VAN DUONG DINH Abdelwahab Bensouilah 
email: ai.bensouilah@math.univ-lille1.fr
  
Duong Van 
email: dinhvan.duong@math.univ-toulouse.fr
  
Mohamed Dinh 
  
Majdoub 
email: mmajdoub@iau.edu.sa
  
AND Mohamed Majdoub 
  
Scattering in

Keywords: Mathematics Subject Classification. 35-xx, 35L70, 35Q55, 35B40, 35B33, 37K05, 37L50 Inhomogeneous nonlinear Schrödinger equation, Decay solutions, Virial identity, Scattering, Weighted L 2 -space, Exponential nonlinearity, Singular Moser-Trudinger inequality

   

Introduction and main result

This paper is concerned with the scattering theory for the following initial value problem i∂ t u + ∆u = |x| -b e α|u| 2 -1 -α|u| 2 u, u(0) = u 0 , (1.1) where u = u(t, x) is a complex-valued function in space-time R × R 2 , 0 < b < 1 and α = 2π(2 -b).

The classical nonlinear Schrödinger equation (b = 0) with pure power or exponential nonlinearities arises in various physical contexts, as for example the self trapped beams in plasma, the propagation of a laser beam, water waves at the free surface of an ideal fluid and plasma waves (see [START_REF] Lam | Self trapped laser beams in plasma[END_REF]).

From the mathematical point of view, the classical NLS equation, i.e., problem (1.1) with b = 0, has attracted considerable attention in the mathematical community and the wellposedness theory as well as the scattering has been extensively studied, see for instance [2,[START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF][START_REF] Cazenave | Equations de Schrödinger non linéaires en dimension deux[END_REF][START_REF] Colliander | Energy critical NLS in two space dimension[END_REF]19,22]. We refer the reader to [8,[START_REF] Tao | Nonlinear Dispersive Equations: Local and Global Analysis[END_REF] and references therein for more properties and information on nonlinear Schrödinger equations.

In particular, in [START_REF] Colliander | Energy critical NLS in two space dimension[END_REF] a notion of criticality was proposed and the authors established in both subcritical and critical regimes the existence of global solutions in the functional space

C(R, H 1 (R 2 )) ∩ L 4
loc (R, W 1,4 (R 2 )). Later on in [19], the scattering in the energy space was obtained in the subcritical case. Note that the critical case was investigated in [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF] where the scattering is proved in the radial framework.

The situation in the case b > 0 is less understood. Recently, in [START_REF] Bensouilah | Energy critical NLS equation with weighted exponential nonlinearity[END_REF] the authors established the global well-posedness in the energy space for 0 < b < 1. A natural question to ask then is the long time behavior of global solutions, that is the scattering. This means that every global solution of (1.1) approaches solutions to the associated free equation

i∂ t v + ∆v = 0, (1.2)
in the energy space H 1 as t → ±∞. The main difficulty is how to obtain the interaction Morawetz inequality? Recall that the interaction Morawetz inequality is nothing but the convolution of the classical one with the mass density. This in particular leads to a priori global bound of the solution in L 4 t (L 8 x ) which is the main tool for the scattering in the energy space (see for instance [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF]19,24]). Note that the interaction Morawetz inequalities were first established for the NLS with power-type nonlinearity, and the proof depends heavily on the form of nonlinearity. Of course the proof can be easily adapted to more general homogeneous nonlinearities. More precisely, for linear combination of powers it suffices that all the powers are quadratic or higher with positive coefficients. The problem with singular weight (or for non-homogeneous nonlinearity) is much more difficult and should be investigated separately. The scattering in the energy space will be investigated in a forthcoming paper, and we believe that some ideas developed in [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF] will be helpful.

Remark 1.1. We stress that the two-dimensional nonlinear Klein-Gordon equation with pure exponential nonlinearity was studied in [START_REF] Ibrahim | Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity[END_REF][START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]17], and a similar trichotomy based on the energy was defined. Recently, M. Struwe [30,31] was able to construct global smooth solution for smooth initial data and prove the scattering [START_REF] Sack | Scattering for a critical nonlinear wave equation in two space dimensions[END_REF].

Before stating our main result, let us recall that solutions of (1.1) satisfy the conservation of mass and Hamiltonian

M(u(t)) := u(t) L 2 , (1.3) 
H(u(t)) := |∇u(t, x)| 2 + 1 α e α|u(t,x)| 2 -1 -α|u(t, x)| 2 - α 2 2 |u(t, x)| 4 dx |x| b . (1.4)
Our main result is the following.

Theorem 1.2. Let u 0 ∈ Σ be such that H(u 0 ) < 2 (1+b)(2-b) .
Then the corresponding global solution u of (1.1) satisfies u ∈ L 4 (R, C 1/2 ) and there exist u ± 0 ∈ Σ such that

lim t→±∞ e -it∆ u(t) -u ± 0 Σ = 0.
Let us make some comments. First, we see that illustrates the interaction between the wave function u and the potential |x| -b . More precisely, a sufficient condition for scattering is when the energy of the wave is less than a fixed amount depending on the sole parameter b that characterizes the weight function involved in the Hamiltonian of (1.1). Finally, a natural question that one could raise is the following: is the value 2 (1+b)(2-b) critical for scattering, in the sense that if the energy of the wave exceeds the latter quantity, would one get scattering?

Remark 1.3. For all 0 < b < 1, 8 9 ≤ 2 (1+b)(2-b) < 1.
The proof of Theorem 1.2 follows a standard strategy for the classical NLS equation. We first derive a decaying property for global solutions by using the pseudo-conformation law. We then show two types of global bounds for the solution u and its weighted variant (x + 2it∇)u. More precisely, we will show that

u S 1 (R) < ∞, (x + 2it∇)u S 0 (R) < ∞, (1.5) 
where

u S 1 (R) := u L ∞ (R,H 1 ) + u L 4 (R,W 1,4 ) , u S 0 (R) := u L ∞ (R,L 2 ) + u L 4 (R,L 4 ) .
The proof of these global bounds relies on the decaying property, the singular Moser-Trudinger inequality and the Log estimate. The main difficulty comes from the singular weight |x| -b which does not belong to any Lebesgue space. To overcome this problem, we will take the advantage of Lorentz spaces. Note that |x| -b ∈ L 2 b ,∞ (R 2 ), where L p,∞ is the Lorentz space.

Once these global bounds are established, the scattering in weighted L 2 space Σ follows easily.

This paper is organized as follows. In Section 2, we recall some useful tools needed in our problem. The pseudo-conformal law is derived in Section 3. The decaying property of global solutions in Lebesgue spaces is showed in Section 4. Sections 5 and 6 are devoted to the proofs of global bounds (1.5). We shall give the proof of our main result in Theorem 1.2 in Section 7.

Useful Tools

In this section, we collect some known and useful tools.

Proposition 2.1 (Moser-Trudinger inequality [1]).

Let α ∈ [0, 4π). A constant c α exists such that exp(α|u| 2 ) -1 L 1 (R 2 ) ≤ c α u 2 L 2 (R 2 ) , (2.1 
)

for all u in H 1 (R 2 ) such that ∇u L 2 (R 2 ) ≤ 1. Moreover, if α ≥ 4π, then (2.1) is false.
Remark 2.2. We point out that α = 4π becomes admissible in (2.1) if we require u H 1 (R 2 ) ≤ 1 rather than ∇u L 2 (R 2 ) ≤ 1. Precisely, we have

sup u H 1 ≤1 exp(4π|u| 2 ) -1 L 1 (R 2 ) < ∞, (2.2)
and this is false for α > 4π. See [25] for more details.

Theorem 2.3. [START_REF] Bergh | Interpolation Spaces[END_REF] Let 0 < b < 2 and 0 < α < 2π(2 -b). Then, there exists a positive

constant C = C(b, α) such that R 2 e α|u(x)| 2 -1 |x| b dx C R 2 |u(x)| 2 |x| b dx, (2.3 
)

for all u ∈ H 1 (R 2 ) with ∇u L 2 (R 2 ) 1.
We point out that

α = 2π(2 -b) becomes admissible in (2.3) if we require u H 1 (R 2 ) ≤ 1 instead of ∇u L 2 (R 2 ) ≤ 1.
More precisely, we have Theorem 2.4.

[27] Let 0 < b < 2. We have

sup u H 1 (R 2 ) 1 R 2 e α|u(x)| 2 -1 |x| b dx < ∞ if and only if α ≤ 2π(2 -b). (2.4) 
The following lemma will be very useful.

Lemma 2.5. Let 0 < b < 2 and γ ≥ 2. Then, there exists a positive constant C = C(b, γ) > 0

such that R 2 |u(x)| γ |x| b dx ≤ C u γ H 1 (R 2 ) , (2.5 
)

for all u ∈ H 1 (R 2 ).
Proof. Note that

|x| -b L r (B) < ∞ if b < 2 r , |x| -b L r (B c ) < ∞ if b > 2 r , (2.6) 
where

B = B(0, 1) is the unit ball in R 2 and B c = R 2 \B. Write R 2 |x| -b |u(x)| γ dx = B |x| -b |u(x)| γ dx + B c |x| -b |u(x)| γ dx.
We have from the Sobolev embedding

H 1 (R 2 ) ⊂ L q (R 2 ) for any q ∈ [2, ∞) that B c |x| -b |u(x)| γ dx ≤ u γ L γ (R 2 ) u γ H 1 (R 2 ) .
The first term is estimated as follows. Since 0 < b < 2, there exists ε > 0 small such that b < 2 1+ε . We apply (2.6) with r = 1 + ε and get

B |x| -b |u(x)| γ dx ≤ |x| -b L 1+ε (B) |u| γ L 1+ε ε (R 2 ) u γ L (1+ε)γ ε (R 2 ) u γ H 1 (R 2 ) .
Combining the two terms, we prove the desired estimate.

Remark 2.6. The inequality (2.5) fails for b 2. Indeed, let u ∈ D(R 2 ) (the space of smooth compactly supported functions) be a radial function such that u(x)

≡ 1 for |x| 1. Then, u ∈ H 1 (R 2 ) and R 2 |u(x)| γ |x| b dx 2π 1 0 rdr r b = +∞.
We also recall the so-called Gagliardo-Nirenberg inequalities and Sobolev embedding.

Proposition 2.7 (Gagliardo-Nirenberg inequalities [START_REF] Gagliardo | Proprieta di alcune classi di funzioni in piu variabili[END_REF]23]).

We have

u L m+1 u 1-θ L q+1 ∇u θ L p , (2.7) 
where

θ = pN (m -q) (m + 1)[N (p -q -1) + p(q + 1)] , 0 ≤ q < σ -1, q < m < σ, σ = (p-1)N +p N -p if p < N ∞ if p ≥ N
In particular, for N = 2, we obtain

u L q u 2/q L 2 ∇u 1-2/q L 2 , 2 ≤ q < ∞. (2.8)
Proposition 2.8 (Sobolev embeddings).

We have

W s,p (R N ) → L q (R N ), 1 ≤ p < ∞, 0 ≤ s < N p , 1 p - s N ≤ 1 q ≤ 1 p .
(2.9)

W 1,p (R N ) → C 1-N p (R N ), p > N.
(2.10)

The following estimate is an L ∞ logarithmic inequality which enables us to establish the link between e 4π|u| 2 -1 L 1 T (L 2 (R 2 )) and dispersion properties of solutions of the linear Schrödinger equation.

Proposition 2.9 (Log estimate [START_REF] Ibrahim | Double logarithmic inequality with a sharp constant[END_REF]).

Let 0 < β < 1. For any λ > 1 2πβ and any 0 < µ ≤ 1, a constant C λ > 0 exists such that, for any function u ∈ H 1 (R 2 ) ∩ C β (R 2 ), we have u 2 L ∞ ≤ λ u 2 µ log C λ + 8 β µ -β u C β u µ , (2.11)
where

u 2 µ := ∇u 2 L 2 + µ 2 u 2 L 2 .
(2.12)

Recall that C β (R 2 ) denotes the space of β-Hölder continuous functions endowed with the norm

u C β (R 2 ) := u L ∞ (R 2 ) + sup x =y |u(x) -u(y)| |x -y| β .
We refer to [START_REF] Ibrahim | Double logarithmic inequality with a sharp constant[END_REF] for the proof of this proposition and more details. We just point out that the condition λ > 1 2πβ in (2.11) is optimal.

We also recall the so-called Strichartz estimates. We say that (q, r) is an L 2 -admissible

pair if 0 ≤ 2 q = 1 - 2 r < 1.
(2.13)

In particular, note that ( 2 1-2σ , 1 σ ) is an admissible pair for any 0 < σ < 1/2 and

W 1, 1 σ (R 2 ) → C 1-2σ (R 2 ).
Proposition 2.10 (Strichartz estimates [8]).

Let I ⊂ R be a time interval and let t 0 ∈ I. Then, for any admissible pairs (q, r) and (q, r),

we have v L q (I,W 1,r (R 2 )) v(t 0 ) H 1 (R 2 ) + i∂ t v + ∆v L q (I,W 1,r (R 2 )) .
(2.14)

The following continuity argument (or bootstrap argument) will be useful for our purpose.

Theorem 2.11 (Continuity argument).

Let X : [0, T ] → R be a nonnegative continuous function, such that, for every 0 t T ,

X(t) a + bX(t) θ ,
where a, b > 0 and θ > 1 are constants such that 1) and X(0)

a < 1 - 1 θ 1 (θb) 1/(θ-
1 (θb) 1/(θ-1) .
Then, for every 0 t T , we have

X(t) θ θ -1 a.
Proof. We sketch the proof for reader's convenience. The function f : x -→ bx θ -x + a is decreasing on [0, (θb) 1/(1-θ) ] and increasing on [(θb) 1/(1-θ) , ∞). The assumptions on a and

X(0) imply that f ((θb) 1/(1-θ) ) < 0. As f (X(t)) 0, f (0) > 0 and X(0) 1 (θb) 1/(θ-1)
, we deduce the desired result.

Pseudo-conformal law

In this section, we show a decaying property of global solutions to (1.1). Note that the conservation laws of mass and Hamiltonian give the boundedness of the L 2 and the H 1 norms but are insufficient to provide a decay estimate in (more general) Lebesgue spaces. To obtain such a decay we will take advantage of the pseudo-conformal law.

More precisely, we define the following quantities

V(t) := |x| 2 |u(t, x)| 2 dx, (3.1) 
M(t) := 2 I (ū(t, x)x • ∇u(t, x)) dx, (3.2) 
K(t) := (x + 2it∇)u(t) 2 L 2 + 4t 2 α e α|u(t,x)| 2 -1 -α|u(t, x)| 2 - α 2 2 |u(t, x)| 4 dx |x| b , (3.3) G(t) := 4(2 -b) α e α|u(t,x)| 2 -1 -α|u(t, x)| 2 - α 2 |u(t, x)| 4 dx |x| b - 8 α e α|u(t,x)| 2 (α|u(t, x)| 2 -1) + 1 - α 2 2 |u(t, x)| 4 dx |x| b =: g(|u(t, x)| 2 ) dx |x| b , (3.4) 
where Then

g(τ ) = 4(2 -b) α e ατ -1 -ατ - α 2 2 τ 2 - 8 α e ατ (ατ -1) + 1 - α 2 2 τ 2 . ( 3 
dV(t) dt = 2M(t), (3.6) 
d 2 V(t) dt 2 = 8H(u 0 ) -G(t), (3.7 
)

dK(t) dt = tG(t), (3.8) 
G(t) ≤ 0, ∀ t ∈ R. (3.9)
Proof. A straightforward computation gives (3.6). Let N (x, u) := |x| -b e α|u| 2 -1 -α|u| 2 u. Following [START_REF] Azzam | Doubly Critical Semilinear Schrödinger Equations[END_REF] for instance, we find that

d 2 V(t) dt 2 = 8 |∇u| 2 dx + 4 x • {N (x, u), u} p dx,
where {f, g} p = R f ∇ḡ -g∇ f is the momentum bracket. Now compute the momentum bracket {N (x, u), u} p . Expand N (x, u) in a formal series

N (x, u) = |x| -b ∞ k=2 α k k! |u| 2k u.
Using the fact

{|x| -b |u| β u, u} p = - β β + 2 ∇(|x| -b |u| β+2 ) - 2 β + 2 ∇(|x| -b )|u| β+2 , one gets {N (x, u), u} p = ∞ k=2 α k k! {|x| -b |u| 2k u, u} p = - ∞ k=2 k α k (k + 1)! ∇(|x| -b |u| 2k+2 ) - ∞ k=2 α k (k + 1)! ∇(|x| -b )|u| 2k+2 .
An integration by parts leads

x • {N (x, u), u} p = 2 ∞ k=2 k α k (k + 1)! |u| 2k+2 dx |x| b + b ∞ k=2 α k (k + 1)! |u| 2k+2 dx |x| b = 2 α e α|u| 2 (α|u| 2 -1) + 1 - α 2 2 |u| 4 dx |x| b + b α e α|u| 2 -1 -α|u| 2 - α 2 2 |u| 4 dx |x| b ,
where we have used

∞ k=2 k α k (k + 1)! |u| 2k+2 = 1 α e α|u| 2 (α|u| 2 -1) + 1 - α 2 2 |u| 4 , ∞ k=2 α k (k + 1)! |u| 2k+2 = 1 α e α|u| 2 -1 -α|u| 2 - α 2 2 |u| 4 .
Therefore,

d 2 V(t) dt 2 = 8 ∇u(t) 2 L 2 + 8 α e α|u| 2 (α|u| 2 -1) + 1 - α 2 2 |u| 4 dx |x| b + 4b α e α|u| 2 -1 -α|u| 2 - α 2 2 |u| 4 dx |x| b .
Using the conservation law (1.4), we conclude the proof of (3.7). To prove (3.8), we first remark that

K(t) = V(t) -t dV(t) dt + 4t 2 H(u 0 ). Hence dK(t) dt = -t d 2 V(t)
dt 2 + 8tH(u 0 ), and the conclusion follows. Finally, for the sign of G, a simple computation shows that (for all τ ≥ 0)

g (τ ) = -8(αxe αx -e αx + 1) -4b(e αx -αx -1) ≤ 0.
Since g(0) = 0, we get (3.9).

As a consequence of Proposition 3.1, we have Corollary 3.2. Let u 0 ∈ Σ and u the corresponding global solution to (1.1). Then

(x + 2it∇)u(t) 2 L 2 + 4t 2 α e α|u(t,x)| 2 -1 -α|u(t, x)| 2 - α 2 2 |u(t, x)| 4 dx |x| b = xu 0 2 L 2 + t 0 τ G(τ ) dτ.

Decay estimate

Theorem 4.1. Let u 0 ∈ Σ and u the corresponding global solution to (1.1). Then, for all t = 0 and 2 ≤ q < ∞,

u(t) L q ≤ C q u 0 Σ |t| -(1-2 q ) ,
where C q > 0 is a constant depending only on q.

Proof. Set v(t, x) := e -i |x| 2 4t u(t, x). We see that

(x + 2it∇)u(t) 2 L 2 = 4t 2 ∇v(t) 2 L 2 . Hence, by Corollary 3.2, 4t 2 H(v(t)) = xu 0 2 L 2 + t 0 τ G(τ ) dτ.
Using (3.9), we get

4t 2 ∇v(t) 2 L 2 ≤ xu 0 2 L 2 , or equivalently ∇v(t) L 2 |t| -1 .
The conservation of mass, the fact that |u| = |v| and the Gagliardo-Nirenberg inequality (2.8), yield, for all 2 ≤ q < ∞,

u(t) L q = v(t) L q |t| -(1-2 q ) .
The proof is complete.

A natural and useful consequence from the previous theorem is the following bound estimate.

Corollary 4.2. Let u 0 ∈ Σ and u the corresponding global solution to

(1.1). Let 1 ≤ p < ∞, 2 ≤ q < ∞ be such that p 1 - 2 q > 1. (4.1)
Then, for all T > 0, we have 

u L p ([T,∞);L q ) T 1 p + 2 q -1 p 1 -2 q -1 1/p < ∞.
). Let 1 ≤ p < ∞, 2 ≤ q < ∞ and 0 < T < S < ∞. Then u L p ([T,S];L q ) ≤ C,
where C > 0 depends only on p, q, T, S, u 0 Σ .

Another important consequence that will be used to obtain global bounds asserts that one can decompose any time interval (T, ∞) with T > 0 into a finite number of intervals on which the L p t (L q x ) norm is sufficiently small for every (p, q) satisfying (4.1). More precisely, we have 

L =1 I = [T, ∞)
and

u L p (I ;L q ) ≤ ε, ∀ = 1, 2, • • • , L. (4.2)
Proof. From Corollary 4.2, one can choose S > T sufficiently large (not depending on u) such that u L p ([S,∞);L q ) ≤ ε. Define

T = T + S -T m , = 0, 1, • • • , m,
where m ≥ 1 to be chosen later. Using Hölder's inequality in time, we obtain that

u L p (T ,T +1 ];L q ) ≤ S -T m 1 2p u L 2p ([T,S];L q ) S -T m 1 2p
≤ ε, for m ≥ 1 sufficiently large and for all = 0, 1, • • • , m -1. This finishes the proof of Corollary 4.4.

Global bounds 1

In this section, we give the proof of the first global bound in (1.5). For a time slab I ⊂ R, we define S 1 (I) via

u S 1 (I) = u L ∞ (I,H 1 ) + u L 4 (I,W 1,4 ) .
By the Strichartz estimates, we have

u S 1 (I) u(T ) H 1 + i∂ t u + ∆u L 2 1+2δ (I,W 1, 1 1-δ ) , (5.1) 
for any 0 < δ < 1/2 and T ∈ I. Note that . By Hölder's inequality,

A L 1 1-δ ∇u L 2 1-δ u 2 L 4 δ e α|u| 2 -1 |x| b L 2 1-2δ .
The term e α|u| 2 -1

|x| b L 2 1-2δ
can be estimated using Lorentz spaces. Indeed, by (A.1), we get

e α|u| 2 -1 |x| b L 2 1-2δ e α|u| 2 -1 1-θ L 1 e α|u| 2 -1 θ L ∞ |x| -b L 2 b ,∞ e α|u| 2 -1 θ L ∞ ,
where θ := δ + 1+b 2 . Note that we can choose 0 < δ < 1-b 2 so that θ ∈ (0, 1). Here we have used the Moser-Trudinger inequality (2.1) to obtain that e α|u| 2 -

1 L 1 1 since ∇u 2 L 2 < H(u 0 ) < 2 (1+b)(2-b) < 1. Hence A L 2 1+2δ (I,L 1 1-δ ) ∇u L 2 1-δ u 2 L 4 δ e α|u| 2 -1 θ L ∞ L 2 1+2δ (I) + ∇u L 2 1-δ u 2 L 4 δ e α|u| 2 -1 θ L ∞ L 2 1+2δ (J)
, where I = {t ∈ I/ u(t) L ∞ ≤ 1} and J = {t ∈ I/ u(t) L ∞ ≥ 1}. The first term in the right hand side can be easily estimated as follows

∇u L 2 1-δ u 2 L 4 δ e α|u| 2 -1 θ L ∞ L 2 1+2δ (I) ∇u L 2 δ (I,L 2 1-δ ) u 2 L 4 1+δ (I,L 4 
δ ) u S 1 (I) u 2 L 4 1+δ (I,L 4 δ ) , (5.2) 
where the following interpolation inequality is used

∇u L 2 δ (I,L 2 1-δ ) ≤ ∇u 1-2δ L ∞ (I,L 2 ) ∇u 2δ L 4 (I,L 4 ) . (5.3) 
Let us turn to the second term. For t ∈ J, we obtain using (2.11) with

β = 1 2 -δ 2 that e α|u| 2 -1 θ L ∞ 1 + u C 1 2 -δ 2 u µ αθλ u 2 µ ,
for some 0 < µ < 1 and λ > 1 π(1-δ) to be chosen later. Since

u 2 µ = ∇u 2 L 2 + µ 2 u 2 L 2 < H(u 0 ) + µ 2 M(u 0 ) =: K 2 (µ), we bound e α|u| 2 -1 θ L ∞ 1 + u C 1 2 -δ 2 K(µ) αθλK 2 (µ) . Since K 2 (µ) → H(u 0 ) < 2 (1+b)(2-b) as µ → 0, we can choose 0 < µ < 1 sufficiently small so that K 2 (µ) < 2 (1+b)(2-b) . Moreover, as θK 2 (µ) 1-δ → 1+b 2 K 2 (µ) < 1 2-b as δ → 0, we choose 0 < δ < 1-b 2 sufficiently small such that θK 2 (µ) 1-δ < 1 2-b . At final, we choose 1 π(1-δ) < λ < 2 αθK 2 (µ) so that αθλK 2 (µ) < 2. It follows that e α|u| 2 -1 θ L ∞ (1 + u C 1 2 -δ 2 ) 2 u 2 C 1 2 -δ 2
, where we have used the fact that u(t)

C 1 2 -δ 2 ≥ u(t) L ∞ ≥ 1 for all t ∈ J. Therefore, ∇u L 2 1-δ u 2 L 4 δ e α|u| 2 -1 θ L ∞ L 2 1+2δ (J) ∇u L 2 1-δ u 2 L 4 δ u 2 C 1 2 -δ 2 L 2 1+2δ (I) ∇u L 2 δ (I,L 2 1-δ ) u 2 L 2 δ (I,L 4 δ ) u 2 L 4 1-δ (I,C 1 2 -δ 2 ) u 2 L 2 δ (I,L 4 δ ) u 3 S 1 (I) .
(5.4)

The last estimate follows from (5.3) and the fact

u L 4 1-δ (I,C 1 2 -δ 2 ) u L 4 1-δ (I,W 1, 4 1+δ ) u δ L ∞ (I,H 1 ) u 1-δ L 4 (I,W 1,4 )
u S 1 (I) .

Combining inequalities (5.2) and (5.4), we end up with . Taking 1 1-δ < p, q < ∞ such that 1 p + 1 q = 1-δ and applying Hölder's inequality, we get

A L 2 1+2δ (I,L 1 1-δ ) u S 1 (I) u 2 L 4 1+δ (I,L 4 
δ ) + u 2 L 2 δ (I,L 4 
B L 1 1-δ |x| -b-1 |u| e α|u| 2 -1 L 1 1-δ u L q e α|u| 2 -1 |x| b+1 L p .
Clearly,

e α|u| 2 -1 |x| b+1 p L p e α(p-1) u 2 L ∞ e α|u| 2 -1 |x| p(b+1) dx. Since 1 1-δ < 2 b+1 for 0 < δ < 1-b 2 , we choose 1 1-δ < p < 2 b+1 .
Hence we can apply the singular Moser-Trudinger inequality for the term e α|u| 2 -1 |x| p(b+1) dx to obtain

B L 2 1+2δ (I,L 1 1-δ ) u L q e α p-1 p u 2 L ∞ L 2 1+2δ (I) + u L q e α p-1 p u 2 L ∞ L 2 1+2δ (J)
.

Note that the choice of p leads to q > 2 1-b-2δ . Therefore,

B L 2 1+2δ (I,L 1 1-δ ) u L 2 1+2δ (I,L q ) + u L γ (I,L q ) e α p-1 p u 2 L ∞ L ρ (J)
,

where 2 1+2δ < γ, ρ < ∞ such that 1 γ + 1 ρ = 1+2δ 2 . Let t ∈ J. An application of the Log estimate (2.11) with β = 1 2 gives e α p-1 p u 2 L ∞ 1 + u C 1 2 u µ α p-1 p λ u 2 µ ,
for some 0 < µ < 1 and λ > 1 π to be chosen shortly. Since u 2 µ < K 2 (µ), it follows that e

α p-1 p u 2 L ∞ 1 + u C 1 2 K(µ) α p-1 p λK 2 (µ) . Choose 0 < µ < 1 sufficiently small such that K 2 (µ) < 2 (1+b)(2-b) < 1. Since 1 1-δ < 2(2-b) 2(2-b)-1 for 0 < δ < 1 2(2-b) , we choose 1 1-δ < p < 2(2-b) 2(2-b)-1 . In particular p 2(2-b)(p-1) > 1 > K 2 (µ). At final, we choose 1 π < λ < p α(p-1)K 2 (µ) so that α p-1 p λK 2 (µ) < 1. We thus get e α p-1 p u 2 L ∞ 1 + u C 1 2 u W 1,4 ,
where we have used

u(t) W 1,4 u(t) C 1 2 ≥ u(t) L ∞ ≥ 1 for all t ∈ J. Therefore, choosing 2 1+2δ < ρ < 4, one gets e α p-1 p u 2 L ∞ L ρ (J) u 4 ρ L 4 (I,W 1,4 ) .
This finally leads to

B L 2 1+2δ (I,L 1 1-δ ) u L 2 1+2δ (I,L q ) + u L γ (I,L q ) u 4 ρ S 1 (I) .
Note also that this choice of p leads to 0

< δ < 1 2(2-b) and q > 2(2-b) 1-2δ(2-b) . Arguing similarly for N (x, u) L 2 1+2δ (I,L 1 1-δ ) , we conclude that u S 1 (I) u(T ) H 1 + u S 1 (I) u 2 L 4 1+δ (I,L 4 
δ ) + u 2 L 2 δ (I,L 4 
δ ) u 3 S 1 (I) + u L 2 1+2δ (I,L q ) + u L γ (I,L q ) u 4 ρ S 1 (I) , (5.6) 
where 0

< δ < min 1-b 2 , 1 2(2-b) , γ > 2 1+2δ and q > max 1 1-b-2δ , 2(2-b) 1-2δ(2-b) . Since 0 < δ < min 1-b 2 , 1 2(2-b)
and γ > 2 1+2δ , it is easy to check that the condition (4.1) is satisfied for

(p, q) ∈ 4 1 + δ , 4 δ , 2 δ , 4 δ , 2 1 + 2δ
, q , (γ, q) (5.7)

provided that q satisfies an additional condition q > 4 1-2δ . We thus obtain by Corollary 4.2 that u L p ((a,∞),L q ) < ∞ for all a > 0 and (p, q) in (5.7).

Let v(t, x) := e -i |x| 2 4t u(t, x). It is easy to see that |v| = |u|, |(x+2it∇)N (x, u)| = 2|t||∇N (x, v)| and 2|t||∇v| = |w|. We thus bound

|(x + 2is∇)N (x, u)| |x| -b (2|s||∇v|)|u| 2 e α|u| 2 -1 + |x| -b-1 (2|s||u| 3 ) e α|u| 2 -1 := C + D,
where we have used the fact that for all x ≥ 0, e x -1 -x ≤ x(e x -1). It follows from the pseudo-conformal law that w(T ) L 2 ≤ xu 0 L 2 . Thus, Strichartz estimate yields

w S 0 (I) xu 0 L 2 + (x + 2is∇)N (x, u) L 2 1+2δ (I,L 1 1-δ ) xu 0 L 2 + 2|s||∇N (x, v)| L 2 1+2δ (I,L 1 1-δ ) 
.

As above, one gets

C L 2 1+2δ (I,L 1 1-δ ) w S 0 (I) u 2 L 4 1+δ (I,L 4 
δ ) + u 2 L 2 δ (I,L 4 
δ ) w S 0 (I) u 2 S 1 (I)
and

D L 2 1+2δ (I,L 1 1-δ ) |s||u| 3 L 2 1+2δ (I,L q ) + |s||u| 3 L γ (I,L q ) u 4 ρ S 1 (I) , where 0 < δ < min 1-b 2 , 1 2(2-b) , γ > 2 1+2δ and q > max 1 1-b-2δ , 2(2-b) 1-2δ(2-b) .
The last inequality can be written as

D L 2 1+2δ (I,L 1 1-δ ) |s| 1 3 |u| 3 L 6 1+2δ (I,L 3q ) + |s| 1 3 |u| 3 L 3γ (I,L 3q ) u 4 ρ S 1 (I) .
As in Corollary 4.2, we note that for all a > 0, the norm |s|

1 3 u L m ((a,∞),L n ) < ∞ provided that 1 ≤ m < ∞, 2 ≤ n < ∞ satisfying m 2 3 - 2 n > 1. (6.1)
Since γ > 2 1+2δ , the condition (6.1) is fulfilled for (m, n) = 6 1+2δ , 3q , (3γ, 3q) provided that q > 4 3-2δ . Under the conditions

0 < δ < min 1 -b 2 , 1 2(2 -b) , γ > 2 1 + 2δ , q > max 1 1 -b -2δ , 2(2 -b) 1 -2δ(2 -b) , 4 3 -2δ 
, we argue as above to obtain w S 0 ((T,∞)) < ∞ for some T > 0. By the same argument, we prove as well that w S 0 ((-∞,-S)) < ∞ for some S > 0. It remains to show that w ∈ S 0 ([-S, T ]). The proof of the latter claim follows the same argument as in [START_REF] Azzam | Doubly Critical Semilinear Schrödinger Equations[END_REF]. To see this, set H(t) = x + 2it∇. We are going to prove that Hu S 0 ([-S,T ]) < ∞. Divide [-S, T ] into a finite number of intervals J k = [t k , t k+1 ] such that |J k | ≤ ε, where ε > 0 is to be chosen later.

The Duhamel formula reads

H(t)u(t) = e i(t-t k )∆ H(t k )u(t k ) -i t t k e i(t-s)∆ H(s)N (x, u) ds.
By Strichartz estimates,

Hu S 0 (J k ) H(t k )u(t k ) L 2 + H(s)N (x, u) L 2 1+2δ (J k ,L 1 1-δ ) H(t k )u(t k ) L 2 + 2|s||∇N (x, v)| L 2 1+2δ (J k ,L 1 1-δ ) 
.

Note that in the following all constants involved in are independent of k. Using the fact that, for all x ≥ 0 and all η > 0, x(e x -1) ≤ e (1+η)x -1 η , and that |v| = |u|, we bound

2|s||∇N (x, v)| η |x| -b (2|s||∇v|) e α(1+η)|u| 2 -1 + |x| -b-1 (2|s||u|) e α(1+η)|u| 2 -1 .
The first term in the right hand side is estimated as follows. By Hölder's inequality,

2|s||∇v| e α(1+η)|u| 2 -1 |x| b L 1 1-δ 2|s||∇v| L 2 1-δ e α(1+η)|u| 2 -1 |x| b L 2 1-δ . Hence 2|s||∇v| e α(1+η)|u| 2 -1 |x| b L 2 1+2δ (J k ,L 1 1-δ ) 2|s||∇v| L 2 δ (J k ,L 2 1-δ ) e α(1+η)|u| 2 -1 |x| b L 2 1+δ (J k ,L 2 1-δ ) 
.

By (5.3), 2|s||∇v| L 2 δ (J k ,L 2 1-δ ) = Hu L 2 δ (J k ,L 2 1-δ ) Hu S 0 (J k ) . Write e α(1+η)|u| 2 -1 |x| b 2 1-δ L 2 1-δ e α(1+η) u 2 L ∞ -1 1+δ 1-δ e α(1+η)|u| 2 -1 |x| 2b 1-δ dx.
Since 2b 1-δ → 2b < 2 as δ → 0 and 1 H(u 0 ) > 1, one can choose 0 < δ < 1 2 and η > 0 sufficiently small such that 2b 1-δ < 2 and 0 < η < 1 H(u 0 ) -1. This guarantees that ∇(

√ 1 + η u) L 2 ≤ √ 1 + η H(u 0 ) < 1.
Hence we can apply the singular Moser-Trudinger inequality for the

term e α(1+η)|u| 2 -1 |x| 2b 1-δ dx. Thus e α(1+η)|u| 2 -1 |x| b L 2 1+δ (J k ,L 2 1-δ ) e α(1+η) u 2 L ∞ -1 1+δ 2 L 1 (I k ) + e α(1+η) u 2 L ∞ -1 1+δ 2 L 1 (J k ) ,
where

I k := {t ∈ J k / u(t) L ∞ ≤ 1} and J k := {t ∈ J k / u(t) L ∞ ≥ 1}. Let t ∈ I k . We have e α(1+η) u 2 L ∞ -1 α,η 1. Thus e α(1+η) u 2 L ∞ -1 L 1 (I k ) |J k |.
Let t ∈ J k . An application of the Log estimate (2.11) gives

e α(1+η)|u| 2 -1 L ∞ 1 + u C 1 2 K(µ) α(1+η)λK 2 (µ)
, where K 2 (µ) = H(u 0 ) + µ 2 M(u 0 ), 0 < µ < 1 and λ > 1 π . Choose 4 b+1 < σ < 4. We next choose 0 < µ < 1 sufficiently small such that K 2 (µ) < σ 2(2-b) . This is possible since

K 2 (µ) → H(u 0 ) < 2 (1+b)(2-b) < σ 2(2-b) . Choose η > 0 sufficiently small such that 1 + η < σ 2(2-b)K 2 (µ) . Thus 1 < σ 2(2-b)(1+η)K 2 (µ) . One can thus choose 1 π < λ < σ α(1+η)K 2 (µ) so that α(1 + η)λK 2 (µ) < σ.
As above, one comes to

e α(1+η) u 2 L ∞ -1 L 1 (J k ) |J k | 1-σ 4 u σ L 4 (J k ,W 1,4 ) .
Therefore,

e α(1+η)|u| 2 -1 |x| b L 2 1+δ (J k ,L 2 1-δ ) |J k | 1+δ 2 + |J k | (1-σ 4 ) 1+δ 2 u (1+δ)σ 2 S 1 (J k ) . Conclusion 2|s||∇v| e α(1+η)|u| 2 -1 |x| b L 2 1+2δ (J k ,L 1 1-δ ) Hu S 0 (J k ) |J k | 1+δ 2 + |J k | (1-σ 4 ) 1+δ 2 u (1+δ)σ 2 S 1 (J k ) .
For the second term, we estimate

|s||u| e α(1+η)|u| 2 -1 |x| b+1 L 2 1+2δ (J k ,L 1 1-δ ) |s||u| L γ (J k ,L q ) e α(1+η)|u| 2 -1 |x| b+1 L ρ (J k ,L p )
,

where 1 p + 1 q = 1 -δ and 1 γ + 1 ρ = 1+2δ 2 . Write e α(1+η)|u| 2 -1 |x| b+1 p L p e α(1+η) u 2 L ∞ -1 p-1 e α(1+δ)|u| 2 -1 |x| p(b+1) dx.
Since 1 1-δ → 1 < 2 b+1 and 1 H(u 0 ) > 1, one can choose 0 < δ < 1 2 and η > 0 sufficiently small such that 1 1-δ < 2 b+1 and 0 < η < 1 H(u 0 ) -1. This guarantees that ∇( 

√ 1 + η u) L 2 ≤ √ 1 + η H(u 0 ) < 1. Choose
α(1+η)|u| 2 -1 |x| b+1 L ρ (J k ,L p ) e α(1+η) u 2 L ∞ -1 p-1 p L ρ (I k ) + e α(1+η) u 2 L ∞ -1 p-1 p L ρ (J k ) . Let t ∈ I k . Since e α(1+η) u 2 L ∞ -1 p-1 p ρ α,η,p,ρ 1, we get e α(1+η) u 2 L ∞ -1 p-1 p ρ L ρ (I k ) |J k |. Let t ∈ J k . An application of the Log estimate (2.11) with β = 1 2 gives e α(1+η)|u| 2 -1 p-1 p ρ L ∞ 1 + u C 1 2 K(µ) α(1+η) p-1 p ρλK 2 (µ)
, for some 0 < µ < 1 and λ > 1 π . Choose 0 < µ < 1 sufficiently small such that K 2 (µ) < 1.

Since

1 1-δ → 1 < 2(2-b) 2(2-b)-1 as δ → 0, one can choose 0 < δ < 1 2 sufficiently small such that 1 1-δ < 2(2-b) 2(2-b)-1 . Choose 1 1-δ < p < 2(2-b) 2(2-b)-1 . In particular p 2(2-b)(p-1) > 1 > K 2 (µ). Choose 0 < η < 1 such that 1 + η < p 2(2-b)(p-1)K 2 (µ) . At final, we choose 1 π < λ < p α(1+η)(p-1)K 2 (µ) .
Therefore, choosing 2 1+2δ < ρ < 4, one gets

e α(1+η)|u| 2 -1 p-1 p ρ L ∞ 1 + u C 1 2 4 . Using the fact that 1 ≤ u(t) L ∞ ≤ u(t) C 1 2 ≤ u(t) W 1,4 for all t ∈ J k , one gets e α(1+η)|u| 2 -1 p-1 p ρ L ∞ u 4 W 1,4 .
We come to

e α(1+η) u 2 L ∞ -1 p-1 p ρ L ρ (J k ) u 4 L 4 (J k ,W 1,4 ) . Thus e α(1+η)|u| 2 -1 |x| b+1 L ρ (J k ,L p ) |J k | + u 4 S 1 (J k ) 1 ρ .
By the sobolev embedding, one has

|s||u| L γ (J k ,L q ) u L ∞ (J k ,H 1 ) s L γ (J k ) |J k | γ+1 γ ,
where we have used the conservation laws and the fact that s

L γ (J k ) = t γ+1 k+1 -t γ+1 k γ+1 1 γ (t k+1 -t k ) γ+1 γ = |J k | γ+1 γ . Therefore, |s||u| e α(1+η)|u| 2 -1 |x| b+1 L 2 1+2δ (J k ,L 1 1-δ ) |J k | γ+1 γ |J k | + u 4 S 1 (J k ) 1 ρ .
Collecting the above estimates, we obtain

Hu S 0 (J k ) H(t k )u(t k ) L 2 + Hu S 0 (J k ) |J k | 1+δ 2 + |J k | (1-σ 4 ) 1+δ 2 u (1+δ)σ 2 S 1 (J k ) + |J k | γ+1 γ |J k | + u 4 S 1 (J k ) 1 ρ H(t k )u(t k ) L 2 + Hu S 0 (J k ) ε 1+δ 2 + ε (1-σ 4 ) 1+δ 2 u (1+δ)σ 2 S 1 (J k ) + ε γ+1 γ ε + u 4 S 1 (J k ) 1 ρ .
Since u S 1 (R) < ∞, we can choose ε > 0 small enough depending on S, T and u Summing over all subintervals J k , we prove Hu S 0 ([-S,T ]) < ∞. The proof is complete. .

Arguing as in the proof of (5.6), we obtain e -it 2 ∆ u(t 2 ) -e -it 1 ∆ u(t + u L γ ((t 1 ,t 2 ),L q ) u 4 ρ S 1 ((t 1 ,t 2 )) ,

where 0 < δ < min 1-b 2 , 1 2(2-b) , γ > 2 1+2δ and q > max . By adding an additional condition q > 4 1-2δ , we learn from Corollary 4.2 that u L p ((a,∞),L q ) < ∞ for all a > 0 and (p, q) in (5.7). In particular, u → 0 as t 1 → +∞. Since u S 1 (R) < ∞, we infer that the right hand side of (7.1) tends to zero as t 1 , t 2 → +∞ provided that 0 < δ < min 1-b 2 , 1 2(2-b) , γ > 2 1+2δ and q > max 

For

  instance, it was noticed in [11] that the interaction Morawetz inequality for the NLS with singular nonlinearity N (x, u) = |x| -b |u| α u may not hold due to the lack of momentum conservation law. This is why we restrict ourselves to initial data belonging to the weighted L 2 -space Σ := H 1 ∩ L 2 (|x| 2 dx). Note that the scattering in Σ for the NLS with N (x, u) = |x| -b |u| α u was considered by the second author in [10].

2(

  1+b)(2-b) → 1 as b → 0. Thus our result extends the one in [19] for initial data in Σ. Second, the condition H(u) < 2 (1+b)(2-b)

. 5 )

 5 Proposition 3.1. Let u 0 ∈ Σ and u the corresponding global solution to (1.1).

For

  bounded time intervals, the local theory allows us to remove the assumption (4.1) to obtain Corollary 4.3. Let u 0 ∈ Σ and u the corresponding global solution to (1.1

Corollary 4 . 4 .

 44 Let u 0 ∈ Σ and u the corresponding global solution to (1.1). Let 1 ≤ p < ∞, 2 ≤ q < ∞, ε > 0 and T > 0. Assume that the condition (4.1) is fulfilled. Then there exists L ≥ 1 not depending on u and time intervals I 1 , I 2 , • • • , I L such that

2 1+2σ , 1 1 -Theorem 5 . 1 .

 151 δ is the conjugate pair of the Schrödinger admissible pair 2 1-2σ , 1 σ . Let u 0 ∈ Σ be such that H(u 0 ) < 2 (1+b)(2-b) . Then the corresponding global solution u to (1.1) satisfies u ∈ S 1 (R).

Proof.

  It suffices to estimate the nonlinear term in some dual Strichartz norm as in (5.1). We have|∇N (x, u)| |x| -b |∇u||u| 2 e α|u| 2 -1 + |x| -b-1 |u| e α|u| 2 -1 -α|u| 2 := A + B. Let 0 < δ < 12 to be chosen adequately, and let I be a time slab. Let us first estimate the norm A

S 1 (

 1 R) to get Hu S 0 (J k ) ≤ C H(t k )u(t k ) L 2 + C,for some constant C > 0 independent of S and T . By induction, we obtain for each k, Hu S 0 (J k ) ≤ C H(-S)u(-S) L 2 + C.

1 1 -

 1 b-2δ , 2(2-b) 1-2δ(2-b)

  t 1 ,t 2 ),L q )

1 1 -

 1 b-2δ , 2(2-b) 1-2δ(2-b) ,4 1-2δ

7 .

 7 Scattering in weighted L 2 spaceIn this section, we give the proof of our main result in Theorem 1.2.Proof of Theorem 1.2. Let u 0 ∈ Σ and u the corresponding global solution to (1.1). By Duhamel formula, we havee -it∆ u(t) = u 0 -i Let 0 < t 1 < t 2 < +∞. It follows from Strichartz estimates that e -it 2 ∆ u(t 2 ) -e -it 1 ∆ u(t 1 ) H 1 =

				t				
				e -is∆ N (x, u)ds.		
				0				
	t 2	e -is∆ N (x, u)ds				
	t 1			H 1			
	N (x, u)	L	2 1+2δ ((t 1 ,t 2 ),L	1 1-δ )	+ ∇N (x, u)	L	2 1+2δ ((t 1 ,t 2 ),L	1 1-δ )

  1 ) H 1 u S 1 ((t 1 ,t 2 )) u 2

	L	4 1+δ ((t 1 ,t 2 ),L	4 δ )	+ u 2 L	2 δ ((t 1 ,t 2 ),L	4 δ )	u 3 S

1 ((t 1 ,t 2 )) + u L 2 1+2δ ((t 1 ,t 2 ),L q )

  . This shows that e -it∆ u(t) is a Cauchy sequence in H 1 as t → +∞. There thus exists u + 0 ∈ H 1 such that e -it∆ u(t) → u + 0 as t → +∞. It remains to show that this scattering state u + 0 belongs to Σ. Since x + 2it∇ commutes with i∂ t + ∆u, the Duhamel formula gives (x + 2it∇)u(t) = e it∆ xu 0 -i Using the fact that x + 2it∇ = e it∆ xe -it∆ , we write xe -it∆ u(t) = xu 0 -i By Strichartz estimates, we have xe -it 2 ∆ u(t 2 ) -xe -it 1 ∆ u(t 1 ) L 2 =

	t
	e i(t-s)∆ (x + 2is∇)N (x, u)ds.
	0
	t
	e -is∆ (x + 2is∇)N (x, u)ds.
	0
	t 2
	t 1

e -is∆ (x + 2is∇)N (x, u)ds

L 2 (x + 2is∇)N (x, u) L 2 1+2δ ((t 1 ,t 2 ),L 1 1-δ ) 2|s||∇N (x, v)| L 2 1+2δ ((t 1 ,t 2 ),L 1 1-δ ) ,
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Now let 0 < δ < min 1-b 2 , 1 2(2-b) , γ > 2 1+2δ and q > max < ∞. We have

Bounding u(T ) H 1 by a constant C(H(u 0 ) + M(u 0 ))) depending only on the mass and energy of the initial data, one infers

Using Corollary 4.4, one can pick ε > 0 small (to be determined later) and a finite number

≤ ε.

Thus, by (5.6) and since 4 ρ > 1, we get

A continuity argument allows us to pick ε > 0 sufficiently small depending only on C(H(u 0 )+ M(u 0 ))+A such that u S 1 (I ) ≤ C(H(u 0 ), M(u 0 ), A). Since the number of intervals is finite and the conclusion can be made for all I 's, we get u S 1 ((T,∞)) < ∞. A similar argument applies for negative times, and we get u S 1 ((-∞,-S)) < ∞ for some S > 0. We conclude the proof by the local theory.

Global bounds 2

In this section, we prove the second global bound in (1.5). For a time slab I ⊂ R, we define S 0 (I) by

. Let u the corresponding global solution to (1.1) and set w(t) := (x + 2it∇)u(t). Then it holds that w ∈ S 0 (R).

Proof. Let T > 0 and set I = (T, ∞). Since x + 2it∇ commutes with i∂ t + ∆, the Duhamel formula implies

where v(t, x) := e -i |x| 2 4t u(t, x). Estimating as in the proof of Theorem 6.1, we get

w S 0 (I) u 2 S 1 (I)

where

and u

are finite for any a > 0. Moreover, adding an additional condition q > 4 3-2δ , the condition (6.1) is satisfied for (m, n) = 6 1+2δ , 3q , (3γ, 3q) . Thus the norms |s|

and |s|

are both finite for any a > 0. In particular, |s|

→ 0 as t 1 → +∞. Since u S 1 (R) < ∞ and w S 0 (R) < ∞, the right hand side of (7.2) tends to zero as t 1 , t 2 → +∞.

This implies that xe -it∆ u(t) is a Cauchy sequence in L 2 as t → +∞. We thus have xu + 0 ∈ L 2 and so u + 0 ∈ Σ. Moreover, we have

Repeating the above argument, we prove that e -it∆ u(t) -u + 0 Σ → 0 as t → +∞.

This completes the proof for positive times, the one for negative times is similar.

Appendix A. Lorentz spaces

We recall some basic facts about the Lorentz spaces which are relevant to our study. We refer the reader to [6, 13, 20, 14, 28] and references therein for more properties and information on Lorentz spaces.

Definition A.1. Let u : R N → R be a measurable function. The distribution function of u is given by

Here, the notation |E| stands for the N -dimensional Lebesgue measure of E. The (unidimensional) decreasing rearrangement of u, denoted by u * , is defined by

It is clear that d u and u * are non-negative non-increasing functions. The Lorentz spaces L p,q (R N ) are defined as follows.

Definition A.2. Let 0 < p < ∞ and 0 < q ≤ ∞. Then

We have L p,p = L p and by convention L ∞,∞ = L ∞ . Another way to define the Lorentz space L p,q is via real interpolation theory as follows (see [START_REF] Bennet | Interpollation of Operators[END_REF])

One of the difficulties in our problem is the singular weight |x| -b in the nonlinearity. Since this weight does not belong to any Lebesgue space we have to treat it differently. Fortunately, |x| -b belongs to the Lorentz space L 2 b ,∞ (R 2 ) which plays an important role in our proof.

The following lemma will be useful.

Lemma A.3. Let 1 < p < ∞, 1 < p 1 < ∞ and 1 ≤ p 2 ≤ ∞ be such that

Then

where θ = 1 -1 p 1 .