

. 2−(m−n0)(γ′−|k|)|||f |||η,T,D ,

uniformly over all 1 ≤ n0 < m − 2, where D = (2−(n0+1), 2−(n0−1)) × Td and the notation |||f |||η,T,D
was introduced below (6.6). Using the fact that |k| < γ′, we get the bound( ∑

n0≥1

∥∥∥ ∑
m>n0+2

∣∣〈Rf −Πzf(z), ∂kPm(z − ·)〉
∣∣

2−n0(η′−|k|)

∥∥∥p
Lp(n0)

) 1
p

. |||f ||| ,

as required.

Second step: translation terms. We first consider the case 1
3

√
t ≤ 2−m. We write

k!Qk
(
(Pmf)(z + h)− Γz+h,z(Pmf)(z)

)
= 〈Rf, P k,γ

′

m,z+h,z〉 − 〈Πzf(z), P k,γ
′

m,z+h,z〉

−
∑

ζ≤|k|−2

〈Πz+hQζ(f(z + h)− Γz+h,zf(z)), ∂kPm(z + h− ·)〉 .
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We bound separately the three terms on the r.h.s. Let us introduce the convenient notation Lp(n0, h)
that stands for the space

Lp((2−2n0 , 2−2(n0−1)) ∩ (3|h|2, 1− |h|2)× Td, dz) .

We start with the second term. Using (6.14), we find∥∥∥ 〈Πzf(z), P k,γ
′

m,z+h,z〉
2−n0(η′−γ′)|h|γ′−|k|

∥∥∥
Lp(n0,h)

.
∑

`:k+`∈∂γ′

∥∥∥∫
Rd+1

〈Πzf(z), ∂k+`Pm(z + u− ·)〉
2−n0(η′−γ′)|h|γ′−|k|

µ`(h, du)
∥∥∥
Lp(n0,h)

.
∑

`:k+`∈∂γ′
|h||`|+|k|−γ

′
2−n0(γ−ζ)2−m(2−|k|−|`|+ζ)

∥∥∥ |f(z)|ζ
2−n0(η−ζ)

∥∥∥
Lp(n0,h)

,

so that, since γ′ − |k| − |`| < 0 and |h| ≤
√
t, we get∥∥∥ ∑

m≤n0+2

〈Πzf(z), P k,γ
′

m,z+h,z〉
2−n0(η′−γ′)|h|γ′−|k|

∥∥∥
Lp(n0,h)

.
∥∥∥ |f(z)|ζ

2−n0(η−ζ)

∥∥∥
Lp(n0,h)

,

uniformly over all n0 ≥ 1. Taking the `p(n0 ≥ 1)-norm of the latter, we find a bound of order |||f ||| as
required. We pass to the first term. Using (6.14), we find∥∥∥ ∑

m≤n0+2

〈Rf, P k,γ
′

m,z+h,z〉
2−n0(η′−γ′)|h|γ′−|k|

∥∥∥
Lp(n0,h)

.
∑

`:k+`∈∂γ′

∥∥∥∫
Rd+1

∑
m≤n0+2

〈Rf, ∂k+`Pm(z + u− ·)〉
2−n0(η′−γ′)|h|γ′−|k|

µ`(h, du)
∥∥∥
Lp(n0,h)

.
∑

`:k+`∈∂γ′

(2−n0

|h|

)γ′−|k|−|`|∥∥∥ ∑
m≤n0+2

∣∣〈Rf, ∂k+`Pm(z − ·)〉
∣∣

2−n0(η′−|k|−|`|)

∥∥∥
Lp([2−2(n0+1),2−2(n0−2)∧1]×Td)

.
∑

`:k+`∈∂γ′

∥∥∥ ∑
m≤n0+2

∣∣〈Rf, ∂k+`Pm(z − ·)〉
∣∣

2−n0(η′−|k|−|`|)

∥∥∥
Lp([2−2(n0+1),2−2(n0−2)∧1]×Td)

.

Since γ′ − |k| − |`| < 0 and |h| ≤ 2−n0 , we use (6.1) to bound the `p(n0 ≥ 1)-norm of the previous
quantity by a term of order |||f ||| as required. Regarding the third term, by the same argument as
above we can disregard the integer values ζ. Thus, for all ζ < |k| − 2 we have∥∥∥ 〈Πz+hQζ(f(z + h)− Γz+h,zf(z)), ∂kPm(z + h− ·)〉

2−n0(η′−γ′)|h|γ′−|k|
∥∥∥
Lp(n0,h)

. 2−m(2−|k|+ζ)|h||k|−ζ+γ−γ
′
∥∥∥∣∣f(z + h)− Γz+h,zf(z)

∣∣
ζ

|h|γ−ζ2−n0(η−γ)

∥∥∥
Lp(n0,h)

,

uniformly over all n0 ≥ m− 2 and all |h| ≤ 2−n0 . Using the fact that ζ < |k| − 2, we deduce that the
sum over all m ≤ n0 + 2 is bounded by a term of order∥∥∥∣∣f(z + h)− Γz+h,zf(z)

∣∣
ζ

|h|γ−ζ2−n0(η−γ)

∥∥∥
Lp(n0,h)

,

so that the `p(n0 ≥ 1)-norm of the latter is bounded by a term of order |||f |||.
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We now consider the case where |h| ≤ 2−m ≤ 1
3

√
t, in which case we write

k!Qk
(
(Pmf)(z + h)− Γz+h,z(Pmf)(z)

)
= 〈Rf −Πzf(z), P k,γ

′

m,z+h,z〉

−
∑

ζ≤|k|−2

〈Πz+hQζ(f(z + h)− Γz+h,zf(z)), ∂kPm(z + h− ·)〉 .

Using (6.14) and the reconstruction bound (3.9), we get∥∥∥ ∑
m:|h|≤2−m≤ 1

3 2−n0

〈Rf −Πzf(z), P k,γ
′

m,z+h,z〉
2−n0(η′−γ′)|h|γ′−|k|

∥∥∥
Lp(n0)

.
∑

`:k+`∈∂γ′

∥∥∥ ∑
m:|h|≤2−m≤ 1

3 2−n0

∫
Rd+1

〈Rf −Πzf(z), ∂k+`Pm(z + u− ·)〉
2−n0(η′−γ′)|h|γ′−|k|

µ`(h, du)
∥∥∥
Lp(n0,h)

.
∑

`:k+`∈∂γ′

∑
m:|h|≤2−m≤ 1

3 2−n0

2−m(γ′−|k|−|`|)|h||k|+|`|−γ
′
|||f |||(2−(n0+1),2−(n0−2)∧1)×Td

. |||f |||(2−(n0+1),2−(n0−2)∧1)×Td ,

uniformly over all n0 ≥ 1 such that |h| ≤ 2−n0/3. Taking the `p(n0 ≥ 1))norm, this yields a bound
of order |||f ||| as required. We turn to the second term. By the same argument as above, we consider
the non-integer values of ζ only, and get:∥∥∥ ∑

m:|h|≤2−m≤ 1
3 2−n0

〈Πz+hQζ(f(z + h)− Γz+h,zf(z)), ∂kPm(z + h− ·)〉
2−n0(η′−γ′)|h|γ′−|k|

∥∥∥
Lp(n0,h)

.
∑

m:|h|≤2−m≤ 1
3 2−n0

2−m(2−|k|+ζ)|h||k|−ζ+γ−γ
′
∥∥∥ |f(z + h)− Γz+h,zf(z)|ζ

2−n0(η−γ)|h|γ−ζ
∥∥∥
Lp(n0,h)

.
∥∥∥ |f(z + h)− Γz+h,zf(z)|ζ

2−n0(η−γ)|h|γ−ζ
∥∥∥
Lp(n0,h)

,

so that the `p(n0 ≥ 1)-norm of the latter is bounded by a term of order |||f |||.

Let us finally consider the case where 2−m ≤ |h| ≤ 1
3

√
t. We write

k!Qk
(
(Pmf)(z + h)− Γz+h,z(Pmf)(z)

)
= 〈Rf −Πz+hf(z + h), ∂kPm(z + h− ·)〉

− 〈Rf −Πzf(z),
∑

`:|k+`|<γ′

h`

`!
∂k+`Pm(z − ·)〉

+
∑

ζ>|k|−2

〈Πz+hQζ(f(z + h)− Γz+h,zf(z)), ∂kPm(z + h− ·)〉 .

Regarding the first term, we set D = (2−2(n0+1), 2−2(n0−1))× Td and we have∥∥∥ ∑
m:2−m≤|h|

〈Rf −Πz+hf(z + h), ∂kPm(z + h− ·)〉
2−n0(η′−γ′)|h|γ′−|k|

∥∥∥
Lp(n0,h)

.
∑

m:2−m≤|h|

2−m(2−|k|+γ)|h||k|−γ
′
|||f |||η,T,D

. |||f |||η,T,D ,
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so that the corresponding `p-norm is bounded by a term of order |||f |||. The bound of the second term
is very similar. Regarding the third term, we have∥∥∥ ∑

m:2−m≤|h|

〈Πz+hQζ(f(z + h)− Γz+h,zf(z)), ∂kPm(z + h− ·)〉
2−n0(η′−γ′)|h|γ′−|k|

∥∥∥
Lp(n0,h)

.
∑

m:2−m≤|h|

2−m(2−|k|+ζ)|h||k|−ζ+γ−γ
′
∥∥∥ |f(z + h)− Γz+h,zf(z)|ζ

2−n0(η−γ)|h|γ−ζ
∥∥∥
Lp(n0,h)

.
∥∥∥ |f(z + h)− Γz+h,zf(z)|ζ

2−n0(η−γ)|h|γ−ζ
∥∥∥
Lp(n0,h)

,

so that the corresponding `p-norm is bounded by a term of order |||f |||.

Third step: convolution identity. The element P+f ∈ Dγ
′,η′,T
p can always be restricted to Dγ′′,η′′,Tp

for any given γ′′ ∈ (0, 1), and for η′′ = η′ + (γ′′ − γ′). Using the uniqueness part of Theorem 3.6, we
deduce that the identity P+ ∗ Rf = RP+f holds as soon as we have

sup
λ∈(0,1]

∥∥∥ sup
η∈Br

∣∣〈P+ ∗ Rf −ΠzP+f(z), ηλz 〉
∣∣

λγ′′t
η′′−γ′′

2

∥∥∥
Lp((3λ2,T−λ2)×Td)

<∞ .

A simple computation shows that

〈P+ ∗ Rf −ΠzP+f(z), ηλz 〉 =
∑
m≥0

〈Rf −Πzf(z),

∫
ηλz (z + h)P 0,γ′′

m,z+h,zdh〉 ,

One has to distinguish three cases according as 1
3

√
t ≤ 2−m, λ ≤ 2−m ≤ 1

3

√
t and 2−m ≤ λ ≤ 1

3

√
t.

In every case, the bound is virtually the same as the bound of the translation terms presented above
so we do not provide the details. �

Proof of Theorem 3.12. Recall that P− is a compactly supported, smooth function. Using the bound
(6.2) that was proved earlier, we get∥∥∥ 〈Rf, ∂kP−(z − ·)〉

t
η′−|k|

2

∥∥∥
Lp((0,T )×Td,dz)

. |||f ||| ,

for all k ∈ Nd+1. This yields the required bounds on the local terms of the Dγ′,η′,Tp -norm. Regarding
the translation terms, we observe that

k!Qk
(
P−f(z + h)− Γz+h,zP−f(z)

)
= 〈Rf, P k,γ

′

−,z+h,z〉 ,

where P k,γ
′

−,z,z+h is the function defined in (6.13) upon replacing Pm by P−. Combining (6.14) and the
bound already obtained above, we easily deduce that the bound on the translation terms is satisfied.
To get the identity RP−f = P− ∗ Rf , we restrict P−f to Tγ′′ with γ′′ ∈ (0, 1) and we observe that

ΠzP−f(z) = (P− ∗ Rf)(z) , z ∈ (0, T )× Td .

Since the r.h.s. defines a smooth function, the uniqueness part of Theorem 3.6 ensures that RP−f
coincides with P− ∗ Rf as required. �

6.5. Convolution of the shift.

Proof of Lemma 3.13. Recall the notation L2(n0). Any function h ∈ L2((0, T )×Td) can be viewed as

an element of B−κ/32 ((−∞, T ]× Td) for some small κ > 0. Applying Lemma 6.3 and Equation (6.5),
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we deduce that

(6.15)

( ∑
n0≥nT

∥∥∥ ∑
m≤n0+4

∣∣〈h, ∂kPm(z − ·)〉
∣∣

2−n0(−κ2−|k|+2)

∥∥∥2

L2(n0)

) 1
2

<∞ .

and

(6.16)

( ∑
n0≥nT

∥∥∥∣∣〈h, ∂kP−(z − ·)〉
∣∣

2−n0(−κ2−|k|+2)

∥∥∥2

L2(n0)

) 1
2

<∞ .

We now prove that Ph belongs to Dγ,γ,T2 with γ = 2 − κ. Regarding the local terms, first observe
that

k!
∣∣Ph(z)

∣∣
k

=
∣∣〈h, ∂kP−(z − ·)〉

∣∣+
∑
m≥0

∣∣〈h, ∂kPm(z − ·)〉
∣∣ .

We distinguish the cases n0 + 2 < m and n0 + 2 ≥ m where n0 is the integer such that t ∈
[2−2n0 , 2−2(n0−1)]. Assume first that n0 + 2 < m. We have∥∥∥ 〈h, ∂kPm(z − ·)〉

t
γ−|k|

2

∥∥∥
L2(n0)

.
2−m(2−|k|−κ2 )

2−n0(γ−|k|)

∥∥∥ 〈h, ∂kPm(z − ·)〉
2−m(2−|k|−κ2 )

∥∥∥
L2(n0)

,

so that( ∑
n0≥nT

∥∥∥ ∑
m>n0+2

∣∣〈h, ∂kPm(z − ·)〉
∣∣

t
γ−|k|

2

∥∥∥2

L2(n0)

) 1
2

.
∑
m≥0

( ∑
m−2>n0≥nT

∥∥∥∣∣〈h, ∂kPm(z − ·)〉
∣∣

t
γ−|k|

2

∥∥∥2

L2(n0)

) 1
2

.
∑
m≥0

2−m
κ
2

( ∑
m−2>n0≥nT

∥∥∥ 〈h, ∂kPm(z − ·)〉
2−m(2−|k|−κ2 )

∥∥∥2

L2(n0)

) 1
2

.
∑
m≥0

2−m
κ
2 sup
m≥0

∥∥∥ sup
ϕ∈Br

∣∣〈h, ϕ2−m

z 〉
∣∣

2m
κ
2

∥∥∥
L2((0,T )×Td)

,

which is bounded as required. The computation is similar for P−. On the other hand, whenm ≤ n0+2,
(6.15) and (6.16) yield the desired bound.
To treat translation terms in the norm, one proceeds similarly. Actually, the proof is very similar to
that of Theorem 3.9: one has to distinguish three cases according to the relative values of |h|,

√
t and

2−n0 , but the arguments are essentially the same. �
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