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Abstract
We study the problems of asymptotic and approximate consensus in which agents have to get
their values arbitrarily close to each others’ inside the convex hull of initial values, either without
or with an explicit decision by the agents. In particular, we are concerned with the case of
multidimensional data, i.e., the agents’ values are d-dimensional vectors. We introduce two new
algorithms for dynamic networks, subsuming classical failure models like asynchronous message
passing systems with Byzantine agents. The algorithms are the first to have a contraction
rate and time complexity independent of the dimension d. In particular, we improve the time
complexity from the previously fastest approximate consensus algorithm in asynchronous message
passing systems with Byzantine faults by Mendes et al. [Distrib. Comput. 28] from Ω

(
d log d∆

ε

)
to O

(
log ∆

ε

)
, where ∆ is the initial and ε is the terminal diameter of the set of vectors of correct

agents.
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1 Introduction

The problem of one-dimensional asymptotic consensus requires a system of agents, starting
from potentially different initial real values, to repeatedly set their local output variables such
that all outputs converge to a common value within the convex hull of the inputs. This problem
has been studied in distributed control theory both from a theoretical perspective [10, 19, 5, 2]
and in the context of robot gathering on a line [3] and clock synchronization [20, 16].
Extensions of the problem to multidimensional values naturally arise in the context of robot
gathering on a plane or three-dimensional space [11], as subroutines in formation forming [10],
and distributed optimization [4], among others.

The related problem of approximate consensus, also called approximate agreement, re-
quires the agents to eventually decide, i.e., to only set their output variables once. Additionally
all output variables must be within a predefined ε > 0 distance of each other and lie within
the convex hull of the inputs. There is a large body of work on approximate consensus in
distributed computing devoted to solvability and optimality of time complexity [13, 14] and
applications in clock synchronization; see e.g. [24, 23].
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27:2 Fast Multidimensional Asymptotic and Approximate Consensus

Both problems were studied under different assumptions on the underlying communication
between agents and their computational strength, including fully connected asynchronous
message passing with Byzantine agents [24, 13] and communication in rounds by message
passing in dynamic communication networks [19, 10]. In [6, 7] Charron-Bost et al. analyzed
solvability of asymptotic consensus and approximate consensus in dynamic networks with
round-wise message passing defined by network models: a network model is a set of directed
communication graphs, each of which specifies successful reception of broadcast messages; see
Section 2.1 for a formal definition. Solving asymptotic consensus in such a model requires to
fulfill the specification of asymptotic consensus in any sequence of communication graphs from
the model. Charron-Bost et al. showed that in these highly dynamic networks, asymptotic
consensus and approximate consensus are solvable in a network model if and only if each of
its graphs contains a spanning rooted tree. An interesting class of network models are those
that contain only non-split communication graphs, i.e., communication graphs where each
pair of nodes has a common incoming neighbor. Several classical fault-models were shown
to be instances of non-split models [6], among them asynchronous message passing systems
with omissions.

Recently the multidimensional version of approximate consensus received attention.
Mendes et al. [18] were the first to present algorithms that solve approximate consensus
in Byzantine message passing systems for d-dimensional real vectors. Their algorithms,
Mendes–Herlihy and Vaidya–Garg, are based on the repeated construction of so called safe
areas of received vectors to constraint influence of values sent by Byzantine agents, followed
by an update step, ensuring that the new output values are in the safe area. They showed
that the diameter of output values contracts by at least 1/2 in each dimension every d

rounds in the Mendes–Herlihy algorithm, and the diameter of the output values contracts
by at least 1 − 1/n every round in the Vaidya–Garg algorithm, where n is the number of
agents. The latter bound assumes f = 0 Byzantine failures and slightly worsens for f > 0.
In terms of contraction rates as introduced in [15] (see Section 2.3 for a definition) of the
respective non-terminating algorithms for asymptotic consensus, they thus obtain upper
bounds of d

√
1/2 and 1−1/n. Note that the Mendes–Herlihy algorithm has a contraction rate

depending only on d but requires an a priori common coordinate system, and the algorithm’s
outcome depends on the choice of this coordinate system. By contrast the Vaidya–Garg
algorithm is coordinate-free, i.e., its outcome is invariant under coordinate transformations
such as translation and rotation, but it has a contraction rate depending on n.

Charron-Bost et al. [8] analyzed convergence of the Centroid algorithm where agents
repeatedly update their position to the centroid of the convex hull of received vectors. The
algorithm is coordinate-free and has a contraction rate of d/(d + 1), independent of n.
Local time complexity of determining the centroid was shown to be #P-complete [21] while
polynomial in n for fixed d.

The contraction rate of the Centroid algorithm is always smaller or equal to that of the
Mendes-Herlihy algorithm, though both contraction rates converge to 1 at the same speed
with the dimension d going to infinity. More precisely,

lim
d→∞

∣∣∣1− d

√
1
2

∣∣∣∣∣∣1− d
d+1

∣∣∣ = log 2 ,

which implies
∣∣∣1− d

√
1
2

∣∣∣ = Θ
(∣∣∣1− d

d+1

∣∣∣).
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MidExtremes ApproachExtreme Centroid MH VG

contraction rate
√

7
8

*
√

31
32

* d
d+1

d
√

1
2 1 − 1

n

local TIME O(n2d) O(nd) #P-hard O(nd) O(nd)

coordinate-free yes yes yes no yes
Table 1 Comparison of local time complexity and contraction rates in non-split network models.

Entries marked with an * are new results in this paper.

1.1 Contribution

In this work we present two new algorithms that are coordinate-free: the MidExtremes and the
ApproachExtreme algorithm, and study their behavior in dynamic networks. Both algorithms
are coordinate-free, operate in rounds, and are shown to solve asymptotic agreement in
non-split network models. Terminating variants of them are shown to solve approximate
agreement in non-split network models.

As a main result we prove that their contraction rate is independent of network size n
and dimension d of the initial values. For MidExtremes we obtain an upper bound on the
contraction rate of

√
7/8 and for ApproachExtreme of

√
31/32.

Due to the fact that classical failure models like asynchronous message passing with
Byzantine agents possess corresponding network models, our results directly yield improved
algorithms for the latter failure models: In particular, we improve the time complexity from
the previously fastest approximate consensus algorithm in asynchronous message passing
systems with Byzantine faults, the Mendes–Herlihy algorithm, from Ω

(
d log d∆

ε

)
to O

(
log ∆

ε

)
,

where ∆ is the initial and ε is the terminal diameter of the set of vectors of correct agents.
Note that our algorithms share the benefit of being coordinate-free with the Vaidya–Garg
algorithm presented in the same work.

Table 1 summarizes our results and the algorithms discussed above for asymptotic
and approximate consensus. The table compares the new algorithms MidExtremes and
ApproachExtreme to the Centroid, Mendes–Herlihy (MH), and Vaidya–Garg (VG) algorithms
with respect to their local time complexity per agent and round and an upper bound on
their contraction rate in non-split network models. A lower bound of 1/2 on the contraction
rate is due to Függer et al. [15].

The Mendes-Herlihy algorithm has a smaller contraction rate than the MidExtremes
algorithm whenever d 6 10; the Centroid algorithm whenever d 6 14. The Centroid algorithm
is hence the currently fastest known algorithm for dimensions 3 6 d 6 14. For dimensions
d = 1 and d = 2, the componentwise MidPoint algorithm has an optimal contraction rate
of 1/2 [8]. Note that the MidExtremes algorithm is equivalent to the componentwise MidPoint
algorithm for dimension d = 1. For d > 15, the MidExtremes algorithm is the currently
fastest known algorithm.

We finally note that all our results hold for the class of inner product spaces and are
not restricted to the finite-dimensional Euclidean spaces Rd, in contrast to previous work.
For example, this includes the set of square-integrable functions on a real interval. However,
finite value representation and means to calculate the norm have to be guaranteed. Further,
local TIME becomes n2, respectively, n norm calculations.

DISC 2018



27:4 Fast Multidimensional Asymptotic and Approximate Consensus

2 Model and Problem

We fix some vector space V with an inner product 〈·, ·〉 : V × V → R and the norm ‖x‖ =√
〈x, x〉. The prototypical finite-dimensional example is V = Rd with the usual inner product

and the Euclidean norm. The diameter of set A ⊆ V is denoted by diam(A) = sup
x,y∈A

‖x− y‖.

For an n-tuple x = (x1, . . . , xn) ∈ V n of vectors in V , we write diam(x) by slight abuse of
notation to denote diam

(
{x1, . . . , xn}

)
.

2.1 Dynamic Network Model

We consider a distributed system of n agents that communicate in rounds via message passing,
like in the Heard-Of model [9]. In each round, each agent i, broadcasts a message based on
its local state, receives some messages, and then updates its local state based on the received
messages and its local state. Rounds are communication closed: agents only receive messages
sent in the same round.

In each round t > 0, messages are delivered according to the directed communication
graph Gt for round t: the message broadcast by i in round t is received by j if and only if
the directed edge (i, j) is in Gt. Agents always receive their own messages, i.e., (i, i) ∈ Gt.
A communication pattern is an infinite sequence G1, G2, . . . of communication graphs. A
(deterministic) algorithm specifies, for each agent i, the local state space of i, the set of
initial states of i, the sending function for which message to broadcast, and the state
transition function. For asymptotic consensus, each agent i’s local state necessarily contains
a variable yi ∈ V , which initially holds i’s input value and is then used as its output
variable. We require that there is an initial state with initial value v for all vectors v ∈ V . A
configuration is an n-tuple of local states. It is called initial if all local states are initial. The
execution of an algorithm from initial configuration C0 induced by communication pattern
G1, G2, . . . is the unique sequence C0, G1, C1, G2, C2, . . . alternating between configurations
and communication graphs where Ct is the configuration obtained by delivering messages in
round t according to communication graph Gt, and applying the sending and local transition
functions to the local states in Ct−1 according to the algorithm. For a fixed execution
and a local variable z of the algorithm, we denote by zi(t) its value at i at the end of
round t, i.e., in configuration Ct. In particular, yi(t) is the value of yi in Ct. We write
y(t) =

(
y1(t), . . . , yn(t)

)
for the collection of the yi(t).

A specific class of algorithms for asymptotic consensus are the so-called convex combination,
or averaging, algorithm, which only ever update the value of yi inside the convex hull of yj it
received from other agents j in the current round. Many algorithms in the literature belong
to this class, as do ours.

Following [6], we study the behavior of algorithms for communication patterns from a
network model, i.e., a non-empty set of communication patterns: a communication pattern is
from network model N if all its communication graphs are in N . We will later on show that
such an analysis also allows to prove new performance bounds for more classical fault-models
like asynchronous message passing systems with Byzantine agents.

An interesting class of network models are so called non-split models, i.e., those that
contain only non-split communication graphs: a communication graph is non-split if every
pair of nodes has a common in-neighbor. Charron-Bost et al. [6] showed that asymptotic
and approximate consensus is solvable efficiently in these network models in the case of one
dimensional values. They further showed that: (i) In the weakest (i.e., largest) network
model in which asymptotic and approximate consensus are solvable, the network model of
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all communication graphs that contain a rooted spanning tree, one can simulate non-split
communication graphs. (ii) Classical failure models like link failures as considered in [22]
and asynchronous message passing systems with crash failures have non-split interpretations.
Indeed we will make use of such a reduction from non-split network models to asynchronous
message passing systems with Byzantine failures in Section 3.2.

2.2 Problem Formulation
An algorithm solves the asymptotic consensus problem in a network model N if the following
holds for every execution with a communication pattern from N :

Convergence. For every agent i, the sequence
(
yi(t)

)
t>0 converges.

Agreement. If yi(t) and yj(t) converge, then they have a common limit.
Validity. If yi(t) converges, then its limit is in the convex hull of the initial values
y1(0), . . . , yn(0).

For the deciding version, the approximate consensus problem (see, e.g., [17]), we augment
the local state of i with a variable di initialized to ⊥. Agent i is allowed to set di to some
value v 6= ⊥ only once, in which case we say that i decides v. In addition to the initial
values yi(0), agents initially receive the error tolerance ε and an upper bound ∆ on the
maximum distance of initial values. An algorithm solves approximate consensus in N if for
all ε > 0 and all ∆, each execution with a communication pattern in N with initial diameter
at most ∆ satisfies:

Termination. Each agent eventually decides.
ε-Agreement. If agents i and j decide di and dj , respectively, then ‖di − dj‖6 ε.
Validity. If agent i decides di, then di is in the convex hull of initial values y1(0), . . . , yn(0).

2.3 Performance Metrics
A direct natural performance metric to assess the speed of convergence of agent outputs y
along an execution is the round-by-round convergence rate

c(t) =
diam

(
y(t)

)
diam

(
y(t− 1)

)
for a given round t > 1 in the respective execution. The round-by-round convergence rate is
the supremum over all executions and rounds. While a uniform upper bound of β < 1 on
the round-by-round convergence rate establishes convergence of the outputs, this measure
fails in establishing convergence and comparing speeds of convergence for several algorithms
considered in literature that set their output values every k > 1 rounds, or that do not
converge during an initial phase.

The convergence rate, defined by

lim sup
t→∞

t

√
diam

(
y(t)

)
,

allows a comparison in this case by measuring eventual amortized convergence speed. For
example, an algorithm that eventually contracts by a factor β < 1 every k > 1 rounds has a
convergence rate of k

√
β.

As a performance measure for general asymptotic consensus algorithms, where agents
do not necessarily set their outputs y to within the convex hull of previously received vales,
[15] considered the contraction rate, measuring contraction of reachable output limits rather

DISC 2018



27:6 Fast Multidimensional Asymptotic and Approximate Consensus

than output values: Following [15], the valency of a configuration C, denoted by Y ∗(C), is
defined as the set of limits of the values yi in executions that include configuration C. If the
execution is clear from the context, we abbreviate Y ∗(t) = Y ∗(Ct). The contraction rate of
an execution is then defined as

lim sup
t→∞

t

√
diam

(
Y ∗(t)

)
.

The contraction rate of an algorithm in a network model is the supremum of the contraction
rates of its executions. For convex combination algorithms, the contraction rate is always
upper-bounded by its convergence rate, that is,

lim sup
t→∞

t

√
diam

(
Y ∗(t)

)
6 lim sup

t→∞

t

√
diam

(
y(t)

)
,

since the set of reachable limits Y ∗(t) at round t is contained in the set of output values
{y1(t), . . . , yn(t)} at round t for these algorithms.

Clearly, an algorithm that guarantees a round-by-round convergence rate of c(t) 6 β

also guarantees a convergence rate of at most β. Since both of our algorithms are convex
combination algorithms, all our upper bounds on the round-by-round convergence rates are
also upper bounds for the contraction rates.

The convergence time of a given execution measures the time from which on all values
are guaranteed to be in an ε of each other. Formally, it is the function defined as

T (ε) = min
{
t > 0 | ∀τ > t : diam

(
y(τ)

)
6 ε
}
.

In an execution that satisfies c(t) 6 β for all t > 1, we have the bound T (ε) 6
⌈
log1/β

∆
ε

⌉
on

the convergence time, where ∆ = diam
(
y(0)

)
is the diameter of the set of initial values.

3 Algorithms

In this section, we introduce two new algorithms for solving asymptotic and approximate
consensus in arbitrary inner product spaces with constant contraction rates. We present
our algorithms and prove their correctness and bounds on their performance in non-split
networks models. While we believe that this framework is the one in which our arguments
are clearest, our results can be extended to a number of other models whose underlying
communication graphs turn out to be, in fact, non-split. The following is a selection of these
models:

Rooted network models: This is the largest class of network models in which asymptotic
and approximate consensus are solvable [6]. A network model is rooted if all its commu-
nication graphs include a directed rooted spanning tree, though not necessarily the same
in all graphs. Although not every such communication graph is non-split, Charron-Bost
et al. [6] showed that the cumulative communication graph over n− 1 rounds in a rooted
network model is always non-split. In such network models, one can use amortized
versions [7] of the algorithms, which operate in macro-rounds of n− 1 rounds each. If
an algorithm has a contraction rate β in non-split network models, then its amortized
version has contraction rate n−1

√
β in rooted network models. The amortized versions of

our algorithms thus have contraction rates independent of the dimension of the data.
Omission faults: In the omission fault model studied by Santoro and Widmayer [22], the
adversary can delete up to t messages from a fully connected communication graph each
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round. If t 6 n− 1, then all communication graphs are non-split. If t 6 2n− 3, then all
communication graphs are rooted [6]. Our algorithms are hence applicable in both these
cases and have contraction rates independent of the dimension.
Asynchronous message passing with crash faults: Building asynchronous rounds atop of
asynchronous message passing by waiting for n− f messages in each round, the resulting
communication graphs are non-split as long as the number f of possible crashes is strictly
smaller than n/2. We hence get a constant contraction rate using our algorithms also
in this model. For f > n/2, a partition argument shows that neither asymptotic nor
approximate consensus are solvable.
Asynchronous message passing with Byzantine faults: Mendes et al. [18] showed that
approximate consensus is solvable in asynchronous message passing systems with f

Byzantine faults if and only if n > (d+ 2)f where d is the dimension of the data. The
algorithms they presented construct a round structure whose communication graphs
turn out to be non-split. Since the construction is not straightforward, we postpone the
discussion of our algorithms in this model to Section 3.2.

3.1 Non-split Network Models

We now present our two new algorithms, MidExtremes and ApproachExtreme. Both operate
in the following simple round structure: broadcast the current value yi and then update it to
a new value depending on the set Rcvi of values yj received from agents j in the current
round. Both of them only need to calculate distances between values and form the midpoint
between two values. In particular, we do not need to make any assumption on the dimension
of the space of possible values for implementing the algorithms. We only need a distance
and an affine structure, for calculating the midpoint. Our correctness proofs, however, rely
on the fact that the distance function is a norm induced by an inner product.

Note that, although we present algorithms for asymptotic consensus, combined with
our upper bounds on the convergence time, one can easily deduce versions for approximate
consensus by having the agents decide after the upper bound. Our upper bounds only depend
on the precision parameter ε and (an upper bound on) the initial diameter ∆. While upper
bounds on the initial diameter cannot be deduced during execution in general non-split
network models, it can be done in specific models, like asynchronous message passing with
Byzantine faults [18]. Otherwise, we need to assume an a priori known bound on the initial
diameter to solve approximate consensus.

The algorithm MidExtremes, which is shown in Algorithm 1, updates its value yi to the
midpoint of a pair of extremal points of Rcvi that realizes its diameter. In the worst case, it
thus has to compare the distances of Θ(n2) pairs of values. For the specific case of Euclidean
spaces V = Rd stored in a component-wise representation, this amounts to O(n2d) local
scalar operations for each agent in each round.

It turns out that we can show a round-by-round convergence rate of the MidExtremes
algorithm independent of the dimension or the number of agents, namely

√
7/8. For the

specific case of values from the real line V = R, it reduces to the MidPoint algorithm [7],
whose contraction rate of 1/2 is known to be optimal [15].

Theorem 1. In any non-split network model with values from any inner product space, the
MidExtremes algorithm guarantees a round-by-round convergence rate of c(t) 6

√
7/8 for all

rounds t > 1. Its convergence time is at most T (ε) =
⌈
log√8/7

∆
ε

⌉
where ∆ is the diameter

of the set of initial values.

DISC 2018
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Algorithm 1 Asymptotic consensus algorithm MidExtremes for agent i
Initialization:

1: yi is the initial value in V
In round t > 1 do:

2: broadcast yi
3: Rcvi ← set of received values
4: (a, b)← arg max

(a,b)∈Rcv2
i

‖a− b‖

5: yi ←
a+ b

2

In the particular case of values from the real line, it guarantees a round-by-round conver-
gence rate of c(t) 6 1/2 and a convergence time of T (ε) =

⌈
log2

∆
ε

⌉
.

The second algorithm we present is called ApproachExtreme and shown in Algorithm 2.
It updates its value yi to the midpoint of the current value of yi and the value in Rcvi that
is the farthest from it. While having the benefit of only having to compare O(n) distances,
and hence doing O(nd) local scalar operations for each agent in each round in the case of
V = Rd with component-wise representation, the ApproachExtreme algorithm also only has
to measure distances from its current value to other agents’ values; never the distance of
two other agents’ values. This can be helpful for agents embedded into the vector space V
that can measure the distance from itself to another agent, but not necessarily the distance
between two other agents.

Algorithm 2 Asymptotic consensus algorithm ApproachExtreme for agent i
Initialization:

1: yi is the initial value in V
In round t > 1 do:

2: broadcast yi
3: Rcvi ← set of received values
4: b← arg max

b∈Rcvi

‖yi − b‖

5: yi ←
yi + b

2

The ApproachExtreme algorithm admits an upper bound of
√

31/32 on its round-by-
round convergence rate, which is worse than the

√
7/8 of the MidExtremes algorithm. For

the case of the real line V = R, we can show a round-by-round convergence rate of 3/4,
however.

Theorem 2. In any non-split network model with values from any inner product space, the
ApproachExtreme algorithm guarantees a round-by-round convergence rate of c(t) 6

√
31
32

for all rounds t > 1. Its convergence time is at most T (ε) =
⌈
log√32/31

∆
ε

⌉
where ∆ is the

diameter of the set of initial values.
In the particular case of values from the real line, it guarantees a round-by-round conver-

gence rate of c(t) 6 3/4 and a convergence time of T (ε) =
⌈
log4/3

∆
ε

⌉
.
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3.2 Asynchronous Byzantine Message Passing
We now show how to adapt algorithm MidExtremes to the case of asynchronous message
passing systems with at most f Byzantine agents. The algorithm proceeds in the same
asynchronous round structure and safe area calculation used by Mendes et al. [18] whenever
approximate consensus is solvable, i.e., when n > (d+ 2)f . Plugging in the MidExtremes
algorithm, we achieve a round-by-round convergence rate and round complexity independent
of the dimension d.

More specifically, our algorithm has a round complexity of O
(
log ∆

ε

)
, which leads to a

message complexity of O
(
n2 log ∆

ε

)
where ∆ is the maximum Euclidean distance of initial

vectors of correct agents. In contrast, the Mendes-Herlihy algorithm has a worst-case round
complexity of Ω

(
d log d∆

ε

)
and a worst-case message complexity of Ω

(
n2d log d∆

ε

)
. We are

thus able to get rid of all terms depending on the dimension d.
After an initial round estimating the initial diameter of the system, the Mendes-Herlihy

algorithm has each agent i repeat the following steps in each coordinate k ∈ {1, 2, . . . , d} for
Θ
(
log d∆

ε

)
rounds:

1. Collect a multiset Vi of agents’ vectors such that every intersection Vi ∩ Vj has at least
n− f elements via reliable broadcast and the witness technique [1].

2. Calculate the safe area Si as the intersection of the convex hulls of all sub-multisets of Vi
of size |Vi| − f . The safe area is guaranteed to be a subset of the convex hull of vectors of
correct agents. Helly’s theorem [12] can be used to show that every intersection Si ∩ Sj
of safe areas is nonempty.

3. Update the vector yi to be in the safe area Si and have its kth coordinate equal to the
midpoint of the set of kth coordinates in Si.

The fact that safe areas have nonempty pairwise intersections guarantees that the diameter
in the kth coordinate

δk(t) = max
i,j correct

∣∣∣y(k)
i (t)− y(k)

j (t)
∣∣∣

at the end of round t fulfills δk(t) 6 δk(t− 1)/2 if round t considers coordinate k. The choice
of the number of rounds for each coordinate guarantees that we have δk(t) 6 ε/

√
d after the

last round for coordinate k. This in turn makes sure that the Euclidean diameter of the set
of vectors of correct agents after all of the Θ

(
d log d∆

ε

)
rounds is at most ε.

The article of Mendes et al. [18] describes a second algorithm, the Vaidya-Garg algorithm,
which replaces steps 2 and 3 by updating yi to the non-weighted average of arbitrarily
chosen points in the safe areas of all sub-multisets of Vi of size n − f . Another difference
to the Mendes-Herlihy algorithm is that it repeats the steps not several times for every
dimension, but for Θ

(
nf+1 log d∆

ε

)
rounds in total. The Vaidya-Garg algorithm comes with

the advantage of not having to do the calculations to find a midpoint for the kth coordinate
while remaining inside the safe area, but also comes with the cost of a convergence rate and
a round complexity that depends on the number of agents.

The algorithm we propose has the same structure as the Mendes-Herlihy algorithm, with
the following differences: (i) like the Vaidya-Garg algorithm it is missing the loop over all
coordinates one-by-one, and (ii) we replace step 3 by updating vector yi to the midpoint of
two points that realize the Euclidean diameter of the safe area Si. According to our results
in Section 4.1, the Euclidean diameter

δ(t) = max
i,j correct

∥∥yi(t)− yj(t)∥∥
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of the set of vectors of correct agents at the end of round t satisfies

δ(t) 6
√

7
8δ(t− 1) .

This means that we have δ(T ) 6 ε after

T (ε) =
⌈

log√8/7
∆
ε

⌉
rounds.

4 Performance Bounds

We next show upper bounds on the round-by-round convergence rate for algorithms MidEx-
tremes (Theorem 1) and ApproachExtreme (Theorem 2) in non-split network models.

4.1 Bounds for MidExtremes
For dimension 1, MidExtremes is equivalent to the MidPoint Algorithm. We hence already
know that c(t) 6 1

2 from [7], proving the case of the real line in Theorem 1.
For the case of higher dimensions we will show that c(t) 6

√
7
8 holds. The proof

idea is as follows: For a round t > 1, we consider two agents i, j whose distance realizes
diam(y(t)). By the algorithm we know that both agents set their yi(t) and yj(t) according
to yi(t) = m = (a + b)/2 and yj(t) = m′ = (a′ + b′)/2, where a, b are the extreme points
received by agents i in round t and a′, b′ are the extreme points received by agents j in the
same round. All four points must lie within a common subspace of dimension 3, and form
the vertices of a tetrahedron as depicted in Figure 1.

Further, any three points among a, b, a′, b′ must lie within a 2 dimensional subspace,
forming a triangle. Lemma 3 states the distance from the midpoint of two of its vertices to
the opposite vertex, say c, and an upper bound in case the two edges incident to c are upper
bounded in length.

Lemma 3. Let γ > 0 and a, b, c ∈ V . Setting m = (a+ b)/2, we have

‖m− c‖2 = 1
2‖a− c‖

2 + 1
2‖b− c‖

2 − 1
4‖a− b‖

2 .

a

b

m

a′

b′

m′d′

Figure 1 Tetrahedron formed by extreme points a and b of agent i and extreme points a′ and b′

of agent j. The distance between the new agent positions m and m′ is d′.
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In particular, if ‖a− c‖ 6 γ and ‖b− c‖ 6 γ, then

‖m− c‖2 6 γ2 − 1
4‖a− b‖

2 .

Proof. We begin by calculating

‖a− c‖2 =
∥∥(a−m) + (m− c)

∥∥2 = ‖a−m‖2 + ‖m− c‖2 + 2〈a−m,m− c〉 (1)

and

‖b− c‖2 =
∥∥(b−m) + (m− c)

∥∥2 = ‖b−m‖2 + ‖m− c‖2 + 2〈b−m,m− c〉 . (2)

Adding (1) and (2), while noting ‖a−m‖2 = ‖b−m‖2 = 1
4‖a− b‖

2 and a−m = (a− b)/2 =
−(b−m), gives

‖a− c‖2 + ‖b− c‖2 = 1
2‖a− b‖

2 + 2‖m− c‖2 .

Rearranging the terms in the last equation concludes the proof. J

We are now in the position to prove Lemma 4 that is central for Theorem 1. The lemma
provides an upper bound on the distance d′ between m and m′ for the tetrahedron in Figure 1
given that all its sides are upper bounded by some γ > 0 and the sum of the lengths of edge
a, b and a′, b′, i.e., ‖a− b‖+ ‖a′ − b′‖, is lower bounded by γ. At the heart of the proof of
Lemma 4 is an application of Lemma 3 for the three hatched triangles in Figure 1.

Lemma 4. Let a, b, a′, b′ ∈ V and γ > 0 such that

diam
(
{a, b, a′, b′}

)
6 γ 6 ‖a− b‖+ ‖a′ − b′‖ . (3)

Then, setting m = (a+ b)/2 and m′ = (a′ + b′)/2, we have

‖m−m′‖ 6
√

7
8γ .

Proof. Applying Lemma 3 with the points a, b, a′ yields

‖m− a′‖2 6 γ2 − 1
4‖a− b‖

2 . (4)

Another invocation with the points a, b, b′ gives

‖m− b′‖2 6 γ2 − 1
4‖a− b‖

2 . (5)

Now, again using Lemma 3 with the points a′, b′,m and the bounds of (4) and (5), we get

‖m−m′‖2 6 γ2 − 1
4
(
‖a− b‖2 + ‖a′ − b′‖2

)
.

Using the second inequality in (3) then shows

‖m−m′‖2 6 γ2 − 1
4

(
‖a− b‖2 +

(
γ − ‖a− b‖

)2)
. (6)

Setting ξ = ‖a− b‖, we get

‖m−m′‖2 6 max
06ξ6γ

γ2 − 1
4
(
ξ2 + (γ − ξ)2) .
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Differentiating the function f(ξ) = γ2− 1
4
(
ξ2 +(γ−ξ)2) reveals that its maximum is attained

for −(2ξ − γ) = 0, i.e., ξ = γ/2, which gives

‖m−m′‖2 6 γ2 − γ2

8 = 7
8γ

2 .

Taking the square root now concludes the proof. J

We can now prove Theorem 1. For the proof we consider the tetrahedron with vertices
a, b, a′, b′ as discussed before; see Figure 1. Recalling that the vertices a, b are vectors received
by an agent i and a′, b′ vectors received by an agent j in the same round, we may infer from
the non-split property that all communication graphs must fulfill that both i and j must
have received a common vector from an agent. Together with the algorithm’s rule of picking
a, b and a′, b′ as extreme points, we obtain the constraints required by Lemma 4. Invoking
this lemma we finally obtain an upper bound on the distance d′ between m and m′, and by
this an upper bound on the round-by-round convergence rate of the MidExtremes algorithm.

Proof of Theorem 1. Let i and j be two agents. Let a, b ∈ Rcvi(t) such that yi(t) = (a+b)/2
and a′, b′ ∈ Rcvj(t) such that yj(t) = (a′ + b′)/2. Define γij = diam

(
{a, b, a′, b′}

)
. Since

a, b, a′, b′ are the vectors of some agents in round t− 1, we have γij 6 diam
(
y(t− 1)

)
.

Further, from the non-split property, there is an agent k whose vector c = yk(t− 1) has
been received by both i and j, i.e., c ∈ Rcvi(t) ∩ Rcvj(t). By the choice of the extreme
points a, b by agent i, we must have ‖a− c‖ 6 ‖a− b‖; otherwise a, b would not realize the
diameter of Rcvi(t). Analogously, by the choice of the extreme points a′, b′ by agent j, it
must hold that ‖a′ − c‖ 6 ‖a′ − b′‖.

From the triangular inequality, we then obtain

‖a− a′‖ 6 ‖a− c‖+ ‖c− a′‖ 6 ‖a− b‖+ ‖a′ − b′‖ .

Analogous arguments for the other pairs of points in {a, b, a′, b′} yield

diam
(
{a, b, a′, b′}

)
= γij 6 ‖a− b‖+ ‖a′ − b′‖ .

We can hence apply Lemma 4 to obtain

‖yi(t)− yj(t)‖ 6
√

7
8γij 6

√
7
8 diam

(
y(t− 1)

)
.

Taking the maximum over all pairs of agents i and j now shows diam
(
y(t)

)
6
√

7/8 diam
(
y(t−

1)
)
, which concludes the proof. J

4.2 Bounds for ApproachExtreme
We start by showing the one-dimensional case of Theorem 2, i.e., V = R, in Section 4.2.1.
Section 4.2.2 then covers the multidimensional case.

4.2.1 One-dimensional Case
For the proof we use the notion of %-safety as introduced by Charron-Bost et al. [7]. A convex
combination algorithm is %-safe if

%Mi(t) + (1− %)mi(t) 6 yi(t) 6 (1− %)Mi(t) + %mi(t) (7)

where Mi(t) = max
(
Rcvi(t)

)
and mi(t) = min

(
Rcvi(t)

)
.
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It was shown [7, Theorem 4] that any %-safe convex combination algorithm guarantees
a round-by-round convergence rate of c(t) 6 1− % in any non-split network model. In the
sequel, we will show that ApproachExtreme is 1

4 -safe when applied in V = R.

Proof of Theorem 2, one-dimensional case. Let i be an agent and t > 1 a round in some
execution of ApproachExtreme in V = R. We distinguish the two cases yi(t) 6 yi(t− 1) and
yi(t) > yi(t− 1).

In the first case, we have b 6 yi(t−1) for the vector b that agent i calculates in code line 4
in round t. But then necessarily b = yi(t) since this is the most distant point to yi(t − 1)
in Rcvi(t) to the left of yi(t− 1). Also, yi(t− 1) >

(
Mi(t) +mi(t)

)
/2 since otherwise Mi(t)

would be farther from yi(t− 1) than mi(t). But this means that

yi(t) = yi(t− 1) +mi(t)
2 >

1
4Mi(t) + 1

4mi(t) + 1
2mi(t) = 1

4Mi(t) + 3
4mi(t) ,

which shows the first inequality of %-safety (7) with % = 1
4 . The second inequality of (7)

follows from yi(t− 1) 6Mi(t) since

yi(t) = yi(t− 1) +mi(t)
2 6

1
2Mi(t) + 1

2mi(t) 6
3
4Mi(t) + 1

4mi(t) .

In the second case, (7) is proved analogously to the first case. J

4.2.2 Multidimensional Case
For the proof of Theorem 2 with higher dimensional values, we consider two agents i, j whose
distance realizes diam(y(t)). From the ApproachExtreme yi(t) = m = (a + yi(t − 1))/2
and yj(t) = m′ = (a′ + yj(t− 1))/2 where a and a′ maximize the distance to yi(t− 1) and
yj(t− 1), respectively, among the received values.

To show an upper bound on the distance d′ between the new agent positions m and m′
in the multidimensional case, we need the following variant of Lemma 4 in which we relax
the upper bound on γ by a factor of two, but thereby weaken the bound on d′.

Analogous to the proof of Theorem 1, the proof is by applying Lemma 5 to the three
hatched triangles in Figure 1.

Lemma 5. Let a, b, a′, b′ ∈ V and γ > 0 such that

diam
(
{a, b, a′, b′}

)
6 γ 6 2‖a− b‖+ 2‖a′ − b′‖ .

Then, setting m = (a+ b)/2 and m′ = (a′ + b′)/2, we have

‖m−m′‖ 6
√

31
32γ .

The proof of the lemma is essentially the same as that of Lemma 4, with the following
differences: Equation (6) is replaced by

‖m−m′‖2 6 γ2 − 1
4

(
‖a− b‖2 +

(γ
2 − ‖a− b‖

)2
)

,

which changes the function f to f(ξ) = γ2 − 1
4
(
ξ2 + (γ2 − ξ)2). The maximum of this

function f is achieved for ξ = γ/4, which means that

‖m−m′‖2 6 f(γ/4) = γ2 − γ2

32 = 31
32γ

2 .

We are now in the position to prove Theorem 2.
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Proof of Theorem 2, multidimensional case. Let i and j be two agents. Let a = yi(t− 1)
and a′ = yj(t− 1). Further, let b ∈ Rcvi(t) such that yi(t) = (a+ b)/2 and b′ ∈ Rcvj(t) such
that yj(t) = (a′ + b′)/2. Define γij = diam

(
{a, b, a′, b′}

)
. Since a, b, a′, b′ are the vectors of

some agents in round t− 1, we have γij 6 diam
(
y(t− 1)

)
.

From the non-split property, there is an agent k whose vector c = yk(t − 1) has been
received by both i and j, i.e., c ∈ Rcvi(t) ∩ Rcvj(t). By the choice of the extreme point b
by agent i, we must have ‖a− c‖ 6 ‖a− b‖; otherwise b would not maximize the distance
to a. Analogously, by the choice of the extreme points b′ by agent j, it must hold that
‖a′ − c‖ 6 ‖a′ − b′‖. Note, however, that the roles of a and b are not symmetric and that,
contrary to the proof of Theorem 1, we can have ‖b− c‖ > ‖a− b‖ or ‖b′ − c‖ > ‖a′ − b′‖.

From the triangular inequality and the two established inequalities, we then obtain

‖a− a′‖ 6 ‖a− c‖+ ‖a′ − c‖ 6 ‖a− b‖+ ‖a′ − b′‖ ,

‖a− b′‖ 6 ‖a− c‖+ ‖c− a′‖+ ‖a′ − b′‖ 6 ‖a− b‖+ 2‖a′ − b′‖ ,
and

‖b− b′‖ 6 ‖b− a‖+ ‖a− c‖+ ‖c− a′‖+ ‖a′ − b′‖ 6 2‖a− b‖+ 2‖a′ − b′‖ .

Analogously, ‖a′ − b‖ 6 2‖a− b‖+ ‖a′ − b′‖. Together this implies

diam
(
{a, b, a′, b′}

)
= γij 6 2‖a− b‖+ 2‖a′ − b′‖ .

We can hence apply Lemma 5 to obtain

‖yi(t)− yj(t)‖ 6
√

31
32γij 6

√
31
32 diam

(
y(t− 1)

)
.

Taking the maximum over all pairs of agents i and j now shows diam
(
y(t)

)
6
√

31/32 ·
diam

(
y(t− 1)

)
, which concludes the proof. J

5 Conclusion

We presented two new algorithms for asymptotic and approximate consensus with values in
arbitrary inner product spaces. This includes not only the Euclidean spaces Rd, but also
spaces of infinite dimension. Our algorithms are the first to have constant contraction rates,
independent of the dimension and the number of agents.

We have presented our algorithms in the framework of non-split network models and have
then shown how to apply them in several other distributed computing models. In particular,
we improved the round complexity of the algorithms by Mendes et al. [18] for asynchronous
message passing with Byzantine faults from Ω

(
d log d∆

ε

)
to O

(
log ∆

ε

)
, eliminating all terms

that depend on the dimension d.
The exact value of the optimal contraction rate for asymptotic and approximate consensus

is known to be 1/2 in dimensions one and two [15, 8], but the question is still open for higher
dimensions. Our results are a step towards the solution of the problem as they show the
optimum in all dimensions to lie between 1/2 and

√
7/8 ≈ 0.9354 . . .
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