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Résumé— Comparaison des valeurs de pKa de quelques acides aminés, dipeptides et tripeptides, pré-

dites en utilisant les méthodes COSMO-RS, ChemAxon et ACD/Labs—Les valeurs de constantes

d’acidité (pKa) jouent un rôle très important, en particulier dans l’industrie alimentaire. Les pro-

priétés chimiques des molécules dépendent significativement de leurs états d’ionisation. La plu-

part des molécules sont capables de gagner et/ou perdre un proton dans les solutions aqueuses.

Ce transfert de proton apparaı̂t la plupart du temps entre l’eau et un atome ionisable de la molé-

cule organique. La réponse de la molécule à la protonation ou à la déprotonation dépend signi-

ficativement du site concerné par le transfert de proton. La distribution partielle des charges dans

la molécule varie également en fonction des sites actifs pour la protonation du couple acide/base.

Par conséquent on peut l’utiliser pour déterminer le pKa d’une molécule.

Dans un premier temps, nous avons utilisé la méthode COSMO-RS, une combinaison du modèle

de solvatation diélectrique (COSMO) et d’un traitement de thermodynamique statistique pour

des solvants plus réels (RS), pour prédire les constantes de dissociation de 50 molécules environ

(des acides aminés, des dipeptides et des tripeptides). Les résultats de pKa obtenus ont été com-

parés aux valeurs expérimentales, ainsi qu’aux valeurs de pKa prédites par deux autres méthodes.

Nous avons utilisé respectivement la méthode ChemAxon, utilisant un programme basé sur le cal-

cul des charges partielles des atomes d’une molécule, et la méthode ACD/Labs qui permet de

déterminer des valeurs de pKa pour chaque centre de dissociation en considérant que le reste

de la molécule est neutre, en utilisant une base de données internes contenant des structures chi-

miques ainsi que leurs valeurs expérimentales de pKa.

L’écart-type moyen des valeurs prédites vaut respectivement 0,596 pour la méthode COSMO-RS,

0,445 pour la méthode ChemAxon et 0,490 pour la méthode ACD/Labs. Au vu de ces résultats, la

méthode COSMO-RS apparaı̂t comme une méthode prometteuse pour prédire les valeurs de pKa

de molécules d’intérêt dans l’industrie alimentaire pour lesquelles peu de données de pKa sont dis-

ponibles comme les peptides, d’autant plus que les méthodes ACD/Labs et ChemAxon ont été

paramétrées en utilisant un grand nombre de données expérimentales (incluant certaines des

molécules étudiées dans cet article) alors que la méthode COSMO-RS a été utilisée d’un point

de vue purement prédictif.

L’objectif final de cette étude est d’utiliser ces valeurs de pKa dans un modèle thermodynamique

prédictif pour des produits d’intérêt dans l’industrie alimentaire. Pour ce faire, les effets de
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certains facteurs (comme le traitement des conformations dans les calculs COSMO-RS, l’influence de

la force ionique) pouvant influencer la comparaison entre les données expérimentales et les données

prédites, seront discutés.

Abstract — Comparison of Predicted pKa Values for Some Amino-Acids, Dipeptides and Tripep-

tides, Using COSMO-RS, ChemAxon and ACD/Labs Methods — Liquid-phase pKa values play

a key role in food science. Chemical properties of molecules depend largely on whether they are ion-

ized or not. Most organic molecules are capable of gaining and/or losing a proton in aqueous solu-

tions. Proton transfer most frequently occurs between water and any ionizable atom of the organic

molecule. The molecule’s response to protonation or deprotonation depends significantly on the site

that was disturbed by proton transfer. Partial charge distribution in the molecule also varies with

protonation of the acid/base active sites. Then it can be used to determine the pKa of a molecule.

First, we use theCOSMO-RSmethod, a combination of the quantum chemical dielectric continuum sol-

vation model COSMOwith a statistical thermodynamics treatment for more Realistic Solvation (RS)

simulations, for the direct prediction of pKa constants of about 50 molecules (amino-acids, dipeptides

and tripeptides). Then, we compare our results with experimental data and the pKa values predicted

using two othermethods.Weused respectively theChemAxonmethod using a programbased on the cal-

culation of partial charge of atoms in the molecule and the ACD/Labs method that enables to calculate

single pKa values for all possible dissociation centers when the rest of the molecule is considered neutral,

using an internal database containing chemical structures and their experimental pKa values.

The averaged Root Mean Square Error (RMSE) of the predicted pKa values for each method com-

pared to experimental results were respectively 0.596 for COSMO-RS, 0.445 for ChemAxon and

0.490 for ACD/Labs.While ACD/Labs and ChemAxon are parameterized using a large set of exper-

imental data (including several of the studied molecules), the COSMO-RSmethod was used in a fully

predictive way. Regarding these results, COSMO-RS appears as a promising method to predict the

pKa values of molecules of interest in food science with scarce available pKa values such as peptides.

The final goal of this study is to use the pKa values in a predictive thermodynamics model for products

of interest in food industry. For this purpose, the effects of several factors (like conformations set

treatment in COSMO-RS calculations, ionic strength effect) that can affect the comparison between

observed and predicted pKa data are discussed.

INTRODUCTION

Foods and biochemical media are generally treated as

aqueous mixtures that can be very complex, contain-

ing mainly water and other varieties of components

that can:

– have different molecular sizes (organic acids and min-

erals, amino-acids, peptides, proteins, etc.) at the tem-

perature (T) and pressure (p) of the system;

– be liquid (e.g. alcohols, polyols), solid (e.g. sugars,

salts) or gaseous (e.g. aromatic volatile compounds)

at T, p;

– be charged (e.g. ions, carboxyl radicals, amines) or

neutral (e.g. sugars, polyholosides).

A large number of the molecules of interest in food

science and biochemistry contains acidic and or basic

groups which govern many of their chemical, physical

and biological properties. So, most of these organic mol-

ecules are capable of gaining and/or losing a proton in

aqueous solutions [1].

As defined by Brönsted, an acid is ‘a species having a

tendency to lose a proton’ while a base is ‘a species

having a tendency to add on a proton’. Hence for every

acid, AH, there is a conjugated base, A� and for every

base, B, there is a conjugated acid, BH+.

If AH (or BH+) is a strong acid, i.e. it has a great ten-

dency to lose protons, it follows that its conjugated base

A� (or B), is a weak base, i.e. has only a small tendency

to accept protons.

In aqueous solution, acids react with water acting as a

base:

AH ðor BHþÞ þ H2O ðbaseÞ�H3O
þ þ A� ðor BÞ ð1Þ

and bases react with water acting as an acid:

A� ðor BÞ þ H2O ðacidÞ�AH ðor BHþÞ þ OH� ð2Þ

In dilute aqueous solution where almost all measure-

ments are made, water is thus the solvent and its activity

282 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 68 (2013), No. 2



is taken as unity [1, 2]. Then, the acidic dissociation (or

ionization) constant Ka is calculated with the following

equation:

Ka ¼
Y
i

amii ¼ ðHþ or H3O
þÞðBÞ

ðAÞ ð3Þ

where, parentheses denote activities, B and A represent

respectively base and acid species. This equation can

be written in the form:

pKa ¼ pH þ log
ðAÞ
ðBÞ
� �

ð4Þ

where pKa is the negative logarithm of Ka, and is equal

to the pH at which the activities of A and B are

equal [2].

The molecule’s response to protonation or deprotona-

tion depends significantly on the site that was disturbed

by proton transfer. Partial charge distribution in the

molecule also varies with protonation of the acid/base

active sites. Since the partial charge distribution is very

sensitive to the protonation-deprotonation process (both

near and far from the disturbed site) [3, 4], it can be used

to determine the pKa of a molecule, which is a measure of

the tendency of a molecule or ion to keep a proton, at its

ionization center(s).

The more likely ionization occurs, the more likely a

species will be taken up into aqueous solution, because

water is a very polar solvent [2] (macroscopic dielectric

constant er = 80). If a molecule does not readily ionize,

then it will tend to stay in a non-polar solvent such as

cyclohexane (er = 2) or octanol (er = 10).

Due to the fact that proton transfer most frequently

occurs between water and any ionizable atom of the

organic molecule, dissociation constants (pKa) values play

a key role in food science and other process industries.

Indeed, the pKa of a compound is an important prop-

erty [5] in both life sciences and chemistry since the pro-

pensity of a compound to donate or accept a proton is

fundamental for the understanding of chemical and bio-

logical processes. In biological terms, pKa is thus an

important concept in determining whether a molecule

will be taken up by aqueous tissue components or the

lipid membranes. It is also closely related to the concepts

of pH (acidity of solution) and log(P) (the partition coef-

ficient between immiscible liquids) [2]. As the pKa value

of a molecule also determines the amount of protonated

and deprotonated species at a specific pH, for example at

physiological pH, knowing the pKa of a molecule gives

insight into pharmacokinetic properties. The latter

includes the rate at which a molecule will diffuse across

membranes and other physiological barriers, such as

the blood brain barrier. More often, phospholipid

membranes easily absorb neutral molecules, while

ionized molecules tend to remain in the plasma or the

gut before being excreted. Many biological systems also

use proton-transfer reactions to communicate between

the intra- and extracellular media, and the rate of the

proton-transfer reaction depends, in part, on the pKa

values of the species involved.

In another area, microorganisms are inhibited by the

non-dissociated forms of weak organic acids. The

knowledge of pKa values is then of great importance in

microbiology previsional models [6].

Furthermore, in efforts to take greater control over

the ‘design-make-test’ cycle typically implemented in

modern drug discovery efforts [7], considerable attention

has been given to providing accurate pKa measurements

with good throughput. Increasing attention given to pKa

during drug discovery is evidenced by the development

of high-throughput methods for rapid pKa determina-

tion. While experimental methods continue to become

more sophisticated and refined, it is often desirable to

predict dissociation constants for “virtual compounds”,

i.e., those that have been described by a compound

designer (chemist or modeler) but that have not yet been

synthesized [7].

Many different algorithms [5, 7-10] for predicting

pKa values have been developed, and a few have been

packaged into commercial computer software applica-

tions.

The main objective of the present study is to look for

one (or more) reliable pKa prediction method(s) that can

enable to determine the dissociation constants of some

components of interest in food sciences. For this pur-

pose, we used a training set of molecules (amino-acids,

dipeptides and tripeptides) having known experimental

pKa values. Then, we used 3 different predictions meth-

ods namely ChemAxon [3, 4] (Marvin version 5.4.1.1),

ACD/Labs [11] (version 10.01, Release 10.00) and

COSMO-RS [12, 13] (COSMOtherm [8, 9], version

C2.1, Release 01.11) to predict the pKa values of these

molecules, and compare each predicted value to the cor-

responding experimental value.

1 MATERIALS AND METHODS

1.1 Experimental Data

The experimental pKa values (at room temperature and

atmospheric pressure) used in this study are taken from

“Dissociation constants of organic bases in aqueous solu-

tions”, Perrin [14] (1965) and “Dissociation constants of

organic bases in aqueous solutions – Supplement”, Perrin

[15] (1972). In these books, the experimental information

related to each pKa values is given.

O. Toure et al. / Comparison of Predicted pKa Values for Some Amino-Acids, Dipeptides and Tripeptides,
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1.2 The ChemAxon Method

The ChemAxon method [3, 4, 16, 17] is based on empir-

ically calculated physico-chemical parameters (mainly

partial charges) that are obtained from ionization site-

specific regression equations. For a given molecule, it

uses three types of calculated parameters (intramolecular

interactions, partial charges and polarizabilities) to

determine the micro ionization constants pKa of monop-

rotic molecules [16]:

pKa ¼ a�Qþ b�P þ c�S þ d ð5Þ

where, Q and P denote respectively the partial charge

and the polarizability increments, S is the sum of the

structures specific (steric strain or/and hydrogen bond)

increments; a, b, c and d are regression coefficients spe-

cific to the ionization site. All of these pKa increments

are calculated from ionization-site specific regression

equations.

Then, the ratio of microspecies is calculated to assign

calculated pKa values to the atoms of the submitted mol-

ecule. Finally, macro pKa values are obtained from the

theoretical relations that hold between macro-micro

pKa values. When a molecule contains more than one

ionizable atom (i.e. multiprotic compound), one has to

distinguish between micro and macro acidic dissociation

constants. The micro acidic dissociation constant is

obtained from the equilibrium concentration of the con-

jugated acid-base pairs. The macro acidic dissociation

constant is obtained from the global mass and charge

conservation law. The pKa of the active groups at a given

pH can be calculated according to this relation [16, 17]:

Ka;i ¼

P
j
cijP

k
ci�1
k

Hþ½ � ð6Þ

where, [H+] denotes the proton concentration of the

aqueous solution, cj
i is the concentration of the j-th

microspecies that released i protons from the fully pro-

tonated molecule, ck
i�1 is the concentration of the k-th

microspecies that released (i-1) protons from the fully

protonated molecule. Ratio of cj
i and ck

i�1 also called

microspecies distributions are calculated from the micro

ionization constants.

As an illustration case, the pKa calculation for threo-

nine (pT) is described below. This molecule has 4 differ-

ent ionic forms shown below (Fig. 1).

In the present study, only the two first pKa values for

this molecule are calculated (the corresponding experi-

mental dissociation constants of threonine are

pKa1 = 2.09; pKa2 = 8.81).

By plotting the titration curves i.e. the evolutions of

the ratio of the ionized and neutral forms versus the

pH (Fig. 2), one can identify the ionic species which are

present in the mixture at each pH values, and because

pKa = pH where the ratio of two different forms are

equal, it is possible to identify all the pKa values pre-

dicted in the range of pH specified (0 � pH � 14 for this

study).

Threonine (pT)
    C4H9NO3

HO HOHO

HO

O

–O –O

O O O

–O

–O

pT_2 pT_3 pT_1 pT_4

CH3

CH

CH3

CH

CH3

CH

CH3

CH

CHCHCHCH

pka1 pka2 pka3

NH3
+ NH3

+ NH2 NH2

Figure 1

Neutral and ionic forms of threonine (pT). The names of the cationic form (pT_2), the neutral form (pT_3), the anion (pT_1) and the

di-anion (pT_4) are evidenced. The two experimental values of this molecule calculated in the present study are pKa1 = 2.09 and

pKa2 = 8.81.
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Regarding Figure 2, one can see that the pKa value

pKa1 = 2.21 corresponds to the intercept between the

microspecies distribution plots of ionic species 2 (pT_2)

and 3 (pT_3). Likewise, the pKa value pKa2 = 9.00 cor-

responds to the intercept between the microspecies

distribution plots of ionic species 3 (pT_3) and

1 (pT_1). These values are in very good agreement with

the experimental values (respectively pKa1 = 2.09 and

pKa2 = 8.81).

1.3 The ACD/Labs Method

The ACD/Labs pKa prediction method [11] enables to

calculate single pKa values for all possible dissociation

centers when the rest of the molecule is considered neu-

tral, using an internal database containing chemical

structures and experimental data.

The algorithm of this calculation mimics the experi-

mental order of protonation of the drawn molecule

and determines the pKa values which can be experimen-

tally measured in aqueous solution.

This model is based on Linear Free Energy Relation-

ships (LFER), applying the Hammett equation [2, 7]:

pKa ¼ pK0
a þ D pKað Þ ð7Þ

where pKa
0 is the ionization constant for the parent

molecule, and D pKað Þ ¼PD pKað Þi is the sum over the

influence of all other functional groups on the respective

pKa of the D(pKa)
i values of each reaction center;

D pKað Þi ¼ �
X

qjrj ð8Þ

where qj is the constant for a particular class j of mole-

cules, and rj is the electronic effect of the jth substituent

on the ionization constant of the parent molecule.

For this purpose, every ionizable group is character-

ized by several Hammet-type equations that have been

parameterized to cover the most popular ionizable func-

tional groups. The ACD/Labs internal training set con-

tains more than 2 000 derived experimental electronic

constants (rj). When the required substituent constant

is not available from the experimental database; the

ACD/Labs method uses another algorithm to describe

electronic effect transmissions through the molecular

system. The flaw in this method is that the parent mole-

cules inherently carry the majority of the chemical infor-

mation and without training on a particular parent,

predictions for such compounds are impossible. That’s

why an Internal Reaction Centers Database is used for

pKa prediction using this method. The ACD/Labs inter-

nal training set contains more than 31 000 experimental

values for 15 932 structures. These data are taken from

various articles published in peer-reviewed scientific

journals [18].

As an illustration case, the pKa calculation for threo-

nine (pT) is described in Figure 3.

The ACD/Labs predicted pKa values corresponding

to the two ionic centers studied earlier (in Sect. 1.4, using

the ChemAxon method) are respectively pKa1 = 2.19

and pKa2 = 9.40 (when the corresponding experimental

values were respectively pKa1 = 2.09 and pKa2 = 8.81).

Threonine (pT)

Ionic centers

H3L

H2L

OH

OH O

O

NH3 

NH3 

+

+

0 H3C

H3C

OH
PT_3PT_2

1.       (HL/H+L) = 13.45 + 0.45pKa

pKa

pKa2.      (H2L/H+HL) = 9.40 +0.25
3.       (H3L/H+H2L) = 2.19 + 0.10

−
−
−

Figure 3

Illustration of the pKa values of threonine (pT) predicted

using the ACD/Labs method. This image shows the differ-

ent ionic centers in the structures of pT_2 (H3L form) and

pT_3 (H2L form) for which ACD predicted pKa values are

respectively pKa1 = 2.19 and pKa2 = 9.40.
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Figure 2

Illustration of the pKa values of threonine (pT) predicted

using the ChemAxon method. This graph shows the evolu-

tion of microspecies distribution vs pH values, and enlight-

ens the ChemAxon predicted pKa values that are

respectively pKa1 = 2.21 and pKa2 = 9.00.
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1.4 The COSMO-RS Method

COSMO-RS [13, 19, 20] is a predictive method for ther-

modynamic equilibrium of fluids and liquid mixtures

that is a combination of the quantum chemical dielectric

continuum solvation model COSMO [12] (acronym of

Conductor-like Screening Model) with a statistical ther-

modynamics treatment for more Realistic Solvation

(RS) simulations.

The equilibrium thermodynamic properties derived

from the COSMO-RS theory are computed in COSMO-

therm, a command line/file driven program which can be

run directly from a UNIX or DOS shell. In the present

study, we used the C21_0111 version of COSMOthermX

[8], a Graphical User Interface to the COSMOtherm [9]

command line program.

In this software, the pKa of a solute j can be estimated

from the Linear Free Energy Relationship (LFER)

[21, 22]:

pKa ¼ A
DGj

neutral � DGj
ion

RT ln 10

 !
þ B ð9Þ

where DGj
neutral and DGj

ion are respectively the free ener-

gies of the neutral and ionic compounds, in the solvent

(water in our case) at infinite dilution; A and B denote

LFER parameters that were determined for example

by correlating calculated free energies of dissociation

with the experimental aqueous pKa for a set of 64 organic

and inorganic acids (not including any peptide) [21].

Equation (9) should also be rewritten as:

pKa ¼ c0 þ c1 DGj
neutral � DGj

ion

� � ð10Þ

Thus to obtain a pKa value it is necessary to do quan-

tum COSMO calculations of a molecule in its neutral

and in its ionic state. All the pKa calculations (of the

present study) were done at the large TZVP basis set,

in the following denoted BP-TZVP, using a full Turbo-

mole BP-RI-DFT COSMO optimization of the molecu-

lar structure.

The LFER parameters c0 = B and c1 ¼ A
RT ln 10

used to predict the pKa values of interest in this study

were read from the COSMOtherm parameter file. At

ambient temperature, their values are respectively

c0 = �120.29804 and c1 = 0.10927 mol/kJ.

pKa prediction by COSMOtherm is not restricted to

aqueous acid pKa. However, both aqueous base pKa pre-

diction and pKa in non-aqueous solvents require repara-

metrization of the pKa LFER parameters. Likewise, to

compute pKa at non-ambient temperature, a reparamet-

rization of the LFER parameters is required.

As an illustration case the pKa calculation for

threonine (pT) at ambient temperature is described in

Figure 4.

Regarding this image, we can see that the predicted

pKa values of threonine, using the COSMO-RS method,

are respectively pKa1 = 2.36 and pKa2 = 8.96 (while the

experimental values were respectively pKa1 = 2.09 and

pKa2 = 8.81). All the predicted pKa values of the illustra-

tive case are shown in Table 1.

One has to note that all the 3 methods tested (ChemA-

xon, ACD/Labs, and COSMO-RS) enable the user to

input (in their software package) structures in SMILES

format [23], and optionally to incorporate “local” data

in order to bias predictions. However these optional

facilities were not studied, since we are looking for a pre-

dictive tool for complex structures.

1.5 Data Analysis

To compare the predicted values versus observed ones, we

first perform a graphical analysis of pKa results. Then sta-

tistical tests to compare the three prediction methods

(ChemAxon, ACD/Labs, and COSMO-RS) are per-

formed.

pKa1=2.36 pKa2=8.96

pT_2 pT_3 pT_1

Figure 4

Illustration of the pKa values of threonine (pT) predicted

using the COSMO-RS method. This image shows the dif-

ferent ionic structures involved in the dissociation reactions

for which COSMO-RS predicted pKa values are respec-

tively pKa1 = 2.36 and pKa2 = 8.96.

TABLE 1

Summary of the observed (exp.) and predicted pKa values for threonine

Method pKa1 pKa2

ChemAxon 2.21 9.00

ACD/Labs 2.19 9.40

COSMO-RS 2.36 8.96

Exp. 2.09 8.81
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1.5.1 Indices of Performance of Models

The bias factor (Bf) and the accuracy factor (Af) are two

indices of performance that enable to compare the good-

ness-of-fit of competing models [24, 25].

The bias factor provides an indication of the average

deviation between the model predictions and the average

deviation between the model predictions and observed

results, it is defined as:

Bf ¼ 10

P
log pKcal

a

pKexp
a

� �
n

ð11Þ

where pKa
cal is the predicted pKa value, pKa

exp and is the

experimental pKa value and n is the number of observa-

tions. A bias factor of 1 indicates perfect agreement

between observed and predicted pKa values. Because

over- and under-predictions may cancel out, the bias fac-

tor provides no indication of the range of the deviation

between predictions and observations. A bias factor

greater (resp. lower) than 1 indicates that the model pre-

dicts, on average, pKa values higher (resp. lower) than

experimental ones [24, 25].

The accuracy factor (Af) seeks to provide an estimate

of the average deviation between prediction and obser-

vation, and is defined as:

Af ¼ 10

P
log pKcal

a

pKexp
a

� ���� ���
n

ð12Þ

1.5.2 Statistical Analysis of Prediction Errors

We calculate the RMSE of the predicted pKa values for

each method:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

DpKað Þ2

n

vuuut ð13Þ

Then, a normalization of the residuals (noticing that

95% of these points must be located between �2 and

+2) is performed on the predicted values using the fol-

lowing equations:

Normalized residual ¼ DpKa � DpKa

rDpKa

ð14Þ

where DpKa = pKa
calc–pKa

exp is the error on predicted

value; DpKa and rDpKa are respectively the average and

the standard deviation of the prediction errors on pKa

values; and are given by:

DpKa ¼
Pn
i¼1

DpKa

n

rDpKa ¼
Pn
i¼1

DpKa�DpKað Þ2
n

8>>><
>>>:

ð15Þ

To have a more general comparison of the errors on

predicted pKa, we perform several normality tests on

error bars using the statistical tools [26-27] available in

the R software [28]. For this purpose, we mainly com-

pare the cumulative distribution functions, the Quantile

versus Quantile (Q-Q) plots, and the Percentile versus

Percentile (P-P) plots, of the prediction errors distribu-

tions of the competing methods. The CFD describes

the probability of “hitting” a value x or less in a given

distribution (a normal or Gaussian distribution in our

test). The Q-Q plot represents the quantiles of the theo-

retical fitted distribution (x-axis) against the empirical

quantiles of the sample data (y-axis). Likewise, for each

value of the data set the P-P plot represents the cumula-

tive density function of the fitted distribution (x-axis)

against the empirical cumulative density function of

the sample data (y-axis).

1.5.3 Factors that Can Affect the Comparison Between
Predicted and Observed pKa Values

The almost of experimental pKa values [14, 15] used in

the present study, were fitted to zero ionic strength unless

otherwise indicated under “Remarks”, in which cases, an

ionic strength correction of the experimental values

should be necessary to perform a better comparison to

predicted values. Indeed, if the solutions were no more

concentrated than 0.01 M, the corrections of experimen-

tal data would be small, and the author may choose to

neglect them for his purposes [1]. However there are cir-

cumstances in which they must not be neglected because

ionization constants change with dilution (although

there is seldom a detectable change below 0.001 M) [1].

Since for experimental pKa measurements methods like

potentiometric titrations or spectrometric determina-

tions, the corrections for diluter solutions involve the

ionic strength, written as I and define as:

I ¼ 1

2

X
i

Cigi
2

� � ð16Þ

where, Ci is the molar concentration of an ion, and gi is

the charge of the ion.

The ionization constant yielded directly by potentio-

metric titration is appropriately denoted as Ka’ (or

Ka
M) because it is a mixed constant [1], partly thermody-

namic and yet partly concentration-dependent. This

mixed character arises from the fact that a pH set is cal-

ibrated in terms of hydrogen ion activity (not hydrogen

ion concentration), whereas the ionic term is a concen-

tration (not an activity). Thus,

K
0
aðor KM

a Þ ¼
Hþ or H3O

þð Þ B½ �
A½ � ð17Þ
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A relation between pKa and pK’a can be derived begin-

ning from:
ai ¼ cici ð18Þ

where ci is the activity coefficient (molar scale) of an ion

of activity ai and molar concentration ci.

For an ion of charge gi, the activity coefficient is given

for dilute solutions by activity coefficients models [1, 2,

29]. In the present study, we use the correction proposed

by Ould-Moulaye (in his PhD Thesis [29]) to take into

account the influence of ionic strength on pKa values,

using a simplified Goldberg model [30], and assuming

that the acidic form is not very concentrated (cmAH ¼ 1).
It was demonstrated that (at 25�C):

pKa ¼ pK
0
a þ 0:51065

X
i

migi
2

� � ffiffiffiffiffi
Im

p

1þ 1:6
ffiffiffiffiffi
Im

p ð19Þ

where mi represents the stoechiometric coefficient of the

species in dissociation reaction, mi > 0 for products

and mi < 0 for reactants; Im represents the ionic strength

in molality scale.

Due to the fact that ChemAxon and ACD/Labs use

2D structures to predict pKa values, while COSMO-RS

performs a geometrical optimization of the 3D structure

in its Quantum Chemistry (QC) calculations, it would be

interesting to have a look on the influence of conforma-

tions set treatment in the COSMO-RS pKa predictions.

For this purpose, the influence of conformations treat-

ment for 2 molecules namely histidine (pH) and histidyl-

glutamic acid (pHE) in COSMO-RS calculations is

studied. Sometimes, there are several different reported

pKa values for the same dissociation reaction (ideally, a

reliable prediction method would be able to choose the

right experimental value). So by using all these points

with only one predicted value and 2 or more experimen-

tal values, one can influence the global RMSE of the pre-

diction methods. This point is discussed later.

2 RESULTS AND DISCUSSION

2.1 Graphical Comparisons

The predicted pKa values are plotted versus the experi-

mental values in Figure 5. A linear fit of the predicted

pKa data enables to determine the coefficient of determi-

nation (r2) of each competed model. As results, we got

respectively r2 = 0.98 for ACD/Labs, r2 = 0.98 for

ChemAxon and r2 = 0.96 for COSMO-RS. However,

it is very difficult to compare the three prediction meth-

ods from this graph, as there are lots of points for which

one method gives better predicted pKa values compared

to the others. However, one can already see that the

maximum error on predicted pKa values is observed

for the 60th data-point (pKa
exp = 10.98) corresponding

to one of the dissociation constants of hystidylglutamic

acid (pHE). For this data-point, ACD/Labs and

ChemAxon methods give erroneous prediction results

(pKa = 12.86 and 14.03 respectively) while COSMO-RS

predicts a pKa = 11.44 which is significantly closer to

the experimental value. One justification of these differ-

ences on predicted pKa should be the fact that the pKa

calculated for this structure (on a dissociation center

which is a cyclic nitrogen atom) thatwas probablynotused

in the internal database of ACD/Labs and ChemAxon,

while COSMO-RS overcome this problemwhen perform-

ing a geometrical optimization during the QC calculations

preceding its pKa prediction.

2.2 Bias Factor and Accuracy Factor

The calculated values of the bias and accuracy factors

(using respectivelyEq. 11 andEq. 12) are shown in Tables

2 and 3 for each family, andon the overall data. These val-

ues were very close to 1 that means each of the 3 studied

methods performs a good prediction of the pKa values.

Using the bias factor criterion, ACD/Labs and

ChemAxon give slightly better pKa predictions com-

pared to COSMO-RS. For amino-acids the bias factor

of COSMO-RS (1.09) is slightly greater than those of

ChemAxon (1.02) and ADC/Labs (1.04), while for
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Figure 5

pKa results for several amino-acids, dipeptides and tripep-

tides using the ChemAxon (red stars), the COSMO-RS

(blue filled stars) and the ACD/Labs (green diamonds)

methods. The line represents the equality between predicted

values and experimental data and the orange box shows the

predicted pKa data corresponding to the maximum error

(data-point number 60).
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dipeptides and tripeptides COSMO-RS has the smallest

bias factor (resp. 1.03 and 1.01), followed by ACD/Labs

(1.04 and 1.05) and ChemAxon (1.07 and 1.04). Using

the accuracy factor criterion, ACD/Labs and

ChemAxon give better pKa predictions compared to

COSMO-RS. For each family, the accuracy factor of

COSMO-RS is slightly greater than those of ChemAxon

and ADC/Labs. Since ACD/Labs and ChemAxon are

parameterized using experimental data of molecules,

the slightly higher values in the Af and Bf values for

COSMO-RS is quite normal as discussed later in Sec-

tion 2.5.

2.3 Statistical Analysis of Prediction Errors

The RMSE of the overall predicted pKa values for each

method compared to experimental results were respec-

tively 0.596 for COSMO-RS, 0.445 for ChemAxon and

0.490 for ACD/Labs (Tab. 4).

These RMSEresults are ingoodagreementwith literature

values. Indeed, for complexmolecular structures aRMSEof

0.50 is expected for ACD/Labs [11] (version 10). In a recent

study, on 211 drug like-compounds, Manchester et al.

(2010) [7] got aRMSEof 0.6 forACD/Labsmethod (version

10), and 0.8 for the ChemAxon method (Marvin, version

5.2). Their results agree well with the RMSE values given in

the present study since we used a more recent version of

Marvin (version 5.4.1), that should explain the difference in

RMSE.

Then one can plot Figure 6 which compares the normal-

ized residuals (that should ideally be equal to zero) of the 3

prediction methods, using Equation (13). One has to note

that the maximum normalized error is got for data-point

number 60 (pHE) discussed earlier (6.27 for ACD/Labs;

4.10 for ChemAxon, and 0.54 for COSMO-RS). But, when

analyzing this plot, it becomes also clearer that there is not a

distinguishable difference between the predictions methods

using this comparisoncriterion, since fordata-pointnumber

19 (pH) COSMO-RS has the largest normalized residual

(2.90 versus�0.09 forChemAxonand0.91 forACD/Labs),

and for data-point number 9 (pD) ChemAxon has the larg-

est normalized error (2.53 versus �1.97 for COSMO-RS

and �0.40 for ACD/Labs). Furthermore, 6 points for

COSMO-RS, 5 points for ChemAxon and 6 points for

ACD/Labs are located outside the range of [�2, +2] for

normalized residual values. That are in good agreement

with the 95% points expected to be in the same range, since

107 data-points were used for each of the studied models.

These examples illustrated that all the studied methods are

undistinguishable in that each can sometimes give large

errors. This statement is confirmed in another study [7], in

the case of ACD/Labs and ChemAxon.

Figure 7 represents the comparison between the theo-

retical and observed cumulative distribution functions

(CFD) [27] of the prediction errors for each pKa predic-

tion method. One can notice that the COSMO-RS meth-

od’s sample CFD is the closest to its theoretical CFD,

followed by ChemAxon, while the ACD/Labs method’s

TABLE 2

Values of the bias factor (Bf) for each of the 3 methods used for pKa prediction

Bf ChemAxon Bf COSMO-RS Bf ACD/Labs Number of points

Amino-acids (AA) 1.02 1.09 1.04 45

Dipeptides 1.07 1.03 1.04 37

Tripeptides 1.04 1.01 1.05 25

Overall data 1.04 1.05 1.04 107

TABLE 3

Values of the accuracy factor (Af) for each of the 3 methods used for pKa prediction

Af ChemAxon Af COSMO-RS Af ACD/Labs Number of points

Amino-acids (AA) 1.06 1.13 1.06 45

Dipeptides 1.11 1.11 1.06 37

Tripeptides 1.05 1.07 1.05 25

Overall data 1.07 1.11 1.06 107
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sample CFD is relatively different compared to its theo-

retical CFD.

Figures 8 and 9 show respectively the Q-Q and the P-P

plots [27] of the prediction errors distribution for each

method.

These graphical normality tests (CFD, Q-Q and P-P

plots) show that COSMO-RS prediction errors have the

closest distribution to the Gaussian distribution. The

ChemAxon prediction errors have a slightly less normal

distribution, while ACD/Labs method’s errors distribu-

tion is significantly different from the normal distribution.

Several normality tests (Tab. 5) confirmed these results.

For each of the studied pKa prediction methods,

several statistical tests on the distribution shown were

performed to get the Cullen and Frey graph that

enables to have an idea about the position of the

observed distribution (red circle point) compared to

different theoretical distributions (normal, log-normal,

exponential, etc.) and the results of a bootstrap (per-

formed on sample points by randomly taking off one

or more points) done 100 times (hollow blue circles)

(Fig. 10-12).

These confirmed that the nearest theoretical distribu-

tion should be the normal distribution, and that
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Figure 8

Quantile-Quantile (Q-Q) plots of errors distribution for

each of the 3 pKa prediction methods.
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COSMO-RS errors distribution are the closest to this

theoretical distribution.

2.4 Analysis of Several Factors that Can Influence
Predicted pKa Values

2.4.1 Influence of Ionic Strength on pKa Values

The influence of ionic strength on the experimental pKa

values used has been taken into account using (Eq. 19).

This correction changes the values of the RMSE of the

different prediction methods as shown in Table 6.

Table 6 shows that the correction of ionic

strength influence on pKa decreased the RMSE of the

COSMO-RS pKa values by 0.01 while the ChemAxon

and ACD/Labs RMSE increased respectively by about

0.04 and 0.08. That should probably due to the fact that

the ab-initio calculation performed in the COSMO-RS

method enables it to reach a better treatment of electro-

static interactions when compared to other methods

using purely empirical parameters. Indeed, the ionic

strength influence should only affect the experimental

pKa value, not the performance of a given model. But

because ACD/Labs and ChemAxon models are parame-

terized on a large set of experimental pKa (probably

including non zero ionic strength pKa values), a small

effect of ionic strength should bias their respective

RMSE values as illustrated in Table 6.

TABLE 4

Values of the average RMSE (Root Mean Square Errors of the differences DpKa between the predicted values and the experimental ones,

DpKa = pKa
calc – pKa

exp) for each of the 3 methods used for pKa prediction (ChemAxon, COSMO-RS and ACD/Labs)

RMSE ChemAxon RMSE COSMO-RS RMSE ACD/Labs Number of points

Amino-acids (AA) 0.361 0.577 0.407 45

Dipeptides 0.612 0.668 0.669 37

Tripeptides 0.239 0.510 0.259 25

Overall data 0.445 (r2 = 0.98) 0.596 (r2 = 0.96) 0.490 (r2 = 0.98) 107

TABLE 5

Summary of the results of several normality tests on errors distribution for each pKa prediction method

Kolmogorov-Smirnov

statistic

Cramer-von Mises

statistic

Anderson-Darling

statistic

Conclusion

ChemAxon 0.06307036 (Not rejected) 0.09646038 (Not rejected) 0.6444582 (Not rejected) Gaussian distribution

COSMO-RS 0.03971827 (Not rejected) 0.02223085 (Not rejected) 0.2031585 (Not rejected) Gaussian distribution

ACD/Labs 0.1329101 (Rejected) 0.5802089 (Rejected) 3.523414 (Rejected) Non-Gaussian distribution

TABLE 6

Values of the average RMSE (Root Mean Square Errors of the differences DpKa between the predicted values and the experimental ones:

DpKa= pKa
calc – pKa

exp) for each of the 3 methods used for pKa prediction (ChemAxon, COSMO-RS andACD/Labs), after taking into account the

influence of ionic strength. The values in parenthesis are those found in literature without any correction to get zero ionic strength pKa values

(see Tab. 4)

RMSE ChemAxon RMSE COSMO-RS RMSE ACD/Labs Number of points

Amino-acids 0.355 (0.361) 0.560 (0.577) 0.424 (0.407) 45

Dipeptides 0.708 (0.612) 0.691 (0.668) 0.830 (0.669) 37

Tripeptides 0.178 (0.239) 0.456 (0.510) 0.208 (0.259) 25

Overall data 0.484 (0.445) 0.588 (0.596) 0.569 (0.490) 107
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Cullen and Frey graph for the errors distribution of the ChemAxon method.
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Figure 11

Cullen and Frey graph for the errors distribution of the COSMO-RS method.
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Cullen and Frey graph for the errors distribution of the ACD/Labs method.
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Figure 13

Illustration of the conformers set treatment in the case of histidine molecule. Only the most stable conformations in water are shown on

the right (the COSMO-geometries used in the first prediction are shown on the left).
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2.4.2 Conformations Treatment Influence on COSMO pKa
Results

The averaged RMSE of the predicted pKa values for each

method compared to experimental results were respec-

tively 0.596 for COSMO-RS, 0.445 for ChemAxon and

0.490 for ACD/Labs.

But, while the ChemAxon and ACD/Labs use a 2D

structure to predict pKa values, the COSMO-RS

approach uses a 3D geometry. So the conformations

treatment can have a non-negligible influence on

COSMO-RS pKa predicted values. For instance, using

the most stable (in water) conformation sets of two of

the studied molecules (histidine (see Fig. 13) and

histidyl-glutamic acid), the RMSE of the COSMO-RS

is improved by 0.02 as shown in Table 7.

2.4.3 Multiple Experimental Data Points Influence on pKa
Results

Furthermore, in the experimental pKa values used, there

were some cases where we got several different experi-

mental values listed for the same dissociation center.

By averaging these “multiple” experimental data to

compare the prediction methods, we got 91 different

data points (instead of 107) and the RMSE were slightly

different than those got in Table 1.

The combination of a conformations set treatment for

2 molecules (histidine and histidylglutamic acid) and the

averaging of multiple pKa values (for the same dissocia-

tion center) decreased the RMSE of the COSMO-RS

pKa values by 0.02 while the ChemAxon and ACD/Labs

RMSE increased by approximately 0.03 for each method

(Tab. 8).

2.5 Discussion

It is well established that Group Contributions Methods

(GCM) like ACD/Labs and ChemAxon method are in

general more accurate in pKa calculations. However,

they are limited to some chemical families and their

respective accuracy depends on the availability of

experimental data. Compared to these methods, the

main advantage of the COSMO-RS prediction method

is that it is fully predictive. Indeed the LFER parameters

of the COSMO-RS method were determined on a train-

ing set which does not include any of the molecules stud-

ied in this paper and the pKa predicted are quite accurate.

TABLE 7

Values of the average RMSE (Root Mean Square Errors of the differences DpKa between the predicted values and the experimental ones:

DpKa= pKa
calc – pKa

exp) for each of the 3 methods used for pKa prediction (ChemAxon, COSMO-RS andACD/Labs), after taking into account the

conformations of histidine and histidyl-glutamic acid in COSMO-RS calculations. The values in parenthesis show the COSMO-RS pKa results

before this conformers set treatment

RMSE ChemAxon RMSE COSMO-RS RMSE ACD/Labs Number of points

Amino-acids (AA) 0.361 0.536 (0.577) 0.407 45

Dipeptides 0.612 0.633 (0.668) 0.669 37

Tripeptides 0.239 0.510 (0.510) 0.259 25

Overall data 0.445 0.566 (0.596) 0.490 107

TABLE 8

Values of the average RMSE (Root Mean Square Errors of the differences DpKa between the predicted values and the experimental ones:

DpKa= pKa
calc – pKa

exp) for each of the 3 methods used for pKa prediction (ChemAxon, COSMO-RS andACD/Labs), after taking into account the

conformations of histidine and histidyl-glutamic acid in COSMO-RS calculations and averaging the multiple experimental pKa data for the same

dissociation reaction. The values in parenthesis are those given in Table 4

RMSE ChemAxon RMSE COSMO-RS RMSE ACD/Labs Number of points

Amino-acids (AA) 0.361 (0.361) 0.536 (0.577) 0.407 (0.407) 45 (45)

Dipeptides 0.622 (0.612) 0.646 (0.668) 0.684 (0.669) 35 (37)

Tripeptides 0.219 (0.239) 0.430 (0.510) 0.273 (0.259) 11 (25)

Overall data 0.468 (0.445) 0.570 (0.596) 0.520 (0.490) 91 (107)

294 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 68 (2013), No. 2



Moreover, ACD/Labs and ChemAxon methods both

use a 2D description of molecular structure in their

respective algorithms for pKa calculation. Thus these

methods are not able to distinguish conformation treat-

ment effect (which is a 3D effect) while COSMO-RS is

able to perform this task (as shown in Sect. 2.4.2).

As mentioned earlier, each of the studied methods

includes optionally parameterization tools to incorpo-

rate “local” data in order to bias predictions. This will

increase for sure the prediction results; however these

optional facilities were not studied in this paper since

we are looking for a predictive tool that is able to predict

pKa of complex structures (that are ubiquitous in foods

and biological systems). The COSMO-RS method seems

very promising to determine the pKa of a given molecule

in a fully predictive way (especially when the conforma-

tions are well treated in calculations) with no available

experimental data.

Ideally, a benchmarking of pKa prediction models

would require a universal training set to train all models,

and a universal disjoint and similarly the use of diverse

test set to compare their prediction. However it is very

difficult to perform such task on all of the commercial

pKa prediction utilities used in the present study. With

no true benchmarks for pKa prediction utilities, the only

way to identify a superior model is by trusting statistics.

The statistics for both training and test data should be

separate; unfortunately this is not the case in the present

study since we are not able to distinguish the molecules

that were used to parameterized ChemAxon and ACD/

Labs methods.

All empirically based models should have r2 closed to

1.0 andRMSEas close to 0.0 as possible over awide range

of compounds. Regarding the r2 values, each of the stud-

ied models should be considered as accurate (r2 = 0.98

for ChemAxon and ACD/Labs and r2 = 0.96 for

COSMO-RS). The averaged RMSE of the predicted

pKa values for each method compared to experimental

results were respectively 0.596 for COSMO-RS, 0.445

for ChemAxon and 0.490 for ACD/Labs. Since, all of

theseRMSE values are close to 0.0; one can conclude that

each model is suitable for pKa prediction. This statement

is confirmed by other statistical analysis (normality tests,

bias factor and accuracy factor that are ubiquitous in

comparing models in food science).

Moreover, it has been reported that a successful evalu-

ation of seafood spoilagemodels present a bias factor (Bf)

in the range 0.75-1.25. More drastically, a bias factor in

the range 0.90-1.05 is considered as good formodels deal-

ing with pathogens growth (no ‘fail-dangerous’ predic-

tions) [25]. The Bf values obtained (on the overall data)

in this study are not greater than 1.05 which indicates a

very good prediction of the pKa values by all the models.

Likewise, it is also reported that the best performance

that might be expected from a kinetic model encompass-

ing the effect of temperature, pH and aw on growth rate,

is � 30%, or an accuracy factor Af of 1.3. This value is

greater than all the Af values determined within this

study, confirming again that all the studied models are

reliable.

However, it is difficult to determine the best model

because we were not able to distinguish the data used

to train each model (especially ChemAxon and ACD/

Labs). As suggested by Lee and Crippen [10], it should

be interesting to study the performance of a consensus

model based on these 3 methods. Since the statistics

obtained from a consensus model may not reflect its per-

formance on new data, this kind of study is out of the

scope of this paper in which we are looking for a fully

predictive model able to treat other products of interest

in foods and biological systems.

CONCLUSION

The results presented in this study indicate that all the 3

methods (ChemAxon, ACD/Labs and COSMO-RS) are

effective in predicting pKa values (with a RMSE of about

0.5 pKa-unit) for compounds of interest in food sciences

like amino-acids, dipeptides and tripeptides. Further-

more, it appears that ACD/Labs, ChemAxon and

COSMO-RS each can sometimes give large errors. A sta-

tistical study of the prediction errors (for this training

set) showed that COSMO-RSmethod has the closest dis-

tribution to a normal (or Gaussian) distribution fol-

lowed by ChemAxon, and that ACD/Labs pKa errors

do not follow a normal law. This was confirmed when

analyzing the influence of ionic strength. Since

COSMO-RS performs a Quantum Chemistry (QC) cal-

culation on a 3D geometry while the two other methods

are using a 2D structure (generated directly from

SMILES file), one can expect that conformations treat-

ment has to be taken into account to have a better pKa

prediction. This effect was studied for the case of 2 mol-

ecules of our training set and reduced the RMSE of the

COSMO-RS method by about 0.02. All these packages

include the ability to bias predictions using “local” data

but these facilities were not evaluated. ChemAxon’s

Marvin and ACD/Labs are the fastest tools in term of

computer-time. Due to the time-consuming QC calcula-

tions preceding its thermodynamics calculations, the

COSMO-RS is less fast. But when this calculation is

done once for each molecule and ion of interest, the

COSMO-RS thermodynamics algorithm takes the same

amount of time as ChemAxon and ACD/Labs to

perform pKa predictions.
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Regarding these results, COSMO-RS appears as a

promising method to predict the pKa values of molecules

of interest in food science with scarce available pKa val-

ues such as peptides.

The final goal of this study is to use the pKa values in a

predictive thermodynamics model for products of inter-

est in food industry.
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