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Abstract

Interactions between gene regulatory networks and metabolism generate a diversity of dynamics, in-
cluding multistability and oscillatory behavior. Here, we characterize a regulatory mechanism that
drives the emergence of periodic oscillations in metabolic networks subject to genetic feedback regula-
tion by pathway intermediates. We employ a qualitative formalism based on piecewise linear models
to systematically analyze the behavior of gene-regulated metabolic pathways. For a pathway with
two metabolites and three enzymes, we prove the existence of two co-existing oscillatory behaviors:
damped oscillations towards a fixed point or sustained oscillations along a periodic orbit. We show that
this mechanism closely resembles the “metabolator”, a genetic-metabolic circuit engineered to produce
autonomous oscillations in vivo.

Keywords: Metabolic pathways, synthetic biology, gene regulatory networks, piecewise affine
systems, periodic orbits, metabolic engineering

1. Introduction

Metabolic activity is strongly linked with gene expression patterns. Alterations in metabolism are
highly controlled by and coordinated with modifications in gene expression patterns [1, 2, 3]. Recent
experimental [2, 4, 5] and theoretical [6, 7, 8] works have studied the synergy and emergent dynamics
in interconnected genetic-metabolic networks, showing how systems can take advantage of the control5

and regulation options offered by such coupling.
Current techniques in synthetic biology allow re-wiring the genetic networks that control expression

of metabolic enzymes, so as to produce new dynamic functions [3]. One of the first examples of such
engineered systems is known as the metabolator and was developed by Fung et al. in 2005 [4]: it
couples metabolic and genetic networks to exhibit autonomous oscillations. Based on the mechanisms10

that link glycolysis to the respiration cycle, the metabolator circuit makes use of the native pathways
of the Escherichia coli bacterium that transform sugars into acetate via acetyl-coenzyme A and acetyl
phosphate.

However, the mechanisms directly responsible for sustained oscillatory behavior are not easy to
pinpoint and, so far, it is not clear whether the mathematical model originally proposed by Fung15

et al. [4] is indeed capable of periodic oscillations. The study in [9], using bifurcation analysis and
a generalized modeling technique, suggests some modifications to the model [4] in order to obtain
existence of periodic orbits: either adding some delay on enzyme transcription or decoupling one of
the metabolites into two different pools. To further explore the mechanisms at play in this system,
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Figure 1: Two models for the metabolator network, with solid bold arrows representing the metabolic network and solid
light arrows representing genetic regulation. There are two metabolites, acetyl-coenzyme A (AcCoA) and the acetate pool
represented by acetyl phosphate (AcP ), and three enzymes, acetyl-CoA synthetase (Acs), phosphate acetyltransferase
(Pta), and acetate kinase (Ack). (a) The metabolator network analyzed by Fung et al., and (b) a qualitative view as
an irreversible pathway with two metabolites and three enzymes, where all production sources for each metabolite are
merged into one arrow and all the enzymes are regulated by a metabolite in the pathway; (a1), (b1) show a corresponding
reduced network involving only the enzymes, for the schemes in (a), (b), respectively.

our analysis proposes an alternative mathematical model for the metabolator circuit, based on a re-20

interpretation of the enzymes’ role and introducing metabolite-controlled gene expression.
Throughout this paper, our goal is to better understand the mechanism that lies at the core of pe-

riodic oscillations in genetic-metabolic models, such as the metabolator. Here we study an unbranched
metabolic pathway where each enzyme is regulated by one of the metabolites, a schematic view studied
in [7] (Fig. 1(b)). Our theoretical formalism is based both on timescale separation leading to model25

reduction, and on approximation of continuous activity functions by piecewise linear functions. Ge-
netic networks are often represented by piecewise linear systems, with the state space partitioned into
a family of bounded regular hypercubes. This genetic-metabolic formalism uses a piecewise affine de-
scription (such as developed by L. Glass [10] or R. Thomas [11, 12] and their collaborators) to provide a
rich qualitative model that captures the general scheme of interactions between metabolic and genetic30

networks, with the advantage of offering an algorithmic view of the dynamics.
Using our formalism, we therefore suggest an alternative updated model for the metabolator and

show it allows the co-existence of two types of oscillatory behavior: a periodic orbit and damped
oscillations around a Filippov-type fixed point.

2. A gene-regulated metabolic pathway as a model for the metabolator35

The system known as metabolator is a synthetically engineered biological network constructed by [4],
based on the interactions between a metabolic pathway and its genetic regulation. The pathway trans-
forms sugars into acetate via acetyl-coenzyme A and acetyl phosphate, and synthetic regulation was
introduced to have gene expression of both enzymes (Pta and Acs) involved in these transformations
under the control of acetyl phosphate. The third enzyme, Ack, catalyzes the outgoing flow and is40

assumed constitutively expressed, hence constant.
As illustrated in Fig. 1(a),(b), this system can be viewed as a metabolic pathway where enzy-

matic gene expression is controlled by the metabolites. The analysis of the reduced enzymatic network
Fig. 1(a1) (see Appendix A) shows that the main dynamics are governed by a positive loop with two
variables (Pta and Acs), both with self-negative regulation, and a constant Ack. However, the pio-45

neering work of René Thomas on the analysis of network topology shows that, in general, a positive
loop leads to multistability while a negative loop with at least three variables is required to produce
sustained oscillations (see, for instance, [13]).

2



In this paper, we therefore propose an alternative mathematical model for the metabolator network
by re-interpreting the role of Acs and regulating the production of enzyme Ack by metabolite AcCoA.50

With this new model, the 2-variable positive loop is replaced by a 3-variable negative loop through
Pta a Ack a Acs, as in Fig. 1(b1). The enzyme reduced network now exhibits three negative loops,
a configuration which most likely exhibits periodic oscillations, as discussed by R. Thomas and col-
leagues [11, 13, 14]. A comparison between the mathematical terms describing the models of Fig. 1(a)
and (b) is given in Table A.1. Accordingly, there are two significant updates from scheme (a) to scheme55

(b) of Fig. 1:

1. The influx into AcCoA depends only on S0 (see Table A.1, the term g1(AcP )Acs is replaced by
g1(s0)Acs).

2. Enzyme Ack is now assumed to be time-varying and regulated by AcCoA (Ack was assumed
constant in the model [4]), with an associated consumption flow of the form g3(AcP )Ack as shown60

in Table A.1. Previous work [15] showed that negative regulation of Ack rules out oscillatory
behaviour, while positive regulation allows for different types of oscillations. The existence of the
positive regulation AcCoA → Ack is hypothetical in E. coli but it is apparently supported in
other organisms (as indicated in [16] on the regulation of acetate metabolism in Corynebacterium
glutamicum).65

2.1. A qualitative model for the metabolator

In Fig. 1(b), the metabolator is represented by an irreversible metabolic pathway with one constant
influx (s0) and two metabolites (s1 and s2), with each transformation step catalyzed by one enzyme.
This alternative model can be studied with a new methodology (developed by us in previous work [7, 15])
to study the interactions between metabolic pathways and the gene network that regulates enzymatic70

expression. Our formalism considers a self-contained regulatory system, composed by an irreversible
metabolic pathway where the transcription of each enzyme is regulated by a metabolite and, conversely,
every metabolite regulates expression of at least one enzyme.

To introduce our alternative model, note that the path AcP → LacI a Pta can be simplified to
AcP a Pta, so we will consider the following five variables:75

x = (s1, s2, e1, e2, e3)′ = (AcCoA,AcP,Acs, P ta,Ack)′.

The pathway model is constructed according to two standard properties (see [7] for all details): (i) the
concentration of metabolites is determined by the difference between incoming and outgoing flows, gi,
which are continuous increasing functions [17]; (ii) the enzymes are produced by metabolite-controlled
gene expression modeled by sigmoidal (Hill) functions [18, 19] and have linear degradation rates [20]:

ṡi = gi(si−1)ei − gi+1(si)ei+1, i = 1, 2 (1)

ė1 = κ0
1 + κ1

1h
+(s2, θ1)− γ1e1,

ė2 = κ0
2 + κ1

2h
−(s2, θ2)− γ2e2, (2)

ė3 = κ0
3 + κ1

3h
+(s1, θ3)− γ3e3,

where gi(X) = kcat,iX/(KM,i +X), h+(X, θ) = Xn/(Xn + θn), and h−(X, θ) = 1− h+(X, θ) for some
integer n > 1. Each enzyme is degraded at a rate γi and synthesized at basal and regular rates κ0

i

and κ1
i , respectively. The θi represent the activity thresholds. For metabolites, kcat,i is the maximal

turn-over rate and KM,i the concentration at half-maximal rate.
A numerical comparative analysis (Appendix A) lends strength to our chosen representation of the80

metabolator. To illustrate the differences between the two representations in Fig. 1 (a) and (b), in
Appendix A we study the system

dx

dt
= Fb(x) + α (Fa(x)− Fb(x)) (3)

where Fa and Fb denote the vector fields for the schemes in Fig. 1 (a) and (b), respectively. The case
α = 0 corresponds exactly to our system (1)+(2), while the case α = 1 recovers the metabolator model
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of [4], and the intermediate cases 0 < α < 1 represent linear combinations of the two systems. For85

α > 0.5 the contribution of the Fung et al. model is more important so that the combined system (3)
has a higher “resemblance” to Fa then to Fb. Fig. A.7 shows simulations obtained as α successively
increases, taking the values {0, 0.2, 0.4, 0.6, 0.8, 0.9}. A periodic orbit is obtained for the case α = 0,
as expected [15]. Then, as α increases up to 0.8 (an 80% resemblance to Fa), a qualitatively similar
periodic is still present, with a different shape but within the same region of the state space. For higher90

values of α, the orbit becomes very much distorted and actually disappears for α = 1.
This study not only confirms the dynamical similarity between the two metabolator schemes of

Fig. 1, but also suggests that some extra components may be required in the model of Fung et al. in
order to guarantee sustained oscillations (in agreement with a previous analysis [9]).

2.2. A piecewise affine system of equations95

Among the most notable contributions of René Thomas to the mathematical modeling of genetic
regulatory networks is the idea that gene expression may be represented using only two levels [21]: on
or off, 0 or 1. This Boolean representation greatly simplified the analysis of the dynamics of genetic
networks and led to a formalism simultaneously developed by L. Glass and co-authors [22, 10], which
has many applications [12, 20, 23, 24]. Based on these ideas, the Hill functions are approximated by100

step functions σ+(r, θ) = 0 if r < θ and σ+(r, θ) = 1 if r > θ, and σ−(r, θ) = 1 − σ+(r, θ), to facilitate
theoretical analysis of (1)-(2).

A second approximation is based on the fact that interconversion of metabolites is much faster than
enzyme synthesis [17, 25]. This timescale separation justifies the simplification of metabolite dynamics
by setting ṡi ≈ 0, which are the fast variables relative to ei. This quasi-steady state approximation is105

also at the basis of the Michaelis-Menten kinetic mechanism [26] and is regularly used in the analysis
of systems with both fast and slow components [20, 24, 27].

It is useful to introduce the minimal and maximal concentrations for each enzyme:

E0
i = Eoff

i =
κ0
i

γi
, E1

i = Eon
i =

(κ0
i + κ1

i )

γi
.

The enzyme equations imply that the intervals [E0
i , E

1
i ] are forward-invariant for each enzyme ei, hence

we can assume that ei(t) > 0 for all t.110

At quasi-steady state, the metabolite equations in (1) yield g1(s0)e1 = gi(si−1)ei for all i. Using
these equalities and the monotonicity of gi, we can write:

σ+(s2, θ1) = σ+(g3(s2), g3(θ1)) := σ+

(
e1

e3
,

1

β1

)
σ−(s2, θ2) = σ−(g3(s2), g3(θ2)) := σ−

(
e1

e3
,

1

β2

)
σ+(s1, θ3) = σ+(g2(s1), g2(θ3)) := σ+

(
e1

e2
,

1

β3

)
where β1 = g1(s0)/g3(θ1), β2 = g1(s0)/g3(θ2), and β3 = g1(s0)/g2(θ3).

These approximations lead to the following three-dimensional, piecewise affine system:

ė1 = κ0
1 + κ1

1σ+(e1/e3, 1/β1)− γ1e1

ė2 = κ0
2 + κ1

2σ−(e1/e3, 1/β2)− γ2e2 (4)

ė3 = κ0
3 + κ1

3σ+(e1/e2, 1/β3)− γ3e3.

From the properties of step functions, system (4) can be viewed as a switching system with state space
partitioned into six conic regions separated by the three planes:

e1 =
1

β1
e3, e1 =

1

β2
e3, e1 =

1

β3
e2. (5)
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In each region, system (4) is linear and its solutions follow trajectories with φa = (φa1 , φ
a
2 , φ

a
3) as a limit115

point called the focal point :

ėi = γi(φ
a
i − ei) (6)

where

φi =

{
Eσi
i , e1 >

1
βi
e`i+1

E1−σi
i , e1 <

1
βi
e`i+1,

(7)

σi ∈ {0, 1} denotes the sign of the corresponding step function, and the indexes (`1, `2, `3) = (3, 3, 2)
follow from (4).

Fig. 2 clearly shows that model (4) has the capacity to reproduce the oscillatory behavior observed120

in the synthetic metabolator, since it simultaneously captures the shape of the oscillations, the relative
minimal and maximal amplitudes, as well as the period (around 46 minutes).

Figure 2: Model (4) fits synthetic metabolator data (blue dots), taken from Figure 1(a) in [4], with GFP arbitrary units
normalized to 5. Parameters are γi = 0.07, κ0i = 0.06 (for all i), κ1 = [0.4, 0.65, 1], and β = [1/0.6, 1/0.7, 1/0.9]. The
period of the model solution is approximately 45.88 minutes.

2.3. State transition graph

Piecewise affine systems of the form introduced in [10, 12] have the property that their state space
is partitioned into a finite number of rectangular regions; in each of these, the vector field is linear125

and its solution can be explicitly computed. If a trajectory leaves one region to enter another, this
implies a switch in the vector field and a corresponding change of solution. Each trajectory can then
be constructed as a concatenation of these solutions.

For the piecewise affine system (4) the regions are instead defined in terms of the planes e1 = ei/β,
which leads to a partition of the state space in terms of conic regions. This introduces some differences130

in the treatment and analysis of steady states and their stability [7]. In either case, the global dynamics
of a piecewise linear system can be represented by a directed graph whose nodes are the set of regions
and the edges correspond to switches between two regions: this is called the state transition graph of
the system (see Fig. 3).
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The state transition graph for (4) has six regions Ra, defined by135

R0,0 = {(e1, e2, e3) : e1 <
1

β3
e2, e1 <

1

β1
e3},

R1,0 = {(e1, e2, e3) : e1 >
1

β3
e2, e1 <

1

β1
e3},

R0,1 = {(e1, e2, e3) : e1 <
1

β3
e2,

1

β1
e3 < e1 <

1

β2
e3}, (8)

R1,1 = {(e1, e2, e3) : e1 >
1

β3
e2,

1

β1
e3 < e1 <

1

β2
e3},

R0,2 = {(e1, e2, e3) : e1 <
1

β3
e2, e1 >

1

β2
e3},

R1,2 = {(e1, e2, e3) : e1 >
1

β3
e2, e1 >

1

β2
e3},

where it is assumed that β2 < β1. Consider the following set of parameters based on data from [4] (see
Fig. 2)

γ = [0.07, 0.07, 0.07], κ0 = [0.06, 0.06, 0.06], κ1 = [0.4, 0.65, 1], β =

[
1

0.6
,

1

0.7
,

1

0.9

]
. (9)

For this set of parameters, the transition graph is as given in Fig. 3(a), predicting the existence of two
types of oscillatory behavior, along either a “short” (four regions) or a “long” (six regions) cycle. In
fact, as illustrated in Fig. 3, there is co-existence of a periodic orbit following the long cycle and a140

Filippov fixed point at the intersection of the four regions R0,1,R0,2,R1,1,R1,2.
In addition, this dynamical behavior is robust with respect to variations in the parameters. A recent

method analyses robustness of globally stable equilibrium points of genetic networks, by treating the
parameters as time-variant linear coefficients [28]. In our model, to ensure the co-existence of a periodic
orbit and a locally stable equilibrium, we first identify the region of parameters that allow a transition145

graph of the form given in Fig. 3(a). Setting π = (γ, κ0, κ1, β), define

δ1,r(π) = sign(φr1 −
1

β1
φr3), δ2,r(π) = sign(φr1 −

1

β2
φr3), δ3,r(π) = sign(φr1 −

1

β3
φr2).

The algorithm for constructing the transition graph is given in [15], and depends on the expressions
δi,r(π). It follows that all sets of parameters π̃ which satisfy δi,r(π̃) = δi,r(π) share the same tran-
sition graph. The dynamical behavior is thus maintained over a reasonably sized open neighborhood
around (9).150

In the next sections, a deeper analysis of system (4) establishes the co-existence of the two types of
dynamical behavior, under some extra mild conditions on the parameters. In this sense, Theorems 1
and 2 below further characterize robustness of (4) with respect to parameters.

Remark. An interesting parallel can be drawn between genetic-metabolic and signaling networks155

through their transition graphs: the same dynamics can be generated either with a gene-protein signaling
network or with a gene-regulated metabolic pathway. Indeed, the transition graph for our enzyme system
(Fig. 3(a)) is similar to the one obtained for a piecewise affine model of the p53-Mdm2 network in [23],
where it is shown that the system admits two stable periodic orbits, that is the p53-Mdm2 system
is birhythmic. The p53-Mdm2 network was initially developed in [29], it is composed of 3 variables160

(p53, nuclear, and cytoplasmic Mdm2) and the interactions consist of a 3D negative feedback loop
(p53→Mdm2c→Mdm2nap53) together with a double negative loop between p53 and nuclear Mdm2.

Thus, the transition graph (same in Fig. 3(a) and [23]) implies that there are two types of oscillatory
behavior, characterized by either large or short amplitudes. In our case, the short amplitude oscillations
are damped, while for the p53-Mdm2 system there are two distinct periodic orbits. It may be conjectured165

that, under further conditions (for instance, a finer partition of the state space as in [23]) our enzyme
system might also exhibit birhythmicity.
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(a) (b)

Figure 3: (a) Transition graph of system (4) with parameters (9); (b) Dynamics of the model (4) among the regions
Ra. Solutions are shown (red curves) for two sets of initial conditions (cyan dots). Three planes are pictured: e3 = β2e1,
e3 = β1e1, and e2 = β3e1 (vertical). One trajectory follows the long transition cycle in (a) and converges to a periodic
orbit. The other follows the short cycle, spiraling towards an equilibrium at the intersection of the four regions (blue dot).
Parameters are as in (9).

3. Analysis of the qualitative model by change of variables

To perform a more detailed analysis of system (4) and show that it exhibits both a locally steady
state and a periodic orbit, we will make a change of variables defined by the boundaries of the conic170

regions represented in Fig. 3(a) (as proposed in [15]):

w = e1 −
1

β1
e3, y = e1 −

1

β3
e2, z = e1 −

1

β2
e3 (10)

and assume, for simplicity, that degradation rates are equal, γi = γ for all i. We obtain the piecewise
linear set of equations

ẇ = κ̃0
1 + κ1

1σ+(w, 0)− κ1
3

β1
σ+(y, 0)− γw

ẏ = κ̃0
3 + κ1

1σ+(w, 0)− κ1
2

β3
σ−(z, 0)− γy (11)

ż = κ̃0
2 + κ1

1σ+(w, 0)− κ1
3

β2
σ+(y, 0)− γz.

where κ̃0
j = κ0

1−κ0
`j
/βj . It can be observed that this system has a scheme of interactions composed only

of negative cycles plus a positive self-loop on w (Fig. 1(b)). According a conjecture due to R. Thomas,175

this type of circuit can admit periodic oscillations [11, 13, 14].
The regions represented in Fig. 3 are now defined through the new variables:

R0,0 = {(w, y, z) : w < 0, y < 0, z < 0},
R1,0 = {(w, y, z) : w < 0, y > 0, z < 0},
R0,1 = {(w, y, z) : w > 0, y < 0, z < 0}, (12)

R1,1 = {(w, y, z) : w > 0, y > 0, z < 0},
R0,2 = {(w, y, z) : w > 0, y < 0, z > 0},
R1,2 = {(w, y, z) : w > 0, y > 0, z > 0},

7



and the new focal points can be found by substitution of φRi from (7) into (10):

∆R
w = φR1 −

1

β1
φR3 ,

∆R
y = φR1 −

1

β3
φR2 ,

∆R
z = φR1 −

1

β2
φR3 ,

where R is one of the six domains defined in (8). The parameters of (11) should satisfy some general
conditions regarding the relative positions of the focal points. Note that, in the new variables, the state180

space is centered at the origin, and trajectories oscillate around the origin. To guarantee the existence
of oscillatory behavior (either damped or sustained), trajectories need to switch between the various
regions and, hence, each focal point φR must be located outside its own region R. In addition, focal
points need to be at a sufficient distance from each other. Moreover, the form of system (6) induces
pairwise equalities between the coordinates of the focal points. To summarize, we have for variable w:185

∆1,0
w < ∆1,1

w = ∆1,2
w < −1 and 0 < ∆0,0

w < 1 < ∆0,1
w = ∆0,2

w (13)

and for variable y:

∆0,0
y = ∆1,0

y < ∆0,1
y = ∆1,1

y < −1 and 1 < ∆0,2
y = ∆1,2

y . (14)

Define also

Eon
1 :=

β1 − β2

β1
Eon

1 .

In addition, we have two technical sufficient conditions to establish the existence of a periodic orbit:

∆1,1
w

∆1,0
w

<
∆1,1
y

∆1,0
y

, (15)

and

∆0,2
w >

∣∣∆1,1
w

∣∣ > Eon
1 ,

∣∣∆1,1
y

∣∣ < ∆0,2
y = ∆1,2

y <
∣∣∆0,0

y

∣∣ . (16)

Note that all conditions above are satisfied by the set of parameters (9): ∆1,0
w = −8.228, ∆1,1

w =190

∆1,2
w = −2.514, ∆0,0

w = 0.343, ∆0,1
w = ∆0,2

w = 6.057, ∆0,2
y = ∆1,2

y = 5.800, ∆0,1
y = ∆1,1

y = −2.557,

∆0,0
y = ∆1,0

y = −8.271, Eon
1 = 0.939. Inequality (15) holds: 0.3056 < 0.3092.

One of the key points of the analysis is to understand the dynamics of (11) on R1,1, the only region
where the transition graph splits between two pathways. Trajectories may escape R1,1 through two
boundary planes, corresponding to y = 0 (to follow the short cycle) and w = 0 (to follow the long195

cycle). So, we need to compare the times at which the solutions y(t) and w(t) hit 0. In each region,
the solutions are easily computed from:

w(t) = ∆1,1
w + (w(0)−∆1,1

w )e−γt,

(similarly for y(t)) where

∆1,1
w = Eon

1 −
1

β1
Eon

3 and ∆1,1
y = Eon

1 −
1

β3
Eon

2 .

The trajectory crosses the plane w = 0 at time Tw given by w(Tw) = 0 and, similarly, it crosses the
plane y = 0 at time Ty given by y(Ty) = 0:200

eγTw =
∆1,1
w − w(0)

∆1,1
w

and eγTy =
∆1,1
y − y(0)

∆1,1
y

.
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Figure 4: The basins of attraction for the reduced enzyme network (4) with parameters (9), projected on the plane
(e1, e2). Initial conditions are taken on the plane e3 = β2e1 with e2 < β3e1. The solid black line represents the plane
e2 = β3e1. The dashed black line represents the separatrix region R1,1

sep, between the two basins of attraction. The red
curve is the projection of the periodic orbit on the plane (e1, e2). The blue + symbols represent initial conditions leading
to the periodic orbit along the long cycle. The blue dots represent initial conditions leading to convergence along the short
cycle towards the fixed point φF = Eon

1 (1, β3, β2) (red star), at the intersection of the planes e3 = β2e1 and e2 = β3e1.

Therefore, if eγTw < eγTy , the trajectory follows the long cycle, otherwise it follows the short cycle.
Region R1,1 can thus be partitioned into two parts and a separatrix:

R1,1
long =

{
(w, y, z) ∈ R1,1 :

w

∆1,1
w

>
y

∆1,1
y

}
,

R1,1
short =

{
(w, y, z) ∈ R1,1 :

w

∆1,1
w

<
y

∆1,1
y

}
, (17)

R1,1
sep =

{
(w, y, z) ∈ R1,1 :

w

∆1,1
w

=
y

∆1,1
y

}
.

A projection of these regions on the plane (e1, e2) is shown in Fig. 4. In particular, under the above
conditions on the parameters (satisfied by (9)), each of the regions R1,1

long (blue + symbols) and R1,1
short

(blue dots) is invariant under the flow of the system, as shown in the next two sections.205

4. Damped oscillations along the short cycle

To establish the existence of damped oscillations along the short cycle, the main observation is that
trajectories starting in R1,1

short will remain within the four regions that form the short cycle, R0,1,R0,2,R1,1,
and R1,2. Within these four regions, it follows that system (11) can be reduced to a basic negative
feedback loop involving variables y and z (see (18) below), whose behavior is well known [10]: it210

converges towards a fixed point, as illustrated in Fig 5.
This result is summarized in Theorem 1. It implies that a steady state is thus always present in the

qualitative metabolator corresponding to initial conditions near the axis Acs = Ack
β2

= Pta
β3

.

Theorem 1. Consider system (11) under assumptions (13)-(14) and initial conditions of the form
(w(0), y(0), z(0)) such that w(0)/∆1,1

w < y(0)/∆1,1
y . Then, the solution converges to the point ∆F =215

((1− β2

β1
)Eon

1 , 0, 0). The corresponding solution of the ei system converges to φF = Eon
1 (1, β3, β2).

Observe that, inside the four regions R0,1,R0,2,R1,1, and R1,2, it always holds that e3 < β1e1 or
w > 0 implying σ+(w, 0) ≡ 1 and hence variables y, z can be analyzed as an autonomous system, which

9



Figure 5: Convergence of a trajectory towards the fixed point φF = Eon
1 (1, β3, β2), along the short cycle, projected on

the plane (z, y).

is in fact a negative loop z → y a z:

ẏ = κ̃0
2 + κ̃1

1 +
κ1

2

β3
σ+(z, 0)− γy

ż = κ̃0
3 + κ̃1

1 +
κ1

3

β2
σ−(y, 0)− γz (18)

with κ̃0
j = κ0

1−κ0
`j
/βj and κ̃1

j = κ1
1−κ1

`j
/βj . This is a well known planar piecewise linear system: in [10],220

the authors show that it has damped oscillations in the case of aligned focal points, i.e. placed at the
vertices of a rectangle, as in (18). The first return map of (18) on the half segment {(y, z) : z = 0, y > 0}
is of the form:

P (y) =
ρy

1 + ry
, r > 0, ρ =

∆0,2
z ∆0,1

y ∆1,1
z ∆1,2

y

∆0,2
y ∆0,1

z ∆1,1
y ∆1,2

z

. (19)

In our case, ρ = 1 due to the location of the focal points, which satisfy ∆0,2
y = ∆1,2

y , ∆0,1
y = ∆1,1

y and
∆0,2
z = ∆0,1

z , ∆1,1
z = ∆1,2

z . This implies P (y) < y for y > 0.225

To apply this result, it is first necessary to guarantee that the trajectories cannot move away from
the four regions R0,1,R0,2,R1,1, and R1,2 whenever the initial condition is in R1,1

short, so that (18) holds
for all times; the proof is done in Appendix B.

5. A periodic orbit along the long cycle

To prove the existence of a periodic orbit, we will study the dynamics of variables w and y along230

the long cycle,

ẇ = κ̃0
1 + κ1

1σ+(w, 0)− κ1
3

β1
σ+(y, 0)− γw = gw(t, w, y)

ẏ = κ̃0
3 + κ1

1σ+(w, 0)− κ1
2

β3
σ−(z, 0)− γy = gy(t, w, y). (20)

However, in contrast to (18), the reduced system (20) is not autonomous, since the transitions R0,1 →
R0,2 and R1,2 → R1,1 do not take place at fixed values of the w coordinate but instead depend on time.
Nevertheless, variable z can be written in terms of w(t) in the form z(t) = w(t) + ( 1

β1
− 1

β2
)e3(t), as

follows from the definition of w and z (10), so those two types of transitions happen at instants t such235

that z(t) ≡ 0 or, equivalently, w(t) = β1−β2

β1
e1(t).
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To study system (20) we will use an idea recently developed in [30] and [31], which consists of
bounding the original system by interior and/or exterior systems. These bounding systems are defined
so that their trajectories circumscribe those of the original system and determine a region of the state
space where trajectories of the original system evolve. For example, in [30], a system with an uncertainty240

window is bounded by interior and exterior systems, both having periodic orbits which define a torus
where trajectories of the original system evolve; in particular, this implies the existence of periodic
behavior for the original system with uncertainties. The bounding systems are typically easier to study
than the original system. Accordingly, we will construct a new simplified two-dimensional system that
provides an inner bound for system (20) in the sense of Def. 1:245

Definition 1. Consider two parametrized bi-dimensional curves, φ = {(w(t), y(t)) : t ∈ [0, T ]} and
φ̃ = {(w̃(t), ỹ(t)) : t ∈ [0, T̃ ]}, defined in the same orthant of the plane R2. The curve φ is said to be an
inner bound on R to curve φ̃ if:

∀t ∈ [0, T ], t̃ ∈ [0, T̃ ] : w(t) = w̃(t̃)⇒ |y(t)| ≤
∣∣ỹ(t̃)

∣∣ .
The inner bound curve φ is thus closer to the origin at all points (see each orthant of Fig. 6). Construct
a new system (ẇ, ẏ) = h(w, y) as follows:250

ẇ = hQw(y) = γ
[
∆Q
w − w

]
ẏ = hQy (z) = γ

[
∆Q
y − y

]
, Q ∈ {A,B,C,D} (21)

where the four regions Q are defined in terms of the Ri,j domains defined in (12):

QA = R0,0,

QB = R0,1 ∪R0,2,

QC = {R1,2| w > Eon
1 },

QD = R1,1
long ∪R1,0 ∪ {R1,2| w < Eon

1 },

where R1,2|p denotes the restriction of R1,2 to the property p, and the corresponding focal points are
chosen as

∆A = (∆0,0
w ,∆0,0

y )′ = (φ0,0
1 − φ0,0

3 /β1, φ
0,0
1 − φ0,0

2 /β3)′,

∆B = (∆0,2
w ,∆0,2

y )′ = (φ0,2
1 − φ0,2

3 /β1, φ
0,2
1 − φ0,2

2 /β3)′,

∆C = (∆1,2
w ,∆1,2

y )′ = (φ1,2
1 − φ1,2

3 /β1, φ
1,2
1 − φ1,2

2 /β3)′,

∆D = (∆1,1
w ,∆1,1

y )′ = (φ1,1
1 − φ1,1

3 /β1, φ
1,1
1 − φ1,1

2 /β3)′.

Define

X := R0,0 ∪R0,1 ∪R0,2 ∪R1,0 ∪R1,1
long ∪R1,2

and note that also X = QA ∪QB ∪QC ∪QD.255

Proposition 5.1. Assume that conditions on the parameters (13)-(14) hold. Consider the solutions of
systems (20) and (21) in each region R ∈ X , respectively denoted by φ̃R = (w̃(t), ỹ(t))′ (t ∈ [0, T̃ ]) and
φR = (w(t), y(t))′ (t ∈ [0, T ]), for the same initial condition (w0, y0) ∈ R. If (15) holds, then curve φR

is an inner bound on R to curve φ̃R, for each R.

In other words, the trajectory of system (21) always evolves closer to the origin and, starting from the260

same initial condition, the two trajectories cannot cross, with the curves corresponding to trajectories
of (21) providing an inner bound to those of (18), as depicted in Fig. 6.

The two-dimensional system (21) is easier to study than (20), and it has a periodic orbit:

Proposition 5.2. Under conditions on the parameters (13)-(16), and initial conditions in X , sys-
tem (21) has a unique, attractive, periodic orbit on X .265
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Figure 6: Convergence of a trajectory towards the periodic orbit, projected on the plane (w, y). The focal points for
the six regions are labeled ∆R. The blue curve represents a trajectory of the (original) system (18) and the red curve

represents a trajectory of the inner bound system (21). The dashed vertical line represents the value w = β1−β2
β1

Eon
1 and

the solid black line on the orthant w > 0, y > 0 represents the separatrix R
(1,1)
sep .

The proofs of the two Propositions are given in Appendix C and Appendix D, respectively. The
existence of periodic oscillations for the metabolator system now follows immediately as a corollary of
Props. 5.1 and 5.2. The main idea is that, since (21) is an inner bound to (20), trajectories of (20) must
thus remain outside the periodic orbit of system (21).

Theorem 2. Under conditions on the parameters (13)-(16), and initial conditions in X , system (18)270

has a periodic orbit on X .

The proof will follow from four observations:

(1) one can assume all trajectories of (20) remain within the rectangle Q = [Eoff
1 − Eon

3 /β1, E
on
1 −

Eoff
3 /β1]× [Eoff

1 −Eon
2 /β3, E

on
1 −Eoff

2 /β3], a natural forward-invariant region given by the vector
field;275

(2) by Prop. 5.1, system (21) is an inner bound for (20);

(3) by Prop. 5.2, system (21) admits a periodic orbit. Let C be the area enclosed by this orbit and
yC be the intersection of the orbit with the semi-axis y > 0

(4) for each region Ra, the focal point is in the “next” neighbor region, in a sequence defined by the
long cycle in the state transition diagram in Fig. 3(a).280

Taken together, (1)-(3) imply that trajectories of the (non-autonomous) system (20) must evolve inside
the region Q \ C, for all times. Point (4) implies that every trajectory eventually leaves its starting
region and enters the “next” neighbor region, also following the sequence defined by the long cycle.

Consider the interval Iy = [0, yC ]: from points (1)-(4), one can construct a first return map,
F : Iy → Iy for system (20). Then F is continuous and Iy is invariant under F . By Brouwer’s285

fixed point theorem, there exists ȳ such that F (ȳ) = ȳ, which in turn implies the existence of a periodic
orbit for system (20).

These results conclude the theoretical analysis of the qualitative metabolator system to establish
two co-existing types of asymptotic behaviors. Theorems 1 and 2 characterize the behavior of the290

reduced enzyme model (4), which is itself an approximation of the full genetic-metabolic oscillator (1)-
(2). Typically, these approximations give a good qualitative description of the dynamial behavior of
the original system, so we can expect co-existence of the damped and sustained oscillatory behaviors
for system (1)- (2) (at least for high Hill coefficients). This is indeed verified numerically in Fig A.7
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(α = 0) as well as in [15]. Another link between a continuous system and its qualitative piecewise linear295

description is provided, for instance, by [30] and [31], which motivated Def. 1. As summarized above,
under appropriate conditions, we can find bounds for a continuous system in terms of two piecewise
linear systems; these bounds remain close to the original system and provide a faithful description of
its dynamical behavior.

6. Discussion and conclusions300

The goal of the paper was to study the interplay between genetic and metabolic networks. We have
focused on the self-contained case of an irreversible metabolic pathway whose steps are catalyzed by a
family of distinct enzymes. Transcription of the genes encoding for the enzymes is itself regulated by
the metabolites and each metabolite is required to regulate at least one enzyme.

This class of models demonstrates the variety of dynamical behavior induced by genetic regulation in305

metabolic pathways. In particular, the same interconnecting architecture may lead to (multi) stability,
damped or sustained oscillatory behavior and, in particular, co-existence of different regimes, such as
convergence towards a steady state or a periodic orbit.

To deal with and analyze these models, we have developed a theoretical formalism based on two
approximations: first, model reduction due to the different timescales of genetic and metabolic processes310

and, second, continuous activity functions are replaced by similar piecewise linear functions. Genetic
networks are often represented by piecewise linear systems, with the state space partitioned into a
family of bounded regular rectangles. It is interesting to note that the effect of metabolites on the
transcriptional network leads to a similar system of piecewise linear equations but now the state space
is partitioned into a family of cones, starting at the origin.315

This formalism captures the core processes at play between metabolic pathways and the genetic
network associated to enzymatic regulation, such as in the lac operon [7] and other examples. It
is also useful in the study and design of new synthetic systems [32]. As a special example, we have
analyzed a qualitative model for the synthetic metabolator circuit, which predicts two types of oscillatory
behavior, and is in agreement with the experimental results reported in [4]. Our analysis shows that,320

in current models, the enzymatic reduced system is basically governed by a positive feedback circuit
with two enzymes and two negative self-loops (Fig. 1(a1)), which may not lead to sustained oscillatory
behavior. We propose an alternative model, by adding a single interaction (Fig. 1(b)). The new
reduced system has a negative feedback loop involving three variables, much more likely to exhibit
periodic oscillations [11, 14], as confirmed by our results.325

The advantages of this formalism include a qualitative but still refined description of the system
interactions, as well as a strong theoretical and algorithmic methodology that gives a global view of
the system’s trajectories. The piecewise linear formalism facilitates the analytic study of the system,
in particular to prove the existence of a periodic orbit for the qualitative metabolator example, where
we used comparison to an inner bounding system.330
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Appendix A. Comparison of two Metabolator models335

To better understand how closely the two models are related, this section compares our suggested
metabolator model with the one studied in [4]. The equations for the two models are summarized in
Table A.1.

The first step is to compare the topology of the two reduced enzyme networks (shown in Fig. 1(a1)
and (b1)). The network for our model is directly obtained from (4). To deduce the corresponding340
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Table A.1: Simplified differential equations for the original metabolator system (middle column) and using the formalism
for gene regulated metabolic pathways (right column). The functions ĝi, gi are strictly increasing. The main differing
terms, one in each of the metabolite equations, are highlighted. The original metabolator system also contains degradation
terms not included in the alternative formalism, but these introduce only minor effects.

Variable Metabolator, Fung et al., Gene-regulated metabolic pathway,
vector field Fa vector field Fb

s1 = AcCoA S0 − γAs1 + ĝ1(s2)e1 − g2(s1)e2 g1(s0)e1 − g2(s1)e2

s2 = AcP g2(s1)e2 − ĝ1(s2)e1 − ke3(s2 −Hext) g2(s1)e2 − g3(s2)e3

e1 = Acs V10 + V1h
+(s2, θ1)− γ1e1 V10 + V1h

+(s2, θ1)− γ1e1

e2 = Pta V20 + V2h
−(s2, θ2)− γ2e2 V20 + V2h

−(s2, θ2)− γ2e2

e3 = Ack — V30 + V3h
+(s1, θ3)− γ3e3

network for the model in [4], we assume that the metabolites are at quasi-steady state and that the
strictly increasing functions ĝ1, g2 are linear, of the form ĝ1(s2) = k1s2 and g2(s1) = k2s1, to obtain:

S0 − γAs1 + k1s2 · e1 − k2s1 · e2 = 0

k2s1 · e2 − k1s2 · e1 − ke3 · s2 = 0.

Solving these equations with respect to s1 and s2 leads to

s1 =
S0

γA

k1e1 + ke3
k1e1 + ke3 + ke3

k2
γA
e2

and s2 = S0

k2
γA
e2

k1e1 + ke3 + ke3
k2
γA
e2

.

Now, letting ke3 ≈ k3e3 denote e3 activity and substituting these dependencies into the functions
h+(s2) or h−(s2), yields a 3-dimensional system with an interaction graph as shown in Fig. 1(a1). The345

differences between the two enzyme networks are discussed in Section 2.
The second step in model comparison aims at showing that the dynamics generated by systems Fa

and Fb are qualitatively similar, by numerically studying system (3):

dx

dt
= Fb(x) + α(Fa(x)− Fb(x))

with 0 < α < 1. As α increases from 0 to 1, system (3) is transformed from our gene-regulated metabolic
pathway into the metabolator of Fung et al. For α > 0.5, system (3) has a closer resemblance to Fa.350

From Table A.1, the difference between the two models is given by:

Fa(x)− Fb(x) =


S0 − γAs1 + ĝ1(s2)e1 − g1(s0)e1

−ĝ1(s2)e1 + g3(s2)e3 − ke3s2

0
0

−(V30 + V3h
+(s1, θ3)− γ3e3)

 (A.1)

The simulations in Fig. A.7(a) show that the system always exhibits a periodic orbit as α increases
from 0 to 0.8. Although the orbit remains located within the same region of the state space, its shape
is increasingly distorted and finally the periodic orbit disappears when the combined system resembles
Fa by more than 80%.355

Another possible scenario is to explicitly include a dynamical equation for enzyme e3 in the Fung et
al. model, and consider an equivalence between the terms g3(s2)e3 ≡ ke3s2, as the outgoing flow from
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(a) (b)

Figure A.7: The periodic solutions of linear combination system (3), as parameter α increases from 0 (the metabolic
pathway formalism) to 1 (the simplified metabolator). Case (a) illustrates this transformation, using (A.1), while case (b)
illustrates the role of enzyme e3 = Ack through (A.2). In (a), the orbit for α = 0.8 is truncated for better comparison, as
it extends to s1 ≈ 25.

s2. This means that the difference function would be:

Fa(x)− Fb(x) =


S0 − γAs1 + ĝ1(s2)e1 − g1(s0)e1

−ĝ1(s2)e1

0
0
0

 (A.2)

The solutions corresponding to this scenario are depicted in Fig. A.7(b). Once again, the combined
system exhibits a periodic orbit for α values in the interval [0, 0.8]. However, in this case both the360

location and shape of the orbit remain qualitatively similar, and the orbit disappears only for α > 0.9.
In both scenarios, a system whose vector field is composed of the original metabolator by up to 80%

and as low as 20% of the alternative metabolator still exhibits a periodic orbit. Altogether, these results
support our formalism as a reasonable qualitative model to capture the scheme of interactions between
the metabolic and genetic networks within the metabolator. The fact that oscillations disappear for365

α > 0.9 indicates that the original metabolator model may require extra terms (such as a dynamically
evolving enzyme e3), in order to guarantee sustained oscillations.

For the numerical simulations in Fig. A.7, the functions ĝi, gi are of the form:

gi(s) = kcat,i
s

s+ kM,i

with the following parameters:

k̂cat,1 = kcat,1 = 60, kcat,2 = 180, kcat,3 = 480,

k̂M,1 = 0.002, kM,i = 1, i = 1, 2, 3,

s0 = 1.5, S0 = 20s0, γA = 20γ1, ke3 = 20, Hext = 0.

The parameters for the enzyme equations are:370

γi = 0.0116, i = 1, 2, 3, [θ1, θ2, θ3] = [0.047, 0.055, 0.22], n = 10,

[V10, V20, V30] = 0.0116× [1, 4, 1.5], [V1, V2, V3] = 0.0116× [14, 16, 28.5].

Appendix B. Proof of Theorem 1

To prove the Theorem, we need to show invariance of R1,1
short for the flow of system (11). In other

words, we need to show that, starting from an initial condition (w(0), y(0), z(0)) in R1,1
short, the trajectory

returns to R1,1
short after a full turn.
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To do this, assume that (w(0), y(0), z(0)) ∈ R1,1
short is also at the boundary between R1,2 and R1,1,375

that is:

w(0) > 0, y(0) > 0, z(0) = 0,
w(0)

∆1,1
w

<
y(0)

∆1,1
y

< 0. (B.1)

Then the corresponding trajectory ψ(t;w(0), y(0), z(0)) will perform at least one turn along the short
cycle. Let T be the first return to the boundary between R1,2 and R1,1: z(T ) = 0 and w(T ) > 0,
y(T ) > 0. Then

z(0) = z(T ) = 0⇒ e1(T )− 1

β2
e3(T ) = e1(0)− 1

β2
e3(0).

Furthermore, note that e1 is an increasing function while w > 0, since ė1 = γ(Eon
1 − e1), so e1(T ) =380

e1(0) +A for some A > 0, which implies e3(T ) = e3(0) + β2A. Therefore

e1(T )− 1

β1
e3(T ) = e1(0) +A− 1

β1
(e3(0) + β2A)

= e1(0)− 1

β1
e3(0) +A(1− β2

β1
)

> e1(0)− 1

β1
e3(0)

where the last inequality follows from β2 < β1 and A > 0. This means w(T ) > w(0) > 0. Analysis
of (18) shows that, at t = T the map (19) applies and yields:

y(T ) = P (y(0)) < y(0).

Finally, since both ∆1,1
w < 0 and ∆1,1

y < 0:

w(T )

∆1,1
w

<
w(0)

∆1,1
w

<
y(0)

∆1,1
y

<
y(T )

∆1,1
y

implying that the trajectory still satisfies condition (B.1). In conclusion, the sub-region R1,1
short is invariant385

under the flow of system (11).
Therefore, trajectories do no leave those four regions and e1(t) → Eon

1 for all t > 0. The variables
y, z evolve according to (18). By the results in [10], we conclude that trajectories converge towards
the point at the intersection of the four regions: (0, 0). This implies: e1(t) − 1

β2
e3(t) → 0 and so

e3(t)→ β2E
on
1 and w(t)→ (1− β2

β1
)Eon

1 .390

In terms of the variables ei the (locally) stable steady state φF is thus given by φF1 = Eon
1 and:

∆F = (0, 0) ⇔ y = 0 and z = 0

implying φF2 = β3E
on
1 and φF3 = β2E

on
1 .

Appendix C. Proof of Proposition 5.1

The proof follows by checking that, in each region Ra, the slope of the trajectory of the inner system
is always steeper than that of the original system. This is clear from Fig. 6, and means that trajectories395

of system (20) always enclose those of system (21).
For either system (20) or (21), observe that the w and y have affine and decoupled equations in each

region so can easily be solved explicitly. To show that (21) is an inner bound for system (20) in the
sense of Def. 1, we will check each region separately:

(a) In regions R0,0, R0,2, R1,1
long, and {R1,2| w > Eon

1 }, Definition 1 is immediately satisfied since400

hR ≡ gR which implies φ̃R ≡ φR.
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(b) In region R0,1, 0 < w < ∆0,2
w = ∆0,1

w and ∆0,1
y < y < 0 < ∆0,2

y :

gRw(w) ≡ hRw(w) > 0 ⇒ w(t) = w̃(t),

gRy (y) < 0 < hRy (y) ⇒ ỹ(t) < y0 < y(t) < 0,

for all t ∈ min{T, T̃}. Definition 1 is satisfied since w(t) = w̃(t) and |y(t)| < |ỹ(t)|.
(c) In region {R1,2|w < Eon

1 }, ∆1,1
w = ∆1,2

w < 0 < w, and ∆1,2
y > y > 0 > ∆1,1

y :

gRw(w) ≡ hRw(w) < 0 ⇒ w(t) = w̃(t),

gRy (y) > 0 > hRy (y) ⇒ 0 < y(t) < y0 < ỹ(t),

for all t ∈ min{T, T̃}. Definition 1 is satisfied since w(t) = w̃(t) and |y(t)| < |ỹ(t)|.405

(d) In region R1,0, ∆1,0
w < ∆1,1

w < w < 0, y > 0 > ∆1,1
y > ∆1,0

y :

gRw(w) < hRw(w) < 0 ⇒ w̃(t) < w(t) < w0 < 0,

0 > gRy (y) > hRy (y) ⇒ y(t) < ỹ(t) < y0,

for all t ∈ min{T, T̃}. To check Definition 1, find t̃ < t such that w(t) = w̃(t̃):

∆1,1
w (1− e−γt) + w0e

−γt = ∆1,0
w (1− e−γt̃) + w0e

−γt̃

which implies

1− e−γt̃ =
∆1,1
w

∆1,0
w

(1− e−γt) +
w0

∆1,0
w

(e−γt − e−γt̃). (C.1)

And now compute y(t)− ỹ(t̃) and replace 1− e−γt̃ by (C.1):

y(t)− ỹ(t̃)

= ∆1,1
y (1− e−γt) + y0e

−γt −∆1,0
y (1− e−γt̃)− y0e

−γt̃

= (∆1,1
y −∆1,0

y

∆1,1
w

∆1,0
w

)(1− e−γt)

+(y0 −∆1,0
y

w0

∆1,0
w

)(e−γt − e−γt̃)

< 0.

From ∆1,0
y < 0 and condition (15) the first term is negative. From t > t̃, y0 > 0, ∆1,0

y < 0 and410

w0/∆
1,0
w > 0 the second term is also negative.

In conclusion, in all regions w(t) = w̃(t̃) implies |y(t)| <
∣∣ỹ(t̃)

∣∣, which establishes the necessary
property in Def. 1.

Appendix D. Proof of Proposition 5.2

To establish the existence of a periodic orbit for system (21), we will proceed by first constructing415

a Poincaré map (P ) which represents the intersection of the orbits with a lower-dimensional section
transversal to the flow. For any initial condition on this section (say y0), the Poincaré map gives the
first return to the section after a full orbit (P (y0)). The system admits a periodic orbit if the Poincaré
map has a fixed point.

Construction of the Poincaré map. It is not difficult to check that the half-line420

S = {(w, y) : w = Eon
1 , y > 0}

at the boundary between QC and QD (see dashed vertical line in Fig. 6), is transversal to the flow of
system (21), so we will define P : S → S.

17



Starting at S, trajectories of (21) will successively cross the regions QD,QA,QB , and QC :

(Eon
1 , y0)→ (w1, 0)→ (0, y2)→ (w3, 0)→ (Eon

1 , y4)

with y0, y4 > 0, w1 < 0, y2 < 0, and w3 > 0. The Poincaré map P can be constructed as the
composition of the impact maps pi corresponding to the crossing of each region Q, from a starting point425

in one boundary to the next boundary:

P : S → S, y0 → P (y0) = p4 ◦ p3 ◦ p2 ◦ p1(y0),

with

p1(y0) = w1 = −
∆1,1
w y0 + ∆1,1

y Eon
1

∆1,1
y − y0

,

p2(w1) = y2 = −
∆0,0
y w1

∆0,0
w − w1

,

p3(y2) = w3 = − ∆0,2
w y2

∆0,2
y − y2

,

p4(w3) = y4 = −
∆1,2
y (w3 + Eon

1 )

∆1,2
w − w3

.

Using (13)-(14) and (16), |∆1,1
w | > Eon

1 , for maps pi, i = 1, 2, 3, 4, it is easy to check the signs of first
and second derivatives:

p′1 < 0, p′′1 > 0, p′2 > 0, p′′2 > 0,

p′3 < 0, p′′3 < 0, p′4 > 0, p′′4 < 0.

By composition, the derivatives of map P satisfy: P ′ > 0 and P ′′ > 0, so that the Poincaré map is a,430

negative, strictly increasing and strictly convex function.

Invariance of the interval [y∗0 ,+∞) under map P . First, we need to check that trajectories remain
within the boxes that constitute the long cycle for appropriate initial conditions. From the proof of
Prop. 5.1, it follows that we need (w0, y0, z0) ∈ R1,1

long and w0 > Eon
1 :

y0

∆1,1
y

<
Eon

1

∆1,1
w

⇒ P (y0)

∆1,1
y

<
Eon

1

∆1,1
w

.

We will consider the limiting point435

y∗0 =
Eon

1

∆1,1
w

∆1,1
y

and show that it satisfies P (y∗0) > y∗0 . Then, because P is increasing and y0 is positive, y0 > y∗0 implies
y∗0 < P (y∗0) < P (y0) and, together with ∆1,1

y < 0, this guarantees that trajectories do not leave the long
cycle. To compute P (y∗0) proceed by substitution:

w∗1 = − 2∆1,1
w Eon

1

∆1,1
w − Eon

1

y∗2 =
2∆0,0

y ∆1,1
w Eon

1

∆0,0
w ∆1,1

w + (2∆1,1
w −∆0,0

w )Eon
1

w∗3 = − Eon
1

q3 + r3Eon
1

y∗4 = −
∆1,2
y (q3 − 1 + r3Eon

1 )Eon
1

∆1,2
w q3 + (1 + ∆1,2

w r3)Eon
1

18



where

q3 =
∆0,2
y ∆0,0

w

2∆0,2
w ∆0,0

y

, r3 =
∆0,2
y −∆0,0

y

∆0,2
w ∆0,0

y

− 1

∆1,1
w

q3.

The signs and magnitudes of the focal points (13) and assumptions (16) imply440

−1

2
< q3 < 0, r3 < 0, ∆1,2

w q3 + (1 + ∆1,2
w r3)Eon

1 > 0.

We want to check that P (y∗0)− y∗0 = y∗4 − y∗0 > 0. Substitution yields:

y∗4 − y∗0 =
α1 + α2

∆1,2
w q3 + (1 + ∆1,2

w r3)Eon
1

where

α1 = −(∆1,2
y + ∆1,1

y )(q3 + r3Eon
1 )Eon

1

and

α2 = Eon
1

∆1,2
y −

Eon
1∣∣∣∆1,1
w

∣∣∣
∣∣∆1,1

y

∣∣
The denominator of y∗4 −y∗0 is positive and the term α1 is positive, from the signs of q3, r3 and the focal
points. The term α2 is also positive since Eon

1 /
∣∣∆1,1

w

∣∣ < 1 and ∆1,2
y /

∣∣∆1,1
y

∣∣ > 1 using assumptions (16).445

The desired result follows.

Fixed point of map P . The system (21) admits a periodic orbit if the Poincaré map P (y) has a fixed
point: P (yp) = yp > 0. To show this, recall that P is a continuous, increasing, and strictly convex map,
defined on the interval [y∗0 ,+∞). We know that P (y∗0) > y∗0 . In the positive limit, we have:

lim
y0→+∞

p1(y0) = ∆1,1
w

which is a finite quantity and implies P (y∞) < y∞ for some sufficiently large y∞. By convexity of P ,450

there is exactly one fixed point in the interval (y∗0 , y∞), and hence there is a unique periodic orbit for
the system (21).

In addition, since P is a convex function, P ′(x) ≤ (P (v)−P (x))/(v−x). Letting v = yp and x = y∗0
obtains:

P (yp) ≤
P (yp)− P (y∗0)

yp − y∗0
<
yp − y∗0
yp − y∗0

= 1

meaning that the periodic orbit is attractive.455
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