
HAL Id: hal-01936193
https://hal.science/hal-01936193

Preprint submitted on 27 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The minimum time-to-climb and fuel consumption
problems and CAS/Mach procedure for aircraft

Olivier Cots, Joseph Gergaud, D Goubinat

To cite this version:
Olivier Cots, Joseph Gergaud, D Goubinat. The minimum time-to-climb and fuel consumption prob-
lems and CAS/Mach procedure for aircraft. 2018. �hal-01936193�

https://hal.science/hal-01936193
https://hal.archives-ouvertes.fr


The minimum time-to-climb and fuel consumption
problems and CAS/Mach procedure for aircraft

O. Cots1 and J. Gergaud2

Toulouse Univ., INP-ENSEEIHT-IRIT, UMR CNRS 5505,
2 rue Camichel, 31071 Toulouse, France

D. Goubinat3

Thales Avionics SA, 105 av du General Eisenhower,
B.P. 1147, 31047 Toulouse Cedex, France

In this article, we are interested in optimal aircraft trajectories in climbing phase.
We consider the cost index criterion which is a convex combination of the time-to-climb
and the fuel consumption. We assume that the thrust is constant and we control the
air slope of the aircraft. This optimization problem is modeled as a Mayer optimal
control problem with a single-input affine dynamics in the control and with two pure
state constraints, limiting the Calibrated AirSpeed (CAS) and the Mach speed. The
candidates as minimizers are selected among a set of extremals given by the maximum
principle. We first analyze the minimum time-to-climb problem with respect to the
bounds of the state constraints, combining small time analysis, indirect multiple shoot-
ing and homotopy methods. This investigation emphasizes two strategies: the common
CAS/Mach procedure in aeronautics and the classical Bang-Singular-Bang policy in
control theory. We then compare these two procedures for the cost index criterion.

I. Introduction
The climbing phase is a normalized phase where most of the civil aircrafts follow the CAS/Mach

procedure. This procedure splits the climbing phase in two parts, the first one is an arc at constant
Calibrated AirSpeed (CAS) and the second one is an arc at constant Mach number. According to
Refs. [24, 36], the CAS constant is chosen among the ones which maximize the climbing slope, the
vertical speed or the climbing rate. The Mach constant depends most of the time on the cruise Mach
number but this value is also closed to the one which maximizes the vertical speed. The climbing
path resulting from a CAS/Mach couple may be seen as an approximation of an optimal flight,
minimizing a cost made by a convex combination of the time-to-climb and the fuel consumption,
that we call the cost index. Even though historically a lot of studies was done, see for instance
Refs. [4, 30, 31], to optimize the climbing flight path, the CAS/Mach procedure is still used mainly
because of its simplicity. The CAS and the Mach number are fairly easy quantities to compute since
they are defined thanks to the differential pressure which is directly available from the Pitot tubes
present all over the fuselage of the aircraft.

In this article, we study first the minimum time-to-climb trajectory submitted to state con-
straints which are related to the CAS and the Mach number. The dynamics of this climbing phase
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Table 1 Medium-haul aircraft parameters.

Data Value Unit Data Value Unit

S 122.6 m2 Cs,1 1.055e−5 kg.s−1.N−1

g 9.81 m.s−2 Cs,2 441.54 m.s−1

CT,1 141040 N R 287.058 J.kg−1.K−1

CT,2 14909.9 m Θ0 288.15 K
CT,3 6.997e−10 m−2 β 0.0065 K.m−1

Cd,1 0.0242 P0 101325 Pa
Cd,2 0.0469

is depicted by the following four-dimensional dynamical system:

dh
dt = v sin γ (1)

dv
dt = T (h)

m
− 1

2
ρ(h)Sv2

m
Cd(Cl)− g0 sin γ (2)

dm
dt = −Cs(v)T (h) (3)

dγ
dt = 1

2
ρ(h)Sv
m

Cl −
g0

v
cos γ, (4)

where the state variable is composed of the altitude, the true air speed, the mass and the air slope
of the aircraft. We refer to Ref. [23] for more details about the dynamics. The altitute h is given in
meter (m), the true air speed v in meter per second (m.s−1), the mass m in kilogram (kg) and the
air slope γ in radian (rad). In this model, the lift coefficient Cl may be considered as the control
variable. The BADA [34] model is chosen to represent the aircraft performance model and provides
the following expressions:

Cs(v) := Cs,1

(
1 + v

Cs,2

)
, T (h) := CT,1

(
1− h

CT,2
+ h2CT,3

)
, Cd(Cl) := Cd,1 + Cd,2 C

2
l ,

where the constants CT,i, Cs,i and Cd,i depend on the flight phase and on the aircraft. The In-
ternational Standard Atmospheric (ISA) model is used to represent the atmospheric model from
the sea level till the end of the tropopause which here is considered at 11 000 meters. This model
provides the evolution of the pressure P , the temperature Θ and the air density ρ with respect to
the altitude through the following expressions:

P (h) := P0

(
Θ(h)
Θ0

) g0

βR
, Θ(h) := Θ0 − βh, ρ(h) := P (h)

RΘ(h) .

The remaining data are positive constants: g0 is the gravitational constant at the sea level, S the
wing area, R the specific constant of air, β the thermical gradient and P0, Θ0 represent the pressure
and the temperature at the sea level. See Table 1 for the chosen values of the constant parameters
for the numerical experiments.

Taking into account the air slope γ in the dynamics introduces numerical instabilities [19, 20]
which are known as singular perturbations [3, 13, 32] and which come from large time constant
differences between the state variables. A comparison of the time constants, see Refs. [3, 23], shows
that the dynamics (1)–(4) contains slow (the mass m) and fast (the air slope γ) variables. The
altitude h and the true air speed v are fast compare to the mass but slow compare to the air
slope. In this article, we consider h and v as slow variables. The singular perturbation phenomenon
arise when a system of differential equations contains at least one small parameter multiplying the
derivative of one or more state variables. To emphasize the presence of a singular perturbation in
the air slope dynamics, we introduce a parameter ε > 0 such that eq. (4) is replaced by:

ε
dγ
dt = 1

2
ρ(h)Sv
m

Cl −
g0

v
cos γ. (4’)
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Let (P εtf ) denote the minimum time-to-climb problem with the additional artificial parameter
ε > 0. From the control theory, for a fixed value of ε > 0, the candidates as minimizers are
selected among a set of BC-extremals, solution of a Hamiltonian system given by the Pontryagin
Maximum Principle (PMP), see Ref. [35]. The application of the PMP leads to define a Boundary
Value Problem denoted (BVPε), in terms of state and adjoint variables, which can be solved using
indirect multiple shooting methods [11]. It is well known that multiple shooting increases numerical
stability and a good alternative would be to use direct multiple shooting [5] to solve the optimal
control problem. Difficulties in solving the singularly perturbed boundary value problem (BVPε)
arise because the solution exhibits narrow regions of very fast variation. In this case, it may be
difficult to determine a mesh for the nodes of the multiple shooting method that will give an accurate
numerical solution and to give an initial guess that will lead to the convergence of the underlying
Newton-like algorithm. In this context, an alternative approach would be to solve the boundary
value problem using automatic mesh refinement, see Refs. [15, 16], or to use homotopy techniques,
see Ref. [20].

Another point of view to deal with singular perturbations is to approximate the solution using
asymptotic expansions. An overview of methods to deal with singular perturbations may be found
in Refs. [3, 13, 32]. We consider in this article only the zero-order term of the asymptotic expansion.
To uniformly approximate the solution of a singularly perturbed boundary value problem, one has
to compute at least two different approximations (the so-called inner and outer solutions) which
are accurate only for part of the range of the time variable, and usually they are valid on different
length-scales. The Method of Matched Asymptotic Expansion consists in computing the inner and
outer solutions and then in matching them to get a uniform approximation which satisfies the
boundary conditions. In this article, we consider only the zero-order approximation of the outer
solution since it has been shown for the minimum time-to-climb problem with no state constraints
that it is a good approximation of the solution, see Ref. [20]. Note that in the aircraft dynamics the
zero-order reduction is equivalent to the quasi-steady approximation of the flight which is commonly
performed [21, 24, 29, 33, 36].

The reduced-order optimal control problem denoted (Ptf ) is obtained putting ε to 0 in eq. (4’)
and considering γ as the new control variable. The problem (Ptf ) has one state variable less than
(P εtf ), ε > 0, and can be tackled with the tools from geometric optimal control theory. We refer to
Refs. [2, 3, 23] for details about the reduction process. In particular, one important result is that
the reduced-order boundary value problem obtained from (BVPε) putting ε to 0 is equivalent to
the boundary value problem obtained after applying the maximum principle to the reduced-order
dynamical system obtained from (1)–(4’) putting ε to 0, when we consider at the end γ as the
new control variable. Besides, the reduced-order dynamical system with γ as the control variable is
affine with respect to the control if we consider the small-angle approximation, that is if we replace
cos γ by 1 and sin γ by γ assuming γ is small. In this case, the associated pseudo-Hamiltonian is
of the form H(x, p, u) = H0(x, p) + uH1(x, p) where x := (h, v,m) is the reduced state, p is the
adjoint variable, u the control (i.e. the air slope γ), and where H0 and H1 are two Hamiltonian
lifts. In addition, to complete the definition of the optimal control problem, the control has to
satisfy a constraint of the form u ∈ [umin , umax] and the state has to satisfy two constraints denoted
φ(x) ≤ φmax and ψ(x) ≤ ψmax, where φ represents the CAS, ψ represents the Mach, and where
φmax and ψmax may be seen as given speed limitations.

The minimum time-to-climb problem with no state constraints, or from another point of view,
with state constraints but with φmax and ψmax big enough, is analyzed in Refs. [18, 20]. In Ref. [18],
the influence of the initial mass m0 and the final true air speed vf is studied and it is shown in
particular that the trajectories are of the form σ±σsσ±, where σ− represents a bang arc where
u(t) = umin along the arc, where σ+ represents a bang arc with u(t) = umax and σs represents a
singular arc where u(t) ∈ (umin , umax). These trajectories from the state unconstrained case are
compliant with the so-called Maximal Operation Speed (VMO) and Maximal Operationnal Mach
(MMO), that is φ(x(t)) < VMO and ψ(x(t)) < MMO along the trajectories. The first goal of this
article is to analyze the influence of the bounds φmax and ψmax on the structure of the trajectories
for the minimum time-to-climb problem. The purpose is to classify the different structures with
respect to φmax and ψmax. It is clear that reducing both values of the bounds will increase the final
time and it is expected that it will decrease, up to a point, the fuel consumption. The second part
of this article is devoted to the comparison between the solutions from this classification and the
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minimum fuel consumption solution without speed limitations. Finally, we present a comparison
between minimum cost index solutions and trajectories that follow the simple CAS/Mach procedure.

The paper is organized as follows. The physical model with the statements of the optimal
control problems are given in Sect. II A while the general necessary conditions of optimality for
both the minimum time-to-climb and the fuel consumption problems are given in Sect. II C. A
small time analysis which describes the behavior of hyperbolic trajectories with state constraints of
order one is given in Sect. III A. This analysis is applied to the minimum time-to-climb problem
in Sect. III B where we give preliminary numerical results about the optimal structures in presence
of state constraints on the CAS and Mach speeds. The classification of the optimal structures is
then obtained numerically by homotopy methods in Sect. III C. A comparison between minimal
cost index solutions and the CAS/Mach procedure is then proposed in Sect. IV. Finally, Sect. V
concludes the article.

II. General results about the minimum time-to-climb and fuel consumption problems
A. Definitions of the optimal control problems

We restrict the dynamics to the vertical motion of the aircraft. A complete description of the
motion can be found in Ref. [23]. The aircraft is subjected to four forces, the Drag #—

D, the Lift
#—

L, the Thrust #—

T and its own weight #—

P . A non linear point mass representation is used and we
consider that all the forces apply on the center of gravity of the aircraft. We assume that the thrust
is colinear to the velocity vector #—

V , which means that the angle of attack is neglected here, and
that the aircraft evolves in an horizontal constant wind field. The application of the first dynamics
principle assuming that the earth is galilean, provides the four eqs. (1)–(4).

During the flight, the lift coefficient Cl depends on the variation of the angle of attack. Since
this quantity is not taken into account here, it is quite natural to consider the lift coefficient Cl as
the control variable. However, according to the work presented in Refs. [3, 13] this four-dimensional
dynamics contains slow (m) and fast (γ) variables. The time scale separation between the slow
and fast variables is handled by a singular perturbation analysis which consists here in computing
a zero-order approximation of the solution. The reduction process has two main features. In a first
step, we substitute eq. (4) by the quasi-steady approximation:

0 = 1
2
ρSv

m
Cl −

g0

v
cos γ,

which gives

Cl = 2mg0

ρSv2 cos γ.

In a second time, the lift coefficient is replaced by the previous expression in eqs. (1)–(3) and the
air slope γ is taken as the new control variable. We also consider that the air slope remains small (γ
varies from umin := 0 to umax := 0.262 rad) during the climbing so we set cos γ ≈ 1 and sin γ ≈ γ.
These considerations lead to the new affine control system:

ẋ(t) = F0(x(t)) + u(t)F1(x(t)), (5)

where x := (h, v,m), u := γ,

F0(x) :=


0

T (h)
m
− 1

2
ρ(h)Sv2

m
Cd,1 − 2 mg2

0
ρ(h)Sv2Cd,2

−Cs(v)T (h)

 and F1(x) :=

 v

−g0

0

 .

According to Ref. [20], this reduced dynamics is a sufficient approximation of the initial dynamics
considering the state unconstrained minimum time-to-climb problem.

The true air speed of an aircraft is quite difficult to measure during the flight, that is why
historically, the concept of CAS was introduced. This speed can be computed using the differential
ratio of pressure and can be expressed, through Bernoulli’s equations, as a function of the true air

4



speed. The Mach speed, for its part, is defined by the ratio between the true air speed and the speed
of the sound. Here, the CAS is denoted by φ and the Mach by ψ and the corresponding expressions
are given by:

φ(x) :=

√√√√2RΘ0

κ

((
P (h)
P0

(
κ v2

2RΘ(h) + 1
) 1
κ

+ 1
)κ
− 1
)
, ψ(x) := v√

γairRΘ(h)
,

where γair := 1.4 J.K−1 is the heat capacity of the air and κ := γair/(1−γair). From these expressions,
we define the state constraints c1 and c2 by:

c1(x) := φ(x)− φmax, (6)
c2(x) := ψ(x)− ψmax, (7)

where φmax (resp. ψmax) can be fixed to VMO (resp. MMO) or to smaller specified values.
In this article we are interested in the minimization of different criteria: the final time tf , the

fuel consumption ∆m := m0−mf , where m0 is the initial mass and mf the final mass, and a convex
combination of the final time and the fuel consumption:

gα(tf ,mf ) := α tf + (1− α)(m0 −mf ),

where the initial mass m0 will be fixed and given. The criterion gα, for α ∈ [0 , 1], is called the cost
index. The initial state will be fixed to the realistic values x0 := (h0, v0,m0) := (3480, 128.6, 69000).
We define the set Ut of admissible controls, that is the subset of

{u | u : [0 , t]→ [umin , umax] measurable}

such that the corresponding trajectory solution of eq. (5) with x(0) = x0 is well defined over [0 , t].
The minimum cost index problem can be summarized by:

(Pα)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
(tf ,u)∈D

gα(tf ,m(tf )),

ẋ(t) = F0(x(t)) + u(t)F1(x(t)), u(t) ∈ U, t ∈ [0 , tf ] a.e., x(0) = x0,

c1(x(t)) 6 0, t ∈ [0 , tf ],
c2(x(t)) 6 0, t ∈ [0 , tf ],
b(x(tf )) = 0,

where U := [umin , umax], D :=
{

(tf , u)
∣∣ tf > 0, u ∈ Utf

}
and

b(x) :=
(
h− hf
v − vf

)
with hf := 9144 and vf := 191. Thus, the final altitude and true air speed are fixed while the final
mass is free. The minimum time-to-climb problem, denoted (Ptf ), is defined as (Pα|α=1) while the
minimum fuel consumption problem, denoted (P∆m

), is defined as (Pα|α=0).

B. Notation
Let F0, F1 be two smooth vector fields and c a scalar smooth function on Rn. The Lie derivative

of c along F0 denoted F0 · c is simply the directional derivative of c at x along F0(x), given by
(F0 · c)(x) := c′(x)F0(x). The Lie bracket between F0 and F1 is given by [F0, F1] := F0 ·F1−F1 ·F0,
with (F0 ·F1)(x) := F ′1(x)F0(x). Denoting p the adjoint variable and denoting H0(x, p) := 〈p, F0(x)〉
and H1(x, p) := 〈p, F1(x)〉 the Hamiltonian lifts of F0 and F1, then the Poisson bracket of H0 and
H1 is given by {H0, H1} := #  —

H0 ·H1, where
#  —

H0 := (∂H0
∂x ,−

∂H0
∂p ) is the Hamiltonian system associated

to H0. We also use the notation H01 (resp. F01) to write the bracket {H0, H1} (resp. [F0, F1]) and
so forth. Besides, since H0 and H1 are two Hamiltonian lifts, we have {H0, H1} = 〈p, [F0, F1]〉.
Remark 1. We refer to Ref. [23, Chapter 2] for the exact and quite long expressions of F01, F001
and F101 associated to eq. (5).
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C. Necessary conditions of optimality
We recall the necessary conditions due to Refs. [25, 28] and follow the presentation of Ref. [10],

which exhibits the role of the Lie and Poisson brackets.

1. Statement of the optimal control problem
We consider in this section the problem (Pα) but with only one state constraint, since, according

to the numerical results from the next sections, the constraints c1 and c2 are active at the same time
only at isolated times. In other words, we never have c1(x(t)) = 0 and c2(x(t)) = 0 along a time
interval of non-empty interior. Due to these considerations, we present the necessary conditions of
optimality considering only one scalar state constraint of the form c(x(t)) 6 0, for every t ∈ [0 , tf ].
The optimal control problem may be written in the abstract form:

min {gα(tf ,m(tf , x0, u)) | (tf , u) ∈ D, b(x(tf , x0, u)) = 0 and c(x(t, x0, u)) 6 0, ∀ t ∈ [0 , tf ]} ,

where x(·, x0, u) is the solution of eq. (5) with the initial condition x(0, x0, u) = x0.

2. Boundary arcs: definitions and assumptions
We call a boundary arc, labeled σc, an arc defined on an interval I := [a , b] (not reduced to

a singleton), such that c(σc(t)) = 0, for every t ∈ I. The times a and b are called the entry- and
exit-time of the boundary arc; a and b are also termed junction times. An arc σ is said to have
a contact point with the boundary at t̄ ∈ [0 , tf ] if c(σ(t̄)) = 0 and c(σ(t)) < 0 for t 6= t̄ in a
neighborhood of t̄ . A subarc σ on which c(σ(t)) < 0 is called an interior arc.

The generic order of the constraint c is the integer m such that F1 · c = F1 · (F0 · c) = · · · =
F1 · (Fm−2

0 · c) = 0 and F1 · (Fm−1
0 · c) 6= 0. If the order of a boundary arc σc is m, then its associated

feedback control can be generically computed by differentiating m times the mapping t 7→ c(σc(t))
and solving with respect to u the linear equation:

c(m) = Fm0 · c+ uF1 · (Fm−1
0 · c) = 0.

The boundary feedback control denoted uc is given by

uc := − Fm0 · c
F1 · (Fm−1

0 · c)
.

Let t 7→ σc(t), t ∈ [t1 , t2] ⊂ [0 , tf ], be a boundary arc associated to uc(·). We introduce the
following assumptions:

(F1Âă · (Fm−1
0 · c))(σc(t)) 6= 0 for every t ∈ [t1 , t2], with m the order of the constraint.

(A1)

uc(t) ∈ [umin , umax] for t ∈ [t1 , t2], i.e. the boundary control is admissible.(A2)
uc(t) ∈ (umin , umax) for t ∈ (t1 , t2), i.e. uc is not saturating on (t1 , t2).(A3)

Remark 2. These assumptions are numerically checked a posteriori.

3. Maximum principle with a single scalar state constraint
Define the pseudo-Hamiltonian:

H : Rn × (Rn)∗ × R× R −→ R
(x, p, u, η) 7−→ H(x, p, u, η) := 〈p, F0(x) + uF1(x)〉+ η c(x),

where η is the Lagrange multiplier of the constraint c and n := 3 is the dimension of the state.
Consider (t̄f , ū(·)) ∈ D an optimal solution with associated trajectory x̄(·). Assume that the set of
contact and junction times with the boundary, denoted T , is finite. Assume also that the optimal
control is piecewise smooth and that along each boundary arc, assumptions A1 and A2 are satisfied.
Then we have the following necessary optimality conditions:

6



1. There exists a function η̄(·) ≤ 0, a real number p0 ≤ 0 and a function of bounded variation
p̄(·) ∈ BV ([0 , t̄f ], (Rn)∗) such that:

˙̄x(t) = ∂H

∂p
(x̄(t), p̄(t), ū(t), η̄(t)), ˙̄p(t) = −∂H

∂x
(x̄(t), p̄(t), ū(t), η̄(t)), t ∈ [0 , t̄f ] a.e.

2. The maximization condition holds for almost every t ∈ [0 , t̄f ]:

H(x̄(t), p̄(t), ū(t), η̄(t)) = max
u∈U

H(x̄(t), p̄(t), u, η̄(t)). (8)

3. The boundary conditions b(x̄(t̄f )) = 0 are satisfied and we have the transversality conditions:

p̄m(t̄f ) = −p0(1− α)

and since tf is free, if ū(·) is continuous at time t̄f , then

H(x̄(t̄f ), p̄(t̄f ), ū(t̄f ), η̄(t̄f )) = −p0α.

4. The function η̄(·) is continuous on the interior of the boundary arcs and we have the comple-
mentarity condition:

η̄(t) c(x̄(t)) = 0, ∀t ∈ [0 , t̄f ].

5. For any τ ∈ T we have

H[τ+] = H[τ−], where [τ ] stands for (x̄(τ), p̄(τ), ū(τ), η̄(τ)),
p̄(τ+) = p̄(τ−)− ντ c′(x̄(τ)), where ντ ≤ 0 is called a jump.

Remark 3. Either p0 = 0 (abnormal case), or p0 can be set to −1 by homogeneity (normal case).
We restrict our study to the normal case.

Definition 1.

• We call an extremal a quadruple (x(·), p(·), u(·), η(·)) satisfying items 1, 2, 4 and 5. It is called
a BC-extremal if it satisfies also item 3.

• Let H0(x, p) := 〈p, F0(x)〉 and H1(x, p) := 〈p, F1(x)〉 denote the Hamiltonian lifts of F0 and
F1. Then, along any extremal, we call Φ(t) := H1(x(t), p(t)) the switching function.

• It follows from (8) that along any extremal, we have u(t) = umin if Φ(t) < 0 and u(t) = umax
if Φ(t) > 0. We say that a trajectory x(·) restricted to a subinterval I ⊂ [0 , tf ], not reduced to
a singleton, is a bang arc if u(·) is constant on I, taking values in {umin, umax}. The trajectory
is called bang-bang if it is the concatenation of a finite number of bang arcs.

• We say that a trajectory x(·) restricted to a subinterval I ⊂ [0 , tf ], not reduced to a singleton,
is a singular arc if it is an interior arc and if the associated extremal lift satisfies Φ(t) = 0, for
every t ∈ I.

• We say that an extremal is a bang, singular, boundary or interior extremal if the associated
trajectory is respectively a bang, singular, boundary or interior arc.

Definition 2. A bang arc such that u(·) ≡ umin (resp. umax) is labeled σ− (resp. σ+). A singular
arc is labeled σs while a boundary arc associated to the constraint c is labeled σc. Besides, we
denote by σ1σ2 an arc σ1 followed by an arc σ2.

Remark 4. Along a boundary arc, the maximization condition (8) with assumption A3 imply Φ = 0
on the interior of the boundary arc. Besides, the adjoint vector may be discontinuous at τ ∈ T .
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4. Parameterization of the singular extremals
Relaxing the control bounds, singular trajectories are parameterized by the constrained Hamil-

tonian system:

ẋ = ∂pH, ṗ = −∂xH, 0 = ∂uH = H1,

with H1(x, p) = 〈p, F1(x)〉 the Hamiltonian lift of F1. The constraint H1 = 0 has to be differentiated
at least twice along a singular extremal to compute the control. This gives:

H1 = H01 = H001 + uH101 = 0,

along any singular extremal. A singular extremal along which H101 6= 0 is called of minimal order
and the corresponding singular control is given by:

us(z) := −H001(z)
H101(z) ,

with z := (x, p). In this case, we have the following additional necessary condition of optimality de-
duced from the high-order maximum principle, see Ref. [26]. If the singular control is not saturating
along the singular extremal, then the generalized Legendre-Clebsch condition must hold along the
singular extremal, that is:

∂

∂u

∂2

∂t2
∂H

∂u
= H101 ≥ 0. (9)

Besides, we have the following well-known result (see Ref. [7, Prop. 21]) that we use to define the
numerical methods, see Sect. III B 2.

Proposition II.1. Assume the open subset Ω := {z | H101(z) 6= 0} is not empty and let us define
on Ω the Hamiltonian Hs(z) := H0(z) + us(z)H1(z). Then, the singular extremals with minimal
order are the solutions of ż(t) = #  —

Hs(z(t)), starting from the set {z | H1(z) = H01(z) = 0}.

For three-dimensional systems, introducing

Dξ(x) := det(F1(x), F01(x), Fξ(x)),

the singular control is given in feedback form by

us(x) = −D001(x)
D101(x) ,

whenever D101(x) 6= 0 and p 6= 0, since, along a singular extremal

〈p, F1(x)〉 = 〈p, F01(x)〉 = 〈p, F001(x) + uF101(x)〉 = 0.

Prop. II.1 is replaced by:

Proposition II.2. Assume the open subset Ω := {z | H101(z) 6= 0} is not empty and let us define
on Ω the Hamiltonian Hs(z) := H0(z) + us(x)H1(z), z = (x, p). Then, the singular extremals with
minimal order are the solutions of ż(t) = #  —

Hs(z(t)), starting from the set {z | H1(z) = H01(z) = 0}.

Remark 5. Assuming D0(x) 6= 0, then the generalized Legendre-Clebsch condition (9) becomes
D0D101 ≥ 0 (when α 6= 0) and on the set H1 = H01 = 0 we have D101 = 0 ⇒ H101 = 0 and
(H101 = 0 and p 6= 0)⇒ D101 = 0.

5. Parameterization of the boundary extremals
We may find in Refs. [9, 28] the determination of the multiplier η and the jump ντ together

with the analysis of the junction conditions, which is based on the concept of order and related to
the classification of extremals. We give next some results only for m = 1 since the constraints c1
and c2 are of order 1, according to the following lemmas:
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Lemma II.3. Partial derivatives of the function φ is given by:

∂φ

∂h
(x) = 1

φ(x)
Θ0P (h)
P0Θ(h)

(
P (h)
P0

((
κv2

2RΘ(h) + 1
)1/κ

− 1
)

+ 1
)κ−1

(
−g0

((
κv2

2RΘ(h) + 1
)1/κ

− 1
)

+ v2β

2Θ(h)

(
κv2

2RΘ(h) + 1
)1/κ−1)

,

∂φ

∂v
(x) = v

φ(x)
Θ0P (h)
P0Θ(h)

(
P (h)
P0

((
κv2

2RΘ(h) + 1
)1/κ

− 1
)

+ 1
)κ−1(

κv2

2RΘ(h) + 1
)1/κ−1

.

Lemma II.4. Partial derivatives of the function ψ is given by:

∂ψ

∂h
(x) = β

2Θ(h)ψ(x), ∂ψ

∂v
(x) = ψ(x)

v
.

Lemma II.5. The two state constraints c1 and c2 are of order 1.

Proof. The differentiation of c1(x(t)) = φ(x(t))− φmax with respect to the time t leads to

ċ1(x(t)) = ∂φ

∂h
(x(t))ḣ(t) + ∂φ

∂v
(x(t))v̇(t) and ∂ċ1

∂u
(x) = v

∂φ

∂h
(x)− g0

∂φ

∂v
(x).

We check numerically thanks to the software Sage, see Ref. [14], that the last quantity does not
vanish for any values of h and v which can appear in the study and then, by definition, c1 is a state
constraint of order 1. The same reasoning holds for c2 and gives the result.

For a first-order constraint, assuming A1 and A3, we have the following result from Ref. [9].

Proposition II.6. Let m = 1. Then:

1. along the boundary, the control and the multiplier are given by

uc(x) = − (F0 · c)(x)
(F1 · c)(x) and ηc(z) = H01(z)

(F1 · c)(x) , z = (x, p);

2. if the control is discontinuous at a contact or a junction time τ between a bang arc and the
boundary then the jump ντ = 0;

3. we have

ντ = Φ(τ−)
(F1 · c)(x(τ)) at an entry point and ντ = − Φ(τ+)

(F1 · c)(x(τ)) at an exit point.

Remark 6. We refer to Ref. [23, Chapter 3] for the exact and quite long expressions of F0 · c, F1 · c
and H01, which give uc, ηc and ντ , for both constraints c1 and c2.

Likewise the singular case, in the state constrained case, we have the following result excerpt
from [17, Prop. 4.5] which is useful to define the numerical shooting method, see Sect. III B 2.

Proposition II.7. Let c(x) 6 0 be a smooth scalar state constraint of order 1 and assume the open
subset Ω := {x | (F1 · c)(x) 6= 0} is not empty. On Ω we define the Hamiltonian

Hc(z) := H0(z) + uc(x)H1(z) + ηc(z) c(x), z = (x, p),

where uc and ηc are defined in Prop. II.6. Then, the boundary extremals of order 1 contained in
H1 = 0 are the solutions of ż(t) = #  —

Hc(z(t)), starting from {z = (x, p) | c(x) = H1(z) = 0}.

9



III. Analysis of the minimum time-to-climb problem with state constraints
The minimum time-to-climb problem with no state constraints is analyzed in Refs. [18, 20]. In

Ref. [18], the influence of the initial mass m0 and the final true air speed vf is studied and it is
shown in particular that the trajectories are of the form σ±σsσ±, where σs is an hyperbolic singular
extremal. We thus restrict the small time analysis, presented in Sect. III A 2, to hyperbolic singular
extremals, that we introduce in Sect. III A 1. A first numerical result is then presented in Sect. III B
while the influence of φmax and ψmax on the state constraints is studied in Sect. III C.

A. Small time synthesis for planar hyperbolic trajectories with an order one state constraint
We first recall some results from Refs. [7, 27] in Sect. III A 1. This leads to introduce hyperbolic

singular extremals that we analyze in Sect. III A 2.

1. Generic classification of bang-bang extremals
Along a singular extremal we have ∂uH ≡ 0. In our particular case of a single-input affine

control system this condition becomes Φ(t) = H1(z(t)) = 0. Let us define the switching surface

Σ := {z := (x, p) ∈ Rn × (Rn)∗ | H1(z) = 0} ,

and the set

Σs := {z := (x, p) ∈ Rn × (Rn)∗ | H1(z) = H01(z) = 0}

containing all the singular extremals. Let us introduce the notation Φ+ (resp. Φ−) if the control
along a bang extremal is umax (resp. umin). The first and second derivatives of Φ± are given by:

Φ̇±(t) = H01(z(t)),
Φ̈+(t) = H001(z(t)) + umaxH101(z(t)),
Φ̈−(t) = H001(z(t)) + uminH101(z(t)).

A crucial point to analyze the minimum time-to-climb problem, is then to apply the results from
Ref. [27] (see also Ref. [7]) to classify the extremal curves near the switching surface Σ. We have
the following:

1. Ordinary switching time. It is a time t such that two bang arcs switch with Φ(t) = 0 and
Φ̇(t) = H01(z(t)) 6= 0. According to the maximum principle, near Σ, the extremal is of the
form σ−σ+ if Φ̇(t) > 0 and σ+σ− if Φ̇(t) < 0.

2. Fold point. It is a time where a bang arc has a contact of order 2 with Σ. We have three
cases (if Φ̈± 6= 0) depending on Φ̈± at the switching time:

• Hyperbolic case: Φ̈+ > 0 and Φ̈− < 0. A connection with a singular extremal is possible
at Σs and locally each extremal is of the form σ±σsσ± (by convention each arc of the
sequence can be empty).
• Parabolic case: Φ̈+Φ̈− > 0. The singular extremal at the switching point is not admissible
and every extremal curve is locally bang-bang with at most two switchings, i.e. σ+σ−σ+
or σ−σ+σ−.
• Elliptic case: Φ̈+ < 0 and Φ̈− > 0. A connection with a singular arc is not possible
and locally each extremal is bang-bang but with no uniform bound on the number of
switchings.

When dealing with three-dimensional systems we can give conditions depending only on the
state x to classify the three cases around fold points. Assuming D0(x) 6= 0, then the family
(F0(x), F1(x), F01(x)) forms a basis of R3 and there exists (α0, α1, α01) ∈ R3 and (β0, β1, β01) ∈ R3

such that

F001(x) + umin F101(x) = α0 F0(x) + α1 F1(x) + α01 F01(x),
F001(x) + umax F101(x) = β0 F0(x) + β1 F1(x) + β01 F01(x).
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By linearity of the determinant, we have

D001(x) + uminD101(x) = α0D0(x),
D001(x) + umaxD101(x) = β0D0(x),

and since D0(x) 6= 0 then we can compute α0 and β0 along the trajectory. Besides, along any
singular extremal, we have:

Φ̈−(t) = 〈p(t) , F001(x(t)) + umin F101(x(t))〉 = α0(t)H0(z(t)),
Φ̈+(t) = 〈p(t) , F001(x(t)) + umax F101(x(t))〉 = β0(t)H0(z(t)),

with H0(z(t)) > 0 in the normal case with the convention of the maximum principle. Denoting
t̄ the time when the extremal has a contact of order two with the switching surface Σ, then the
singular extremal is hyperbolic if α0(t̄) < 0 and β0(t̄) > 0, is elliptic if α0(t̄) > 0 and β0(t̄) < 0,
and parabolic if α0(t̄)β0(t̄) > 0.

2. Small time analysis
The time-optimal trajectories are concatenations of bang, singular and boundary arcs. The

main difficulty is then to determine the number and the sequence of these arcs. We can see these
concatenations as a sequence of patterns, each pattern being made with only few concatenations.
These patterns depend on the classification presented in Sect. III A 1 but also on the order of the
state constraint. Since we are dealing with order one state constraints and hyperbolic singular
extremals, the number of possible patterns is drastically reduced. Besides, a (long) time-optimal
trajectory may be seen as a concatenation of small time-optimal trajectories since it is necessarily
optimal on every sub-interval of time. Finally, the pattern we are looking for are thus given by small
time-optimal trajectories that we analyze in this section.
Remark 7. In Ref. [18], it is shown that the state-unconstrained time-optimal trajectories are of the
form σ±σsσ±, i.e. the optimal sequences are made with only one single pattern.

The aircraft dynamics is a multi-scale system and since the time constant of the mass is a
hundred, resp. a thousand, times smaller than the time constant of the altitude, resp. the speed, we
can neglict the evolution of the mass when considering short time intervals and thus, in this case,
we can reduce our three dimensional dynamics into a planar dynamics. We present hereinafter some
results from Refs. [9, 10] about small time analysis considering only a planar single-input control
system, in the hyperbolic case and with an order one scalar state constraint c(q(t)) 6 0, of the form:

q̇(t) = F0(q(t)) + u(t)F1(q(t)),

where |u(t)| 6 1 and q(t) := (x(t), y(t)) ∈ R2. Let us take q0 such that c(q0) = 0 and let us identify
q0 to the origin. Let us assume that F0(q0) and F1(q0) are linearly independent, and that the
constraint c is of order one, i.e. (F1 ·c)(q0) 6= 0. Then replacing, if necessary, u by −u, we can find a
local diffeomorphism preserving q0 = 0 and transforming the constrained system into the following
generic model:

ẋ(t) = 1 + y(t) a(q(t)), ẏ(t) = b(q(t)) + u(t), y(t) 6 0.

To describe the hyperbolic case, we consider also that det(F1(q0), F01(q0)) = a(q0) = 0 and we
assume that the set

S :=
{
q ∈ R2 ∣∣ det(F1(q), F01(q)) = 0

}
containing the singular trajectories is a simple curve that we approximate by a straight line in our
small time model. The equations of the system become:

ẋ(t) = 1 + y(t) (a y(t) + b x(t)), ẏ(t) = c+ u(t), y(t) 6 0,

where S is identified to
{
q ∈ R2

∣∣ 2 a y + b x = 0
}
and we assume that a 6= 0 and b 6= 0. Note that

the generalized Legendre-Clebsch condition is related to the sign of a. The singular control at q0 is
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given by us(q0) = −c− b/2a and the boundary control is simply uc(q) = −c. Taking the constraint
on the control into account, we see that the condition of admissibility implies |c + b/2a| 6 1 and
|c| 6 1. Finally, the hyperbolic case corresponds to:

a < 0, |c+ b/2a| < 1, |c| < 1, and b 6= 0,

that is the strict generalized Legendre-Clebsch condition is satisfied, the singular and boundary
controls are strictly admissible, and the singular set S is not identified with the boundary set y = 0.

For the state unconstrained problem, the singular arc is optimal, each optimal trajectory has at
most two switchings and the local optimal synthesis is of the form σ±σsσ±. For the state constrained
problem, the so-called clock form and Stokes theorem (see Refs. [9, 10] for details) can be used to
conclude on the optimatility of the boundary arc when x > 0 and its nonoptimality when x < 0,
for the case b > 0. For b < 0, the boundary arc is optimal when x 6 0 and nonoptimal when x > 0.
See Fig. 1 for a representation of the bang, singular and boundary arcs in the hyperbolic case with
b > 0, and for a comparison between boundary and bang-bang arcs.

q0 q

S σ− σ+

σc
• •

b > 0

Fig. 1 Small time representation of different trajectories in the neighborhood of a point q0
belonging to the singular set S and such that c(q0) = 0, in the case b > 0. Two trajectories
joining q0 and q are represented: one boundary arc σc and a bang-bang trajectory σ−σ+. Using
the clock form and the Stokes theorem, we can show that the trajectory σc is time-optimal.

When b > 0, the small time optimal synthesis joining two points q1 and q2 on the boundary
y = 0, with q1 and q2 on each side of S and q1 on the left, is then of the form σ−σsσc. In this
case, each optimal curve in a neighborhood of q0 has at most three switchings and the local optimal
synthesis is of the form σ±σsσcσ±. For b < 0, the local optimal synthesis is of the form σ±σcσsσ±.
We summarize this analysis in the following proposition excerpted from Ref. [9].

Proposition III.1. Under our assumptions, in the hyperbolic case each small time optimal trajec-
tory has at most three switchings. Moreover,

1. For b < 0, a boundary arc is optimal iff x 6 0 and each optimal arc has the form σ±σcσsσ±.

2. For b > 0, a boundary arc is optimal iff x > 0 and each optimal arc has the form σ±σsσcσ±.

Remark 8. The Prop. III.1 gives two different patterns σ±σsσcσ± and σ±σcσsσ±, depending on the
local model, for small time optimal trajectories around the boundary. These two patterns generalize
the pattern σ±σsσ±, presented in Sect. IIIA 1, in the hyperbolic state unconstrained case.

B. Application to the minimum time-to-climb problem and multiple shooting
1. Small time analysis and the CAS/Mach state constraints
In this section, we explain on an example why the CAS/Mach procedure makes sense. Let us

take from Ref. [18, Fig. 1] the state unconstrained trajectory of the form σ−σsσ+, for the minimum
time-to-climb problem, with data given in Sect. I and IIA. Note that in Ref. [18], umin = −0.262
instead of 0 but this has a small influence and it does not change the structure σ−σsσ+. From
this excerpted trajectory, denoted x(·), we compute and display on Fig. 2, the state constraints
c1(x(t)) = φ(x(t)) − φmax and c2(x(t)) = ψ(x(t)) − ψmax, for φmax := 160 and ψmax = 0.7. These
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realistic values of φmax and ψmax are chosen to emphasize the following comment: the boundary
c1 = 0 is reached during the first bang arc, before the singular arc, while the boundary c2 = 0 is
reached during the singular arc, after reaching c1 = 0 and before the last bang arc.
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0.00

0.05
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Fig. 2 The plain lines depict the evolution of the state constraints c1 and c2 along the state
unconstrained hyperbolic trajectory of the form σ−σsσ+, with φmax = 160 and ψmax = 0.7. The
time t1 (resp. t2) represents the switching time between the negative bang (resp. the singular)
arc and the singular (resp. the positive bang) arc.

From Fig. 2, one can also notice that φ(x(·)) and ψ(x(·)) reach their maxima respectively at
the switching times t1 and t2. Let us consider now other values for φmax and ψmax. Assume
we fix φmax = φ(x(t1)) − ε, ε > 0 small, and ψmax > ψ(x(t2)). Considering these values, the
state unconstrained trajectory is not admissible anymore for the state constrained case since in a
small neighborhood of t1, we have c1(x(t)) > 0. The trajectory is thus slightly modified and the
updated optimal sequence becomes σ−σc1σsσ+ corresponding to the first case of Prop. III.1. On
the contrary, if φmax > φ(x(t1)) and ψmax = ψ(x(t2)) − ε, ε > 0 small, then the updated optimal
trajectory is of the form σ−σsσc2σ+ corresponding to the second case of Prop. III.1. Finally, if we
set φmax = φ(x(t1)) − ε1 and ψmax = ψ(x(t2)) − ε2, both ε1 > 0 and ε2 > 0 sufficiently small,
then the state constrained trajectory is of the form σ−σc1σsσc2σ+, that is the boundary arc σc1

appears before the boundary arc σc2 and this sequence is made of two patterns. In other words,
the trajectory contains one arc at constant CAS which is before the arc at constant Mach, and
this is consistent with the actual CAS/Mach procedure. Let us recall that this procedure splits
the climbing phase in two parts, the first one is an arc at constant CAS and the second one is an
arc at constant Mach number. So, comparing to the CAS/Mach procedure there is an additionnal
singular arc joining the boundary arcs, but, according to the results presented in Sect. III C, for
smaller values of φmax and ψmax, the singular arc vanishes and we get the CAS/Mach procedure.
Remark 9. In Sect. III C, we analyze the influence of φmax and ψmax on the structure of the trajec-
tories by deforming the BC-extremal associated to the state unconstrained trajectory, taken here
as example. Just note that for all the numerical case studies presented in this article, whatever the
values of φmax and ψmax, the boundary arc σc1 is always before σc2 .

2. A preliminary numerical result by indirect multiple shooting
We present in this section the indirect multiple shooting method [11] that we use to solve the

necessary conditions of optimality given by the maximum principle presented in Sect. II C. We
describe the method on only one example and we refer to Ref. [23] for more details. Let us consider
the same example as the one presented in the previous section and let us fix φmax > φ(x(t1)) and
ψmax = 0.7. In this case, the resulting trajectory is of the form σ−σsσc2σ+.

The unknowns of the shooting method are the junction times t1, t2 and t3, the final time tf , the
jumps νt2 and νt3 at the junction times t2 and t3 and the initial costate denoted p0. With p0, t1,
t2, t3, νt2 and νt3 , since we know the structure of the trajectory, we can retrieve the states-costates
at the junction times t1, t2 and t3 simply by integration, starting from x(0) = x0 and applying
the controls umin, us, uc2 and umax, respectively on [0 , t1], [t1 , t2], [t2 , t3] and [t3 , tf ]. However, to
improve numerical stability, we add the states-costates z1, z2 and z3 at the junction times to the
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unknowns of the shooting method. The first thing to notice now is that the jumps are zero. Indeed,
Φ(t−2 ) = 0 and so νt2 = 0 (from Prop. II.6) since the switching function Φ(·) = 0 along the singular
arc σs. Now, combining Prop. II.6 and item 5 of the maximum principle, we have:

νt3 = − Φ(t+3 )
(F1 · c2)(x(t3)) ≤ 0.

But, Φ(t+3 ) ≥ 0 since the last bang arc is positive. So, if we have (F1 ·c2)(x(t3)) < 0, then necessarily
νt3 = 0. Numerical experiments from Ref. [23] suggest that F1 · c2 < 0 all along the trajectory and
so in particular (F1 · c2)(x(t3)) < 0. Finally, grouping all together, we write

y := (p0, t1, t2, t3, tf , z1, z2, z3) ∈ R25

the unknown of the shooting method.
Remark 10. For the jump νt3 to be not zero, it is necessary that uc2(x(t3)) = umax, which may
happen in only very particular cases that we do not encounter in the numerical experiments all
through this article.

Now, we need to describe the shooting equations and define the shooting function. First of all,
we define the following Hamiltonians:

H+(z) := H0(z) + umaxH1(z),
H−(z) := H0(z) + uminH1(z),
Hs(z) := H0(z) + us(x)H1(z),
Hc2(z) := H0(z) + uc2(x)H1(z) + ηc2(z) c2(x),

where z = (x, p) and where us, uc2 and ηc2 are given in Sect. II C. Note that we can replace
us(x) = −D001(x)/D101(x) by us(z) = −H001(z)/H101(z). Then, we define the exponential mapping
etϕ(q0) as the solution at time t of the Cauchy problem q̇(s) = ϕ(q(s)), q(0) = q0, where ϕ is any
dynamical system and where the state here is denoted q. We define also the canonical projections
πx(z) = x and πpm(z) = pm, recalling that z = (x, p), x = (h, v,m) and writting p := (ph, pv, pm).
The mulitple shooting function, denoted Sc2 , associated to the structure σ−σsσc2σ+ is then defined
by:

Sc2(y) :=



H1(et1
#   —
H−(x0, p0))

H01(et1
#   —
H−(x0, p0))

c2(πx(e(t2−t1) #  —
Hs(z1)))

Ψ(e(tf−t3) #   —
H+(z3))

z1 − et1
#   —
H−(x0, p0)

z2 − e(t2−t1) #  —
Hs(z1)

z3 − e(t3−t2) #    —
Hc2 (z2)


∈ R25,

where

Ψ(z) :=
(
b(πx(z)), πpm(z), H+(z) + p0), p0 = −1

and the multiple shooting method consists in finding a zero of the multiple shooting function Sc2 ,
i.e. in solving Sc2(y) = 0.
Remark 11. We can replace the first three equations by H1(z1) = H01(z1) = c2(πx(z2)) = 0.

Let ȳ := (p̄0, t̄1, t̄2, t̄3, t̄f , z̄1, z̄2, z̄3) be a zero of the shooting function Sc2 . Then, to ȳ is
associated a unique BC-extremal (x̄(·), p̄(·), ū(·), η̄(·)) if 0 6 t̄1 6 t̄2 6 t̄3 6 t̄f and if H1(z̄(t)) < 0
for almost every t ∈ [0 , t̄1] and H1(z̄(t)) > 0 for almost every t ∈ [t̄3 , t̄f ]. These two conditions are
not included in the shooting equations but they are easily verified a posteriori and should be ok if
the structure is the right one. Let us explain now why these shooting equations define a BC-extremal
of the form σ−σsσc2σ+. The first two equations in Sc2(y) = 0 impose the extremal to be singular
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on [t̄1 , t̄2] according to Prop. II.2, the third equation impose a boundary arc on [t̄2 , t̄3] according
to Prop. II.7, noticing that H1(e(t̄2−t̄1) #  —

Hs(z̄1)) = 0, while the fourth equation Ψ = 0 contains the
limit and transversality conditions. The last equations are the so-called matching conditions.

We use the HamPath software, see Refs. [12, 17], to obtain a (numerical) zero, denoted ȳ, of
the shooting function with high accuracy: ‖Sc2(ȳ)‖ ≈ 1.511 × 10−11. The switching times are
t̄1 ≈ 88.61s, t̄2 ≈ 455.7s and t̄3 ≈ 651.46s. The final time is t̄f ≈ 661.37s and the initial adjoint
vector is p̄0 ≈ (3.180× 10−2, 6.594× 10−1,−2.300× 10−1). Note that the HamPath software is based
on a Newton-like algorithm which is initialized thanks to the state unconstrained trajectory. Figure
3 depicts the control and the constraint c2 along the resulting state constrained trajectory.
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Fig. 3 Evolution of the control and the constraint c2 along the trajectory associated to the
zero ȳ of the shooting function Sc2 .

Remark 12. Since all the controls depend only on the state x, we can replace the resolution of the
shooting equations by the resolution of the following optimization problem:

min
X∈R13

f(X), subjected to g(X) = 0R11 ,

where X := (t1, t2, t3, tf , x1, x2, x3), f(X) := tf and

g(X) :=


b(e(tf−t3)F+(x3))
x1 − et1F−(x0)

x2 − e(t2−t1)Fs(x1)
x3 − e(t3−t2)Fc2 (x2)

 ∈ R11,

where the vector fields are defined by F+ := F0 + umax F1, F− := F0 + umin F1, Fs := F0 + us F1
and Fc2 := F0 + uc2 F1. We have in g(X) = 0 only the limit and matching (to improve numerical
stability) conditions.

C. Influence of φmax and ψmax on the BC-extremals
1. Introduction to differential path following methods
The shooting method is used to solve a single optimal control problem. To solve a one-parameter

family of optimal control problems, e.g. for different values of ψmax, we use differential path following
techniques with arclength parameterization (or homotopy), see Refs. [1, 22]. Let h : RN ×R→ RN ,
h(y, λ), denote an homotopic function with λ the homotopic parameter. For example, one can
consider the homotopic function defined by Sc2 , with y := (p0, t1, t2, t3, tf , z1, z2, z3), N = 25 and
λ := ψmax. That is to say, in this example h(y, λ) = Sc2(y) with ψmax = λ. We are interested
in solving h = 0 for λ ∈ [λ0 , λ1], (λ0, λ1) ∈ R2 given. The classical difficulties about homotopic
methods consist in assuring that a curve in h−1(0) exists, is sufficiently smooth and will intersect
the fixed target λ1 in finite length starting from λ = λ0. As a first result we have the following.
Suppose h is continuously differentiable and that we know y0 such that h(y0, λ0) = 0 and assume

rank
(
∂h

∂y
(y0, λ0)

)
= N.
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Suppose also that 0 is a regular value of h. Then, a continuously differentiable curve crossing (y0, λ0)
and transverse to λ = λ0 exists and is either diffeomorphic to a circle or the real line. The curves
in h−1(0) are disjoints, and we call each branch of h−1(0) a path of zeros. To compute numerically
these paths of zeros, we use the homotopic method from the HamPath software, which is based on a
Predictor-Corrector algorithm with a high order and variable step size Runge-Kutta scheme for the
prediction and with a classical simplified Newton method for the correction.

2. Homotopy and monitoring for the minimum time-to-climb problem
We present in this section how we combine homotopy andmonitoring (that we define hereinafter)

to obtain, for a fixed climbing scenario, a cartography of possible time-optimal structures with
respect to the values of the bounds of the state constraints c1 and c2, i.e. on the values of φmax
and ψmax. We do not give all the details and we refer to Ref. [17] for a more detailed description of
the methodology to obtain such a cartography. We start from the state unconstrained trajectory,
denoted x(·), presented in Sect. III B 1 of the form σ−σsσ+. The maximal values of φ and ψ
along the trajectory are reached respectively at the switching times t1 and t2. One can notice that
φ(x(t1)) < VMO and ψ(x(t2)) < MMO, so for this trajectory, the state constraints c1 and c2 are
not violated if we fix φmax = VMO and ψmax = MMO. The idea is then to deform by homotopy
on φmax or ψmax the BC-extremal associated to this trajectory and then to detect by monitoring
when a change in the structure occurs. The monitoring consists in checking some conditions after
each step of prediction and correction. Technically, we only have to code the conditions and then
the HamPath software automatically check them after each prediction-correction step and stop the
homotopy process if at least one condition is violated. Here are the three different monitorings we
do:
M1 check if c1 is violated at the entry point of the singular arc. If yes, then we add a σc1 arc.

M2 check if c2 is violated at the exit point of the singular arc. If yes, then we add a σc2 arc.

M3 check if the singular arc has a positive length. If not, then the arc is removed.
When a change is detected, we update the homotopic function accordingly to the new structure and
repeat the process. We thus have to limit the range of values for φmax and ψmax. We choose to build
the cartography for (φmax, ψmax) ∈ [φ0 , V MO] × [ψ0 ,MMO], where VMO ≈ 180, MMO ≈ 0.82,
φ0 := max(φ(x(0)), φ(x(tf ))) ≈ 107 and ψ0 := max(ψ(x(0)), ψ(x(tf ))) ≈ 0.63, with tf the final
time. With these chosen minimal values ψ0 and φ0, whatever φmax and ψmax, the trajectory will
always start with an arc σ− and end with an arc σ+ because the state constraints depend only on
h and v which are fixed at the initial and final times to some given values which do not depend on
φmax and ψmax. This explains why we say that we study the deformation of the BC-extremal for a
fixed climbing scenario.

3. Numerical results and classification
Let simply recall that we start from the BC-extremal associated to the state unconstrained

trajectory of the form σ−σsσ+, denoted x(·), with t1 and t2 the switching times and tf the final
time.

1. Let φc1 := φ(x(t1)), ψc2 := ψ(x(t2)) and let us label δc1 , δc2 and δs, a touch point respectively
with the state constraint c1 = 0, c2 = 0 and the singular set Σs. Then, we have the following
straightforward first result:

φmax ψmax structure

φc1 ψc2 σ−δc1σsδc2σ+

φc1 (ψc2 ,MMO] σ−δc1σsσ+

(φc1 , V MO] ψc2 σ−σsδc2σ+

(φc1 , V MO] (ψc2 ,MMO] σ−σsσ+
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2. Let fix first ψmax = MMO. For φmax = φc1 − ε, ε > 0 small enough, the BC-extremal
has a structure of the form σ−σc1σsσ+. Then, we perform an homotopy on λ = φmax from
λ0 = φc1 to λ1 = φ0 which stops because of monitoring M3 around λ ≈ 129.8 =: φs. Hence,
at λ = φs the structure is σ−σc1δsσ+. The second homotopy from λ0 = φs to λ1 = φ0 with
a structure σ−σc1σ+ is not stopped by the monitoring, thus, no change in the structure is
detected anymore. Let fix now (φmax, ψmax) = (φs,MMO). The structure is of the form
σ−σc1δsσ+. Then, we define ψs := maxψ(·) ≈ 0.734 along the corresponding trajectory, and
we have the following:

φmax ψmax structure

[φ0 , φs) MMO σ−σc1σ+

φs MMO σ−σc1δsσ+

(φs , φc1) MMO σ−σc1σsσ+

φs ψs σ−σc1δsδc2σ+

φs (ψs ,MMO] σ−σc1δsσ+

Fig. 4 depicts the previous results.

φmax

ψmax

ψc2 ψsψ0 MMO

φc1

VMO

φs

φ0

σ−σsσ+

σ−σc1σsσ+

σ−σc1σ+

Fig. 4 Sketch of the classification of BC-extremals for the minimum time-to-climb problem.

3. The same methodology is used each times the homotopy is stopped by a monitoring. The new
structure is then guessed thanks to the results from section IIIA. Fig. 5 presents the result-
ing cartography of the BC-extremal structures for (φmax, ψmax) ∈ [φ0 , V MO]× [ψ0 ,MMO],
for the minimum time-to-climb problem. Fig. 6 gives the time-to-climb related to the tra-
jectories from Fig. 5. Of course, the state unconstrained trajectory of the form σ−σsσ+
minimizes the time-to-climb and the minimal value is tf,min := 658s. Note that we retrieve
the CAS/Mach procedure for some values of φmax and ψmax. Up to this point, we can say
that the CAS/Mach procedure is not the optimal structure for the minimum time-to-climb
problem with the Maximal Operation Speed (VMO) and the Maximal Operationnal Mach
(MMO) speeds as constraints. However, when decreasing these constraints, the CAS/Mach
procedure may be optimal since the classification from Fig. 5 gives in this case BC-extremals
of the form σ−σc1σc2σ+.
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Remark 13. In the previous paragraph, we say “may be optimal” since we only check necessary
conditions of optimality given by the PMP, that is we only compute BC-extremals. The
questions of local and global optimality are more intricate is this context and go beyond the
scope of this article.
Remark 14. According to the Sect. IVB, for the solutions from Fig. 5, the fuel consump-
tion is minimal for (φmax, ψmax) ≈ (128.9, 0.661) where the structure follows the CAS/Mach
procedure.
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Fig. 5 Classification of the BC-extremal structures with respect to φmax and ψmax. To the
separating blue lines is associated structures with touch points. These blue lines are computed
also by homotopy and monitoring.
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Fig. 6 The final time with respect to φmax and ψmax.

IV. The minimal cost index: the CAS/Mach and Singular Arc procedures
A. Description of the CAS/Mach (CM) and Singular Arc (SA) procedures

1. The CAS/Mach (or CM) procedure usually splits the climbing phase in two parts, the first one
is an arc σc1 at constant CAS and the second one is an arc σc2 at constant Mach number. In
our case, we have seen that we need a first negative bang arc σ− and we need a final positive
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bang arc σ+ to reach the limit conditions (b(x(tf )) = 0) which define the cruise phase. We
consider the cost index gα (see Sect. IIA) as the objective function and we want to optimize
the CAS and Mach numbers, that is φmax and ψmax, followed respectively along the arcs σc1

and σc2 . The NLP problem may be summarize this way:

(CMα) min
X∈R15

fCM
α (X), subjected to gCM

α (X) = 0,

where the decision variable is X = (t1, t2, t3, tf , x1, x2, x3, φmax, ψmax), where the cost function
is given by

fCM
α (X) := α tf + (1− α)

[
m0 − πm

(
e(tf−t3)F+(x3)

)]
= gα

(
tf , πm

(
e(tf−t3)F+(x3)

))
,

with πm(x) = m, recalling that x = (h, v,m), and where m0 is the initial mass, which is fixed.
The equality constraints are defined by:

gCM
α (X) :=



b(e(tf−t3)F+(x3))
x1 − et1F−(x0)

x2 − e(t2−t1)Fc1 (x1)
x3 − e(t3−t2)Fc2 (x2)

φmax − φ(x1)
ψmax − ψ(x2)


∈ R13,

recalling that x0 = (h0, v0,m0) is fixed (see Sect. IIA for the numerical values).
Remark 15. One can check a posteriori that 0 6 t1 6 t2 6 t3 6 tf or include these inequality
constraints.

2. We define now what we call the Singular Arc (or SA) procedure, which is, as we can see in
the next sections, better than the CM procedure. The trajectories following a SA procedure
have a simple structure of the form σ−σsσ+. The cost function is still the cost index and the
equality constraints are simply given by the limit and matching conditions. This gives the
following NLP problem:

(SAα) min
X∈R9

fSA
α (X), subjected to gSA

α (X) = 0,

where the decision variable is here X = (t1, t2, tf , x1, x2), where the cost function is given by

fSA
α (X) := α tf + (1− α)

[
m0 − πm

(
e(tf−t2)F+(x2)

)]
= gα

(
tf , πm

(
e(tf−t2)F+(x2)

))
,

and where the equality constraints are defined by:

gSA
α (X) :=

 b(e(tf−t2)F+(x2))
x1 − et1F−(x0)

x2 − e(t2−t1)Fs(x1)

 ∈ R8.

Remark 16. One can also check a posteriori that 0 6 t1 6 t2 6 tf or include these inequality
constraints.

Remark 17. Let us denote by (SAtf ) the problem (SAα) with α = 1 and (CMtf ) the problem (CMα)
with α = 1. According to the results from Sect. III B, we have that (SAtf ) is better than (CMtf ).

B. The minimal fuel consumption
We have already compared (SAα) and (CMα) when α = 1. Before comparing them for all pos-

sible values of α, we present a brief analysis when α = 0, that is for the minimum fuel consumption
problem. We denote by (SA∆m

) the problem (SAα) with α = 0 and (CM∆m
) the problem (CMα)

with α = 0.
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1. For the minimum time-to-climb problem, the classification of the different structures is given
on Fig. 5. Associated to these BC-extremals, we have the final time tf presented on Fig. 6. One
can notice that the minimal value (tf,min = 658s) is of course for the structure following the SA
procedure, and the associated fuel consumption is ∆m ≈ 882kg. For the BC-extremals from
Fig. 5, one can also compute the fuel consumption, which is given on Fig. 7. Even if it is not
clear from the figure, the minimal value of fuel consumption is obtained when (φmax, ψmax) ≈
(128.9, 0.661), that is for a structure following the CM procedure. To obtain these optimal
values we solve the problem (CM∆m

) with the fmincon function from the Matlab software and
we use the ode45 function to compute the numerical integrations. The numerical solution we
obtain satisfies the fisrt-order optimality conditions with a tolerance of 10−7. The switching
times are t1 ≈ 32s, t2 ≈ 450s and t3 ≈ 676s while we have a fuel consumption ∆m ≈ 863kg, a
final time tf ≈ 677s and the CAS and Mach optimal values are (φmax, ψmax) ≈ (128.9, 0.661).
Hence, there is a gap of 19s on the final time and 19kg on the fuel consumption between the
solution of (SAtf ) and (CM∆m

). That is, the decrease of the bounds φmax and ψmax of the
state constraints c1 and c2 allows to save up 19 kg of fuel with a 19 seconds longer flight.
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Fig. 7 The fuel consumption with respect to φmax and ψmax for the minimum time-to-climb
problem. See the classification on Fig. 5.

2. In the previous item, we have compared (SAtf ) with (CM∆m
). As expected, solving (SAtf )

gives a better final time and solving (CM∆m
) gives a better fuel consumption. But we can do

better. Let us come back to the orginal problem of minimizing the fuel consumption, that is
to the optimal control problem (P∆m

) defined in Sect. II A. To obtain the best possible fuel
consumption, we set φmax = VMO and ψmax = MMO. In this case, thanks to the direct
collocation method from the Bocop software [6], we determine that the structure σ−σsσ+ is
still relevant, that is the solution we obtain follows the SA procedure. This means that the
problem (SA∆m

) gives a better solution than the problem (CM∆m
). To get a BC-extremal

solution of (P∆m
) with φmax = VMO and ψmax = MMO, we use the solution from the Bocop

software to initialize the shooting method. This technique is classical, see Ref. [8, 23] for
details and examples. We then obtain a trajectory for which the switching times are t1 ≈ 47s
and t2 ≈ 668s, the final time is tf ≈ 675s and the fuel consumption is ∆m ≈ 860kg. There is a
gap of 3kg on the fuel consumption with the solution from (CM∆m

) and a difference about 2s
on the final time. Hence, even if (SA∆m

) is better than (CM∆m
), the difference is very small.

Remark 18. The Bocop software tranforms an infinite dimensional optimal control problem
into a finite dimensional optimization problem, applying a full time discretization of the state
variables, the control variables, the dynamics and the constraints.

Let us recap on the following table, the fuel consumptions and the final times for the different
problems we have encountered so far:
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(SAtf ) (CMtf ) (SA∆m
) (CM∆m

)

tf 658s 660s 675s 677s
∆m 882kg 884kg 860kg 863kg

From this table, it is clear that the SA procedure is slightly better than the CM procedure in terms
of time-to-climb and fuel consumption. In the next section we analyze the case when α ∈ [0 , 1].
This will complete the comparison between (CMα) and (SAα).

C. The minimal cost index
We are interested now in the so-called cost index criterion which is a convex combination of

the time-to-climb and the fuel consumption. Instead of comparing directly (CMα) and (SAα) for
α ∈ [0 , 1], we solve (Pα) with φmax = VMO, ψmax = MMO, and we show that the trajectories
we get follow the SA procedure. Doing this, we conclude at the end of this section, that not only
the SA procedure is better than the CM procedure but it is also the best solution we have. The
problem (CMα) is solved with the fmincon function from the Matlab software and we use the ode45
function to compute the numerical integrations. The optimal control problem (Pα) is solved with
the Bocop software.

We present in Table 2, for different values of α, the optimized CAS/Mach couple (that is φmax
and ψmax), the fuel consumption and the time-to-climb, associated to the solutions of problems
(CMα) and (Pα). Since all the trajectories from problem (Pα) with φmax = VMO, ψmax = MMO
follow the SA procedure, it is clear from Table 2 that the SA procedure is better than the CM
procedure. Indeed, for any α, the final time and the fuel consumption are better, so is the cost
index. It is interesting to notice that not only the objective function is better (that is the cost
index) but also each part of the criterion (that is tf and ∆m). This fact is visible on Fig. 8, where
the left sub-graph depicts the evolution of the fuel consumption with respect to α while the right
sub-graph presents the time-to-climb.

To conlude, this numerical investigation indicates that the SA procedure of the form σ−σsσ+
is the best policy but the actual Cas/Mach procedure of the form σ−σc1σc2σ+ provides good sub-
optimal trajectories regarding the cost index criterion gα.

(CMα) (Pα)
α CAS Mach ∆m tf ∆m tf

0 128.9 0.6611 862.7 677.1 860.0 675.4
0.056 129.4 0.6631 862.8 675.7 860.1 674.0
0.105 129.9 0.6651 862.9 674.3 860.2 672.6
0.158 130.4 0.6670 863.1 673.0 860.4 671.2
0.210 131.0 0.6690 863.4 671.7 860.7 669.9
0.263 131.6 0.6709 863.8 670.5 861.1 668.6
0.316 132.2 0.6729 864.2 669.3 861.6 667.4
0.368 132.8 0.6748 864.8 668.2 862.2 666.3
0.421 133.5 0.6767 865.5 667.1 862.9 665.2
0.474 134.2 0.6787 866.4 666.1 863.7 664.1

(CMα) (Pα)
α CAS Mach ∆m tf ∆m tf

0.526 134.9 0.6808 867.3 665.1 864.7 663.2
0.579 135.6 0.6825 868.4 664.2 865.8 662.3
0.631 136.4 0.6844 869.7 663.4 867.1 661.4
0.684 137.2 0.6863 871.1 662.7 868.5 660.7
0.737 138.1 0.6882 872.7 662.0 870.1 660.0
0.790 139.0 0.6901 874.5 661.5 872.0 659.5
0.842 139.9 0.6920 876.6 661.0 874.0 659.0
0.895 140.9 0.6939 878.8 660.7 876.3 658.7
0.947 142.0 0.6959 881.4 660.4 878.8 658.5
1.000 143.2 0.6978 884.3 660.4 881.6 658.4

Table 2 Fuel consumption and time-to-climb for different values of α associated to the solutions
of problems (CMα) and (Pα). For problem (Pα), we set φmax = VMO and ψmax = MMO.

V. Conclusion
This article is about aircraft trajectory optimization during the climbing phase considering the

cost index criterion. The cost index criterion is a convex combination of the time-to-climb and
the fuel consumption. The problem is first modeled as an optimal control problem in Mayer form
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Fig. 8 Evolution of the fuel consumption (on the left) and of the time-to-climb (on the right)
with respect to α. The plain lines are for problem (CMα) while the dotted lines are for
problem (Pα) with φmax = VMO, ψmax = MMO. The two curves are fairly similar, the relative
gap between the plain and the dotted curves is about 0.3%.

with a single-input affine control system and with pure state constraints. The two state constraints
give CAS and Mach speeds limitations while the control variable is the air slope of the aircraft. In
Sect. III, for the minimimum time-to-climb problem, we classify the BC-extremals structures with
respect to the bounds of the state constraints, that is φmax and ψmax, using small time analysis,
indirect multiple shooting and homotopy with monitoring methods. This classification emphasizes
the role of the SA and CM procedures that we define and compare in Sect. IV. The CM procedure
is the actual CAS/Mach procedure of the form σ−σc1σc2σ+ while the SA procedure has the simple
form σ−σsσ+. Fixing the structure, that is considering the SA or CM procedure, the optimal control
problem can be reduced to a simpler optimization problem in finite and small dimension, where the
adjoint vector p is not needed. This is possible in particular because of the parameterization of the
control in the feedback form us(x), uc1(x) and uc1(x) respectively along the arcs σs, σc1 and σc2 .
The numerical investigation shows that the SA procedure is better than the actual CM procedure,
in terms of time-to-climb and fuel consumption when considering the cost index criterion, but the
difference is small. Besides, thanks to the numerical results obtained with the direct collocation
method, considering the optimal control problem (Pα) with φmax = VMO and ψmax = MMO, we
have also that the SA procedure is possibly the best policy.

It is worth to mention that in this article we consider only the air slope as control variable. This
means that the thrust is assumed to be constant. It would be interesting to consider the thrust as a
control variable and in this case, we would have a bi-input control system still affine in the control
and more complex structures may appear. A preliminary study has been done in Ref. [19] but the
singular perturbation phenomenon has not been taken into account, which makes the numerical
resolution much more difficult.
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