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Abstract

Cellular metabolism contains intricate arrays of feedback control loops. These are a key mechanism by which cells adapt their
metabolism to survive environmental disturbances. Gene regulation, in particular, typically displays complex architectures that
combine positive and negative feedback loops between metabolites and enzymatic genes. Yet because of strong nonlinearities
and high-dimensionality, it is challenging to determine the closed-loop dynamics of a given feedback architecture. Here we
present a novel technique for the analysis of metabolic pathways under gene regulation. Our theory blends ideas from timescale
separation and piecewise affine dynamical systems, applied to a wide class of unbranched metabolic pathways under steep
nonlinear feedback. We propose a systematic method to construct a state transition graph for a given regulatory architecture,
from where candidate closed-loop dynamics can be singled out for further analysis. The method recasts a high-dimensional
nonlinear system into a piecewise affine system defined on a polytopic partition of the state space. In its most general setup,
our theory allows to characterize the dynamics of pathways of arbitrary length, with any number of regulators, and under any
combination of positive and negative feedback loops. We illustrate our results on an exemplar system that displays a stable
limit cycle and bistable dynamics. We also discuss the implications of our results for the design of gene circuits in synthetic
biology and metabolic engineering.
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1 Introduction the overall pathway dynamics. A fundamental design
problem is the characterization of control architectures
that achieve a prescribed system response [33,23]. How-
ever, there are no general stability analysis methods that
can deal with the type of nonlinearities and connectiv-
ity of metabolic systems. A number of recent reviews
in metabolic engineering have highlighted the need for
model-based approaches for design [3,14,21], while the
use of control theoretical principles has gained substan-
tial traction in the field [25,8].

Cellular metabolism adapts to environmental fluctua-
tions through networks of regulatory feedback loops [6].
In natural systems, such feedbacks control the expres-
sion of catalytic enzymes and match the activity of spe-
cific metabolic pathways to extracellular nutrients and
the cellular energy budget. Last decades have witnessed
striking examples on the construction of synthetic feed-
back control loops for metabolism, with the goal of in-
creasing production of valuable chemicals [10,18,37] and
the generation of entirely new metabolic dynamics such

e LY In thi i ibuti h 1-
as oscillations [11] or cell-to-cell communication [13,31]. n this paper we provide two contributions on the ana

ysis of control architectures in metabolic pathways un-

o ) ) ) der gene regulation. First, we show that the interaction
Regulatory motifs in metabolic systems include archi-

tectures with various combinations of feedback and feed-
forward loops, whose signs and interactions determine
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graph of a large family of feedback systems can be clas-
sified into few distinct classes of interaction graphs. Our
findings suggest a catalogue of architectures in the form
of interactions graphs with nested positive or negative
loops, where the number of distinct classes depends only
on pathway length (Section 3). This catalogue links each
feedback architecture to a systematized feedback con-
trol network and its corresponding dynamical behav-

27 November 2018



ior. Second, we provide an algorithm to build a state
transition graph for a given feedback architecture, from
which candidate asymptotic dynamics can be identified
and further analyzed (Section 4). The analysis relies on
the combination of timescale separation and qualitative,
piecewise-affine, models for gene regulation. Here we ex-
tend a technique originally described in [24] for pathways
with one regulator, to a much larger class of control sys-
tems with any number of regulators and any combina-
tion of positive and negative feedback loops. We demon-
strate our theory with an example motivated by [11] that
illustrates the dynamical diversity within each class of
feedback architectures (Section 5).

2 Metabolic pathways with multiple regulators

Metabolic pathways interconvert chemicals (metabo-
lites) through sequences of biochemical reactions. Such
reactions are catalyzed by specific proteins (enzymes)
synthesized by the cell. By controlling the expression
of genes that code for the enzymes, cells activate and
deactivate the activity of pathways depending on the
environmental conditions. Because enzyme synthesis
requires energy, this control mechanism avoids the in-
efficient production of enzymes that are not needed in
a specific environment. This is the case, for example,
when key metabolites for growth are already present in
the growth media and do not need to be produced by
cells themselves.

Here we consider a general class of unbranched metabolic
pathways with n metabolites and n + 1 enzymes, as
shown in Fig. 1. The conversion of each metabolite s;
into s;41 is catalyzed by an enzyme e; ;. The substrate
so represents an extracellular nutrient and we assume it
to remain constant in the timescale of the pathway. This
assumption corresponds to cases in which, for example,
s represents a pool of extracellular nutrient in contin-
uous culture. Under a constant substrate, the pathway
reaches a nonzero steady state flux and remains outside
thermodynamic equilibrium, which is the typical oper-
ating regime of metabolism.

We further consider that enzyme synthesis is controlled
by some of the metabolites in the pathway. We consider
a large class of feedback architectures satisfying the fol-
lowing assumptions:

A1l. Each enzyme is regulated by a single metabo-
lite;
A2. There are 1 < k < n regulatory metabolites.

Assumptions A1-A2 define a large class of feedback ar-
chitectures that may include complex combinations of
positive and negative feedback loops. This is a signifi-
cant extension to previous work [24] that considered the
case of only one regulatory metabolite (k = 1). In par-
ticular, Assumption A2 allows for any number of regula-
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Fig. 1. Regulatory architectures in unbranched metabolic
pathways. We consider a general class of nonlinear feedback
systems with up to n regulatory metabolites (s;) with any
combination of positive of negative regulation on the enzy-
matic genes (e;). The diagram illustrates assumptions Al,
A2  and A2’. Regular arrows (resp., bar-headed arrows) rep-
resent activation (resp., repression). Dot-headed arrows rep-
resent either of these.

tory metabolites to control enzyme expression. In most
natural instances, e. g. the lactose operon or amino acid
metabolism [6], pathways have one regulatory metabo-
lite (k = 1), with the case of k& > 1 being particularly
interesting for the design of regulatory architectures for
metabolic engineering [21].

If s; and e; denote the concentration of metabolites and
enzymes respectively, the system in Fig. 1 can be de-
scribed by the nonlinear model:

5i = gi(si—1)ei — giv1(si)eirr, i=1,...,n, (1)
éi =K+ rloi(se,,0;) —ves, i=1,....n+1, (2)

where s, is the metabolite that regulates e;, g; : RJ;O —

[0, M;] are continuous and strictly increasing functions
representing the kinetics of each enzyme [15], and o; €
{64,6_} are increasing or decreasing sigmoidal func-
tions describing the nonlinear regulation from metabo-
lites to enzyme synthesis [22,38,7]. The positive param-
eters (kY, k}) represent the minimal and maximal rates
of enzyme synthesis, and v > 0 describes the dilution of
protein concentrations caused by cellular growth.

Our objective in this paper is to characterize the asymp-
totic dynamics of nonlinear feedback systems described
by equations (1)-(2). To this end, we will use two tech-
niques for simplifying the models [24]: first, we approxi-
mate enzyme synthesis by piecewise linear functions; and



second, we exploit the inherent separation of timescales
and the shape of the nonlinearities of the enzyme kinet-
ics.

2.1 Piecewise linear models for gene requlation

Gene expression can often be approximated by two
levels, corresponding to “high” and “low” levels of
transcription. In such cases, the sigmoidal functions
that describe enzyme synthesis can be simplified to
step functions, following the approaches suggested by
Thomas [34] and Glass and Kauffman [12]:

1, r>0,
0, r<é,

or(r,0)=1—0_(r,0) = {

where o (resp., o_) corresponds to an activation (resp.,
inhibition), and the parameter 6 is a threshold of regu-
lation. In this model, enzyme concentrations eventually
converge to a bounded interval, Efff < e;(t) < E™ for
all t >ty > 0, with

o on (H? + nzl)

)

2|3

The step function approximation leads to a qualitative
description of the dynamics in terms of piecewise linear
systems which, in turn, allows for more detailed analyt-
ical results (see examples for Escherichia coli metabolic
networks [24,29] and genetic transcription and transla-
tion networks [9,16]). Piecewise linear systems induce a
partition of the state space into well defined domains
which can be naturally mapped onto the vertices of a
state transition graph [2,4]; this graph provides a global
view of the dynamics of the system and will be con-
structed in Section 4.

2.2  Timescale separation

Metabolic timescales are much faster than those of en-
zyme synthesis [15,29], so the system (1)-(2) can be sim-
plified by assuming the metabolites to be in quasi-steady
state. The variables s; evolve fast towards a slow mani-
fold of the form s = G(e), where s and e are the vectors
of metabolite and enzyme concentrations, respectively.
By substitution of the metabolites s; in the ODEs for
the enzymes, the slow dynamics in (2) can be simplified
to depend only on the enzyme concentrations e;.

Such timescale separation ideas have been used for
analysis of various enzymatic mechanisms [1,20], ge-
netic transcription and translation networks [9], and
justify the well known Michaelis-Menten kinetic mech-
anism [30]. Briefly, the goal is to rewrite (1)-(2) in the
form: es = G(s,e,e), é = F(s,e,e), where e < 1.
Under suitable conditions (see [19] for more details),

G(s,e,0) = 0 defines the slow manifold s = G(e), and
Tikhonov’s Theorem guarantees that solutions of the

slower dynamics é = F'(G(e), e, 0) remain close to those
of the original system.

In the particular case where all enzymes follow Michalis-
Menten kinetics, that is, ¢;(s;) = keatiSi—1/(Knm,i +
si—1) (see example in Section 5), the timescale separa-
tion can be applied to (1)—(2) provided that

YK YKt }
€; = max — : <1, 4
{ E;)nkcati E;mkcati ( )

fori = 2,...,n. These conditions can be obtained by ap-
plying an appropriate change of variables: é; = e;/E™,
§; = si/Kari,and t = ~t, similar to those used in [20,30].
The conditions typically hold for metabolic systems,
since dilution by growth is much slower than enzyme
turnover rates, and hence v < kcat ;. The quasi-steady
state assumption is:

A3. We assume that $; ~ 0 for each t > 0, leading
to

gi1(so)er = gi(si—1)es, fori=2,....n+1. (5)

Using assumption A3 we can substitute

st =i (o0 ) (©)

€L +1

into equation (2) for enzyme e;. To guarantee the exis-
tence of solutions of (6), a sufficient condition is:

BT > 0 pon i g, (7)

Now, let I;..q = {1,¢14+1,..., 0 +1} be the set of indices
corresponding to the enzymes that catalyze the outgo-
ing flux for each of the regulator metabolites together
with index 1, the enzyme which catalyzes the constant
input substrate; set I = {1,2,...,n}\ Iy¢q. From (6),
it becomes clear that the subset of k + 1 equations cor-
responding to {e; : i € I.¢,}, does not depend on the
variables {e;, ¢ € I,r4}, so it can be studied separately.
Therefore, without loss of generality we will thus con-
sider a modified version of Assumption A2:

A2’ Each metabolite in the pathway regulates at
least one enzyme, or equivalently, n = k.

Taken together points A1l and A2’ imply that there is
only one metabolite (denoted as sp)that regulates two
enzymes and all other metabolites regulate a single en-
zyme. It is then useful to establish an index correspon-
dence:

Z:{1,...,n+1} = {1,...,n} (8)



with Z(¢) = ¢; and Z(p1) = Z(p2) = p. Its inverse is
defined as: Z71(j) = ¢ and Z7(p) = {p1,pa}-

2.3 Enzyme dynamics and regulatory motifs

The unbranched metabolic pathway dynamics can thus
be reduced to the enzyme equations. In order to capture
this genetic regulation, we will introduce, with a slight
abuse of notation, the following definition of a regulatory
motif:

1, oi(r,0)=0.(r0)

o= (01,...,00), o0;=
(2 ) {—1, oi(r,0) =o_(r,0).

In addition, the quasi steady state assumption (6) and
the fact that g; are non-decreasing imply

1
Sp;, > 92 =4 91(80)61 > ggiﬂ(@-)egiﬂ = e > 7efi+(110)

Bi

where we have defined the parameter 8; = ¢1(so)/
gei+1(6;).

Under the relations in (10), the step functions satisfy

1
—0;,0) = 0i(e1 — —-€¢,41,0), (11)

?

O—i(sliv 01) = Ji(sei

and therefore the enzyme dynamics in (2) can be rewrit-
ten as

. 1
é; = li? + Kéai (el - ﬁ_egi_‘_l,O) — ve;. (12)
(2

Equation (12) is a much simpler version of the original
model in (1)—(2) and, as we show in the next sections, it
is amenable to detailed analysis.

3 General structure of the interaction graph

Given a metabolic pathway such as the one in Fig. 1,
one would like identify and catalogue the possible feed-
back networks induced by its specific regulatory motif
o. In this section we provide such classification in terms
of the possible interactions graphs associated to a reg-
ulatory motif. The pattern of feedback loops and their
signs determine the dynamical behavior of the system:
for instance, it has been shown that a necessary con-
dition for multistability is the existence of a positive
loop, while a negative loop is required for stable oscilla-
tions [17,32,28,26].

An interaction graph describes the dependencies be-
tween model variables according to the sign pattern of
the Jacobian matrix [7]. Although the Jacobian of (12)

has a non-constant sign pattern, next we describe a
suitable change of variables under which the interaction
graph can be readily built. We first note that the right
hand side of (12) depends on sign of e; — ﬁiegﬁh and

thus we introduce the following definition: '

Definition 1 [Cone membership function] Let 5 > 0,
re R’;El, and r; the i" component of r. Define the cone
membership function by

vi(B,r) : Roo x RLN — R

(ﬂ,T) — 71 — %ri—i-l-

In other words, sign of v; determines whether or not the
(n + 1)-dimensional vector r belongs to the planar cone
defined by a half-line with slope 5.

The new variables can now be defined as:

Zj :Vj—l(ﬁq]'717e)7 .] € {277n+ 1}\{p+ 1}?
1= Vp(ﬂpue)v z2 = Vp(ﬂpwe)’

From the model in (12), it follows that:

1
3 ~0 1 j
Tj =R+ K101(Te,41,0) — /Bijgj(mfj-&-lao) — Vx5,
qj—1

jef2,. . n+ 13\ {p+1}
(13)

/Ql

. _ =0 1 p+1

Zj = Kp,; + K101 (l‘g1+1, 0) - 5p~ O-P+1(‘rfp+1+1’ 0) AZE
J

j=12.

=0 _ .0 _ .0 =0 _ .0 _ .0
where &} = K7 — K} /By, , and Kp, = Ki — Kpi1/ Bp;-

The Jacobian of (13) is sign-constant and therefore we
can build the interaction graph for the new variables by
adding a directed arrow from z; to x; if 9(&;)/0x; # 0,
and (for simplicity) omitting all arrows related to the
natural degradation terms —vyx; or —vyz;. This interac-
tion graph has some immediate properties:

R1 all nodes have exactly two incoming arrows;

R2 node zy, 11 has n + 1 outgoing arrows, signed o7;

R3 node zy, ., +1 has exactly two outgoing arrows, both
signed —op,11, towards z; and zs;

R4 all other nodes x¢, 11 have exactly one outgoing ar-
row, signed —o;, towards x;. In particular, node z;
has an outgoing arrow, signed —o,,, towards xp, .

A self arrow counts as both an incoming and an outgoing
arrow for the node. If a node has an outgoing arrow to
Zp,, then it has necessarily an outgoing arrow to z,,
hence that node is either xg, 1 or 2, , 41



The above properties suggest that the large family of
feedback systems described by equations (1)—(2) can be
classified into relatively few distinct interaction graphs,
based on the identification of four special nodes:

i the node w = x¢, 1 with n 4+ 1 outgoing arrows;
ii the node y = zy,,,+1 with two outgoing arrows;
iii the two nodes z; and z2 (which can coincide with
either w or y, when p; = f,41 + 1, for some j €
{1,2});
iv finally, list the remaining nodes, ¢, 11 for j & {p +
1,1}, which can be re-labeled x,, =y, etc.

To obtain all the distinct interaction graphs, consider
all combinations of z; and z5 according to (iii), and add
an edge between two of these nodes according to rules
(R1)-(R4). The possible interaction graphs are listed in
Fig. 2, for pathways with three or four enzymes. Next we
consider a specific example to illustrate the construction
of the interaction graphs.

A m_opﬂ m_0p+1
K v N
T Vpx -G 0, P
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Fig. 2. Interaction graphs of the transformed system in (13).
(A) All possible interaction graphs (up to re-ordering) for
pathways of length n = 3. Left to right: w = z1; y = 21;
w = z1 and y = 2z2. (B) All possible interaction graphs (up
to re-ordering) for pathways of length n = 4. Left to right
and top to bottom: w, y, z1, z2 all distinct; w = 215 y = 21;
w = z1 and y = z2; alternative to w = z;; alternative to
Yy==z.

Example 2 Consider the pathway in Fig. 1 (top), which
illustrates assumption A2’. There are only two regulators,
s1 and sg, so it follows from (6) that e4 will not influence
the dynamics of e;, 1 = 1,2,3. Since so regulates two
enzymes, it follows that p = 2 and, from the definition in
(8), the index correspondence is

(61352763) = (17272)7 (Q17p) = (]‘ﬂ {zﬂs})

The change of variables is as follows:

1
1.
By °

T2 = €1 — 5 €2,2] = €1 — ;€3,22 =€1 —

B1 B3

with w = x9 and y = 21, yielding an interaction graph
as in Fig. 2A (middle).

To classify the interaction graphs, a first observation is
that all (strongly connected) graphs with n nodes exhibit
n nested loops of growing lengths, starting with the self
loop on w, each loop adding only one new variable. For
instance, for the first case in Fig. 2A:

wOwS yyw — 20 > Y = w,

and for the first case in Fig. 2B

WOWS 213w =Y — 2] =W, W —> 2 > Y —> 21— W.
In fact, this result can be generalized as follows:

Proposition 3 [Nested loops] Consider the n + 1 di-
mensional system (13). If the interaction graph is formed
of a single strongly connected component, and if either
w # zj ory # zj, forallj € {1,2}, then it contains n+1
nested loops, {Lg}?ill, defined by:

le{w},
Lo ={w,v1 : w = vy,v; = w},
Lyjr={w,v1,...,v0: w— v, vj41 = v;,01 — W},

where j = 1,...,0 — 1 in Lyy1. If the interaction graph
contains more than one strongly connected component,
than one of these components has j+1 nodes and contains
nested loops Ly,...,Ljt1.

Proof. This structure follows directly from the prop-
erties (R1)-(R4) and (i)-(iv). First, note that w has an
arrow toward every node, including itself, so w forms a
trivial first loop, Li. Second, choose the node v; # w
which has an edge towards w: by point (R1), each node
has exactly two incoming arrows (with one of them w),
hence there is a unique choice for v1. This gives a 2-node
circuit Ls.

Now, to use an induction argument, suppose we have
chosen j > 1 distinct nodes, vy, ...,v;, defining loops
Ly up to Lj11. Note that, by construction, each of the
nodes v;, ¢ < j has exactly two incoming arrows, w and
viy1. If 7 = n, all the loops have been found and the in-
teraction graph is formed of a single strongly connected
component. If j < n, choose next the node v;;1 # w
which has an edge towards v;: again, by point (R1)
there can be only one such node. If vj1; # v;, then
we have found loop L; 2 and can continue. Otherwise,
Vj+1 = vj, which means that v; = y since it has two



outgoing arrows. But it also has two incoming arrows,
w and v;. This means that the set of nodes w, vy, ..., v;
(with j < n) cannot have any further incoming arrows
and thus forms a strongly connected component, which
contains the nested loops Li,...,L;y;. Finally, the re-
maining nodes (vjy1,...,v,) can be organized into at
least one more strongly connected component. This fin-
ishes the proof of the Proposition.

Remark 4 In the case bothw = z1 andy = zo it follows
that w S vy, as well as self-arrows for both w and vy, thus
preventing the generation of n + 1 nested loops. This is
illustrated in Fig. 2B bottom left.

As a corollary, it follows that an n + 1 dimensional sys-
tem (13) whose interaction graph has more than one
strongly connected component can in fact be studied as
a (lower) (j + 1)-dimensional system with nested loops
Li,...,Ljt:1. Indeed, the dynamics of this sub-system
w,v1,...,v; can be studied as an autonomous system,
whose behaviour is an input to the system formed by the
remaining variables v;41,...,v,. Examples are shown
in Fig. 2B (bottom middle and right) which can both
be decomposed into a 3-dimensional system (w,y, z2)
which controls z,. Interestingly, these 3-dim systems
share the same graphs of Fig. 2A (left and middle). In
other words, the systems whose graphs are represented
in Fig. 2B(bottom middle and right) can be further sim-
plified and studied as a two-enzyme metabolic pathway.

In addition, the number of distinct strongly connected
interactions graphs can be exactly computed, as shown
in the next Proposition.

Proposition 5 [Number of distinct interaction graphs/
System (13) has at most four (for n = 2) and nine (for
n > 3) distinct strongly connected interaction graphs with
n + 1 nested loops, up to re-ordering the x; nodes:

(a) two distinct graphs, if w = z1 or w = z3;

(b) two distinct graphs, if y = z1 ory = za;

(c) five distinct graphs if n > 3 and all w,y, z1, 22
are different.

Proof. (a) In this case, the first two loops are L1 = {w}
and Ly = {w, y} (i.e., v1 =y, in the notation of Prop. 3).
Chosing the sequence of nodes v; as in Prop. 3, re-
call that v; = 2, implies vj4; = y, by definition of y.
To guarantee that the graph has a single strongly con-
nected component, it must be that v,, = z5. Otherwise,
if v; = 25 for j < n, then v;11 =y , which implies that
Lit1 = Ljy1 = {w,v1,...,v;} is a strongly connected
component and so the full graph cannot be strongly con-
nected.

(b) In this case, assume y = z7 without loss of generality.
Node y has a self arrow (which counts as both an out-
going and an incoming arrow), an incoming arrow from

node w and an outgoing arrow towards z5. To guarantee
that the graph has a single strongly connected compo-
nent, it must be that v, = y and v,,_1 = 25. Otherwise,
by the same argument as in case (b), if v; = y for some
Jj < m, the set of nodes {w,v1,...,v,} forms a strongly
connected component and so the full graph cannot be
strongly connected.

(c) In this case, the second incoming arrow for node
w can originate either from one of the variables z; or
from one of the n — 3 remaining variables x;, up to re-
ordering. Suppose first that z; — w (or zo — w). Then,
as in case (b), we need v, = y and v,,_1 = 23 to garantee
a strongly connected interaction graph (count 2 distinct
graphs). Suppose next that z, — w and z; — y (or
2o — y). Then, we again need v, = y and v,_1 = 29
(count 2 distinct graphs). Suppose finally that ©, — w
and z; — y. The remaining nodes can be assigned in
any order, according to rules (R1)-(R4) (count only 1
distinct graph) .

Proposition 5 is illustrated in Fig. 2. The interaction
graphs associated with (13) give an indication of the
possible dynamics of the feedback system (for instance,

multistability is expected whenever all loops are posi-
tive [35]).

4 Global dynamics

As a counterpart to the interaction graph, next we de-
velop a state transition graph that allows for analysis of
the global dynamics. To this end, the system in equation
(12) will be represented by a discrete system formed by
a set of vertices V' and a set of directed edges &: each
vertex represents one region of the state space and there
exists an edge between two vertices if there is at least one
trajectory connecting the corresponding regions. The re-
sulting state transition graph provides a complete qual-
itative view of the global dynamics of (12), for a given
range of parameters.

The system in equation (12) can be written as the piece-
wise linear system (see also [4])

E% —¢;), el > +ey,
éi:{vu )€ > g 14

VE 7 —ei), e1 < gewv1

where 0 = (01, ..., 0,) represents the regulatory motif,
and (E; ', EN= (BT, E9") are the minimal and maxi-
mal enzyme concentrations in equation (3). In this new
description, the state space is partitioned into several
conic regions defined by the two planes z; = 0 and the
n — 1 planes z; = 0 (see (13)). Each region has a focal
point ¢ = (du,...,6n) with ¢ = BT if vy, (Bi,e) > 0
and ¢; = E; 7' otherwise. If a trajectory crosses the



boundary between two regions, a switch in the vector
field — and hence in the focal point — occurs, leading to
a new direction of the trajectory. The conic regions and
its focal points are the main elements in the algorithm
to construct the state transition graph.

4.1 Vertices of the transition graph

As shown in the next definition, each vertex of the graph
represents one region R®, characterized in terms of the
cone membership functions, and the nonnegative sign
function o (r,0).

Definition 6 [Polytopic regions] Let p € {1,...,n}
be the index defined in (8). A region R*, with a =
(a1,...,a,)" with a, € {0,1,2} and a; € {0,1} for
i€ {1,...,n}\ {p}, is defined by:

R*={ec Rggl :
a; = U+(Vi(6<h7e)70)a
ap = O'+(V10(/BP176)3 0) + U+(Vp(/8p276)70) }

The set of vertices of the graph is thus given by

V =A{(a1,...,an) : ap € {0,1,2},a; € {0,1} for i # p}.

4.2 Edges of the transition graph

Each edge represents a crossing between two adjacent
conic regions: if there is a trajectory starting in some
region R and going through a neighbouring region R?,
then there is a directed edge from vertex a to vertex
b. The path of a trajectory is determined by the loca-
tion of focal points. In general, the focal point ¢* may
be contained in some other region, say R’ with a # b,
so trajectories starting in R® will eventually cross to a
neighbouring region.

Here, an asynchronous strategy will be considered in the
sense that if an edge joins two vertices, say a — b, then
these vertices differ on exactly one coordinate j (a; # b,
and a; = b; for all ¢ # j). To determine the edges, the
next steps are the calculation of the focal points, ¢* =
(¢%,...,¢%), for each region R* and their location R,
ie. ¢ € R’, with a = (a1,...,a,) and b= (by,...,b,).

4.2.1 Focal points

The coordinates of the focal point ¢® for region R* can
be explicitly calculated recalling (14) and using Def. 6:

¢l = a;Eq + (1 —a;)BEq, ", ifi#p, (15)

and in the case i = p:

= max(a, — 1, 0)Epr + (1 — max(a, — 1, 0)E,,"™",

¢ =min(ap, 1)Epy? + (1 — min(ap, 1)) Ep, ™. (16)

4.2.2  Location of the focal points

Computation of the region RY is straigthforward, as it
suffices to check the sign of the functions v; when com-
puted at the (already known) focal points:

bi = U+(Vi(6qw¢a)v O)
bp:0'+(l/p(ﬂpl’¢a)70)—|—O’+(I/p(ﬂp27¢a)’0), (17)

Observe that the focal points and their location in the
state space depend on the parameters of the system
(n?’l, 7, ;). Thus, one single regulatory motif (9) may
lead to different dynamical behavior depending on its
parameters. However, as seen below in Section 4.4, once
the state transition graph is constructed, it is easy to
obtain a large range of parameters for which the graph
holds. For simplicity, we assume that no focal point be-
longs to the boundaries of a cone, that is

Ad.v;(By,,¢*) #Ofor alliand alla € V.

4.2.8  Construction of the graph edges

There are two cases to consider, depending on whether
the given region contains its own focal point. First, as-
sume that ¢* ¢ R®. Then it can be shown that there is
at least one boundary hyper-plane e; 1 = f34,€;1 through
which trajectories can escape R®.

Proposition 7 Consider a region R* of system (14)
with focal point ¢* € RP, with a,b € V and a # b. For
each i € {1,...,n} such that a; # b;, there exist trajec-
tories crossing from R® to R¢ where the coordinates of ¢
are given by ¢; = a; + sign(b; — a;) and ¢y, = ay, fork # i.

Proof. Assume that i # p (the case i = p is similar).
The assumption a # b implies that, for at least one
coordinate i:

vi(Bg;se) - vi(By;, %) <0 forall e € R*. (18)

Next, equation (14) implies w1 (t) = ¢1 — e1(t) — 0 and
Wit1(t) = Pit1 — €i41(t) = 0, as t — oo, which leads to

(Ve > 0)(3te > 0) = [vi(By,, e(t)) = vi(Bg;, ¢)| <&, (19)

for all ¢ > t.. Applying (18) yields

Vi (Bas» ()] + Vi (Bgis 9°)| <



Since v;(By,,#%) = 5 is a constant, for ¢ = ; con-
dition (19) implies |v;(By,;,e(ty))] = 0 for some finite
time instant ¢, for which the trajectory exactly reaches
the boundary. In conclusion, trajectories may indeed
cross the boundary from R® to a neighboring region R€,
characterized by v;(8q,, €) - i(Bq;, ¢*) > 0 (the opposite
of (18)).

Next, assume that region R® contains its focal point,
¢ € R°.Inthe more “classical” piecewise linear systems
with hyper-rectangular regions [4], it is well known that
regions that contain their own focal points are forward
invariant. However, this is not necessarily true for conic
regions (as already discussed in [24]), unless all degrada-
tion rates are equal. In our case, we have the following
result.

Proposition 8 Consider a region R® of system (14)
containing its own focal point ¢, a € V. Then, R* is
forward-invariant.

Proof. Assumption ¢% € R* implies:
vi(Bgis€) - vi(Bgi, %) >0 foralli and all e € R*. (20)

To check whether trajectories may leave region R®
through some coordinate ¢, consider the vector field
along that boundary. Note that, for all e € R%, the
enzyme dynamics may be written in terms of the focal
point (14): é; = v(¢% — e;). Now define a new variable

r= vilBase). = r=7(1-r),

Vi(ﬁqi ) ¢a)

by reordering the terms d/dt(v;(8y,,€)) = v(¢F — e1) —
ﬂ%ufy(gb;-lﬂ — ei+1)- By (20), r > 0 for all e € R*. At
the boundary v;(f8,,,e) = 0, it holds that »r = 0 and
7 = > 0. Since v;(8y,, *) is constant, we can conclude
that r remains positive and never crosses the boundary,
that is, solutions e(t) of (14) remain in R*.

The set of edges can now be constructed:
E={a—c:cj=a;+Gj, some jand ¢, =ap, k#j}
with G; = sign(b; — a;), where R’ is the region that

contains ¢®. The procedure to compute the set £ is sum-
marized in Algorithm 1.

4.3 The state transition graph

Propositions 7 and 8 determine all possible transitions
from a given region R® and establish the basis for an
exact algorithmic representation of the global qualitative
dynamics of system (12). The coefficients ¢; # 0 identify

the boundary crossing corresponding to a threshold in
variable a;. We note that step 4 in Algorithm 1 reflects
an asynchronous updating rule for the evolution of the
discrete trajectories, since only one coordinate is allowed
to change at each transition.

Algorithm 1. State transition graph for system (12).

0. Input: set of vertices V.

1. Initialize &.

2. Pick a € V and compute ¢ from (15) and (16).
3

. Compute b such that ¢* € R’ from (17).
If b = a label node a by adding a symbol, a.

4. For j = 1 until n do:
4.1. Compute ¢; = a; + sign(b; — a;),
4.2. If ¢; # a; add an edge a — ¢ to &, with ¢, = ay,
for k # j.
5. Repeat steps 2 to 4 for each vertex in V.

6. Output: set of edges &.

The state transition graph can be analyzed with graph
theoretical tools to obtain properties such as the exis-
tence of one or more steady states, or oscillatory behav-
ior. In Algorithm 1, a node labeled & represents a region
R® which contains its own focal point (step 3). In this
case, by Prop. 8, ¢® is a regular equilibrium point and a
(locally stable) steady state of the system.

4.4 Parameter range for the state transition graph

Steps 2 and 3 of Algorithm 1 compute the focal points
and their location using (15) and (17) which, in principle,
require knowledge of the set of parameters. However, the
computation of the edges in Step 4 uses only the signs:

62'7& = 61',(1(’{?7 ’izlv 5(17 ’ '7) = Sign(Vi(ﬂqi, , ¢a))-

So, in fact, the state transition graph computed for a
particular set of parameters remains valid for all sets of
parameters which yield exactly the same family of signs.
We can formally write

Q = {ﬂ € Ri((?-H) : 51',(1(’{?,/43%,5(1“'7) = 51’,(17
Vi=1,...,n+1landa €V} (21)
where m = (K9, k1, B1,..., K% 1, KL 1, Bnt1,7). There-

fore, given a first set of realistic parameters, the algo-
rithm leads to a full characterization of Q.

5 Case study: a two-regulator pathway
5.1 Model definition

To illustrate the application of our results to a metabolic
pathway with a complex regulatory architecture, we con-
sider the system shown in Fig. 3 with n = 2 metabo-



lites and three enzymes. In this system, both metabo-
lites control enzyme synthesis, and thus we have k = 2
regulators. The regulatory architecture resembles the
“metabolator”, a metabolic oscillator implemented in
the Escherichia coli bacterium by Fung et al [11]. The
metabolator is based on the metabolic reactions that
link glycolysis and the respiration cycle, which include
two metabolites and three enzymes, and contains pos-
itive and negative feedback regulation of two pathway
enzymes.

o 10 Th
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O—» 00— 0O
|

Fig. 3. Example pathway with two regulatory metabolites.
We consider the cases in which metabolite s; activates or
represses the production of enzyme ez, denoted by a dot—
headed arrow.

The full 5-dimensional model for the system in Fig. 3
reads:

51 = g1(s0)er — ga(s1)ea,

59 = ga(s1)e2 — gs(s2)es,

é1 = KY + K164 (s2,01) — ver, (22)
ég = Hg + 5%5,(82792) — yea,

és = K3 + K33(s1,03) — ves.

In the notation of Section 2, the model in (22) has the
subindices p = 2, (1, o, £3) = (2,2,1), and (q1,p) =
(3,{1,2}). We assume that the metabolic reactions fol-
low standard Michaelis-Menten kinetics of the form

91(50) _ kcat 150
K1+ 50’
kcat 251
= — 23
alsn) = A2 (25)
g (52) — kcat352
2 Kvis + s

We fix the kinetic parameters to realistic values kcat1 =
60min ', kearo = 180min~ !, kear3 = 480 min~?, with
a Michaelis-Menten constant Ky;; = 1 uM for all three
enzymatic reactions (i = 1,2,3). The degradation rate
4 = 0.0116 min~* corresponds to a doubling time of ~
60 min, typical of the bacterium Escherichia coli. We set
the expression rates mg and KJ% so that the minimal and
maximal enzyme concentrations are E°f = [1, 4, 1.5]
and E°™ = [15, 20, 30], both in units of nM concentra-
tions. The regulatory functions in (22) are assumed to

be Hill functions of the form

. sh . o"
050 =g 0= ()
for a Hill coefficient A > 1 and regulatory thresholds
01 = 0.047 uM, 6 = 0.055 uM, and 03 = 0.22 uM. Note
that in the model (22) we have not specified the type of
regulation for o3 because we will use our approach for

both cases 03 = 04 and 03 = 0_.

After the separation of timescales, $; ~ 0 for all t > 0
and using step regulatory functions, the model in (22)
reduces to

€1 = 5(1] + 1{10'4_(61/63, 1/ﬁ1) - e,
é2 = K3+ kho(e1/es,1/B2) —vea,  (25)
é3 = K9 + ryoz(e1/e2, 1/B3) — yes,

where the 3; parameters are

5.2 State transition graphs

Assuming that the regulatory functions in (25) can be
well approximated by step functions, the reduced model
is equivalent to a 3-dimensional piecewise affine system
defined on 3 x 2! = 6 disjoint polytopes. Following the
notation of Section 4, we associate each polytope to a
pair a = (a1, a2) with a1 € {0,1} and a2 € {0,1,2}.
Since s, regulates the production of two enzymes, we
have that p = 2. Moreover, under the chosen parameter
sets, we have that By < (1 and thus the subindices are
p1 = 2 and ps = 1. The regulatory motif vector is ¢ =
[1,—1,1] or ¢ = [1, —1, —1], depending on whether
03 = o4 or g3 = o_, respectively. Using equations (15)-
(16) we get the focal points for each of the six polytopes
in both cases, shown in Fig. 4A.

Fig. 4B shows the six polytopes for a fixed nutrient con-
centration (sp). To illustrate the impact of model pa-
rameters on the graph structure, we used Algorithm 1 to
compute the state transition graphs for increasing val-
ues of sg. The results, shown in Fig. 4C-D, reveal salient
differences between the resulting graphs. Some graphs
have one or two sink nodes, while others display various
cycles. We observe changes in the graphs for a fixed reg-
ulatory architecture and increasing various values of s,
as well for a fixed sy and different regulatory architec-
tures.

One particular case, highlighted in yellow in Fig. 4C-
D, reveals that the regulatory sign of o3 switches the
graph from having two sink nodes to having two cycles.



We investigated these two cases further to examine the
bistable behaviour of the model and the possibility of
a periodic orbit along the graph cycles. As described in
Section 4.4, we can determine the set Q in the parameter
space that leads to both these graphs

1 1 1

Eoff < 7Eon’ Eon 7Eon’ E°on > 7Eoﬂr’ 27

1 53 2 1 53 2 1 ﬁ3 2 ( )
1 1 1

BT > —pSf o s ST BN < B, (28)
B1 B2 b1

BT < pon (29)

Note that the above conditions link together the enzyme
expression parameters (ET and E9") with the enzyme
kinetic parameters (kcas; and Ky; appearing in the S;
parameters).

In the case of repression, i. e. o3 = o_, the interaction
graph in Fig. 4C contains only positive loops and there-
fore the system cannot exhibit oscillatory behavior [35].
Accordingly, the state transition graph (yellow) has two
sinks at nodes 1 and 6, and thus we expect two distinct
locally stable steady states in polytopes R%? and R'2. As
shown in Fig. 5A, simulations of the full model in (22)
with a Hill coefficient h = 4 verify the existence of two
stable state states located at the predicted polytopes.
Note that because of our piecewise affine approximation,
the exact location of the steady states of the continuous
model differs slightly from the focal points ¢ and ¢'2
in Fig. 4A.

In the case of positive regulation of enzyme e3, i. e. 03 =
o4, the interaction graph in Fig. 4D contains three neg-
ative loops and thus the system may exhibit periodic
oscillations [35]. Indeed, the state transition graph (Fig.
4D, yellow) has a short cycle through nodes 2-3-6-5, and
long cycle through nodes 1-2-3-6-5-4. Upon a close exam-
ination of the piecewise affine model along these cycles,
we can prove that [5]: a) the short cycle corresponds to a
Filippov-type equilibrium at the intersection of the four
polytopes R%* N R%2 N R2 N R'; b) the long cycle corre-
sponds to a stable periodic orbit along the polytopes in
the cycle. We verified the latter prediction through sim-
ulations of the full continuous model in (22) for increas-
ing values of the Hill coefficient. As observed in Fig. 5B,
we found a periodic orbit for h > 10, which qualitatively
matches the predicted orbit from the piecewise model for
increasing values of the Hill coefficient. From the time
course simulations for the metabolites Fig. 4B (bottom),
we also observe that the shape and period of the os-
cillations corresponds well with the metabolic oscillator
in [11] (see, for instance, Figs. 1,2 therein), thus suggest-
ing the periodic orbit is within physiological ranges and
potentially observable in experiments.
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6 Conclusions

Cellular metabolism is controlled by networks of tran-
scriptional regulatory loops, often masked by complex
feedback architectures between metabolic intermediates
and enzymatic genes. Determining the closed-loop dy-
namics of a specific architecture is challenging because of
the strong nonlinearities and the large number of chem-
ical species involved. In this paper we have proposed
a formalism for the qualitative analysis of closed-loop
dynamics in a large class of regulation systems for un-
branched pathways. Our analysis relies on time scale
separation and piecewise affine models to accomplish:
(i) a complete classification of all possible feedback in-
teraction networks associated to a metabolic pathway;
and (ii) an algorithmic construction of the state transi-
tion graph that describes the global system dynamics. In
a synthetic biology and metabolic engineering context,
this feedback network catalogue provides an indication
of the components (metabolites, enzymes, promoters)
required to assemble a metabolic pathway exhibiting a
desired circuitry and dynamics [22].

Our analytical results are obtained for a new class of
piecewise linear systems in conic regions, derived by ap-
proximating Hill functions by step functions. Among
other benefits, this framework allows establishing exis-
tence of an asymptotically stable periodic orbit for a sys-
tem whose regulatory motif is reminiscent of the metabo-
lator [11]. In fact, theoretical proofs of oscillatory be-
havior are difficult to obtain in general, and the result
for the metabolator remains unclear [27].

Despite their usefulness, piecewise linear systems pro-
vide a possibly less realistic description then their con-
tinuous counterparts. Large Hill coefficients are typi-
cally associated with strong cooperativity effects [15],
while gene expression profiles can often be described by
steep sigmoidal curves [36]. To verify the suitability of
the piecewise linear approximation in our case, we per-
formed simulations for Hill coefficients in a wide inter-
val. The differences observed in the dynamical behavior
reside essentially in the form and amplitude of the time
solutions, both in the case of multiple equilibria and in
the presence of periodic behavior (see Fig. 5).

One of our goals in this work was to devise an analysis
technique applicable to a wide range of regulatory archi-
tectures. As a result, for tractability we made a number
of simplifying assumptions. In particular, we have not
considered regulatory mechanisms such as product inhi-
bition, allostery and other post-translational effects that
are common in metabolic pathways. A key step in our
method is that the solution of quasi steady state equa-
tion in (5) depends only on enzyme concentrations. In
such case, the complete system (1)—(2) can be projected
onto the state space of enzymes, partitioned into suitably
defined polytopes. We note that this does require the
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(D) regulation of enzyme es. The interaction graphs are given for the transformed variables defined in Fig. 2a(left), i.e
w=2z =e; —es/P1,y=e1 —ez/Ps, and z2 = e — e3/B2. The state transition graphs were computed with Algorithm 1 for
increasing nutrient concentrations so = {0.5, 1.5, 4, 10} uM; arrows denote sink nodes or graph cycles, respectively. The two
highlighted graphs are for sop = 1.5, uM and suggest the bistable and oscillatory dynamics.

explicit solution of the quasi steady state equation: it is
sufficient to guarantee the existence of a unique solution
for the regulatory metabolites in terms of enzyme con-
centrations. Specific types of post-translational mecha-
nisms may lead to quasi steady state equations that are
solvable and respect these conditions. In such cases our
approach could be extended with minor modifications,
taking into account the geometry of the resulting poly-
topic partition. A similar reasoning applies to other po-
tential extensions of our method, including the analysis
of branched pathways.

In conclusion, our results draw a link between various
architectures of transcriptional regulation and classes of
prototypical networks, with all the positive and negative
feedback loops explicitly identified. This allowed us to
single out candidate global dynamics using graph anal-
yses, and thus uncover the enormous dynamical diver-
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sity that can emerge in metabolic pathways under gene
regulation.
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