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Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction

Introduction

We study the system NLS equations (1.1)

   i∂ t u + 1 2m ∆u = λvu, i∂ t v + 1
2M ∆v = µu 2 , where u and v are complex-valued functions of (t, x) ∈ R × R d , ∆ is the Laplacian in R d , m and M are positive constants, λ and µ are complex constants, and u is the complex conjugate of u.

The system (1.1) is related to the Raman amplification in a plasma (see e.g. [START_REF] Colin | Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction[END_REF]) and the interaction process for waves progapation in quadratic media (see e.g. [8]). The system (1.1) is also regarded as a non-relativistic limit of the system of nonlinear Klein-Gordon equations

   1 2c 2 m ∂ 2 t u -1 2m ∆u + mc 2 2 u = -λvu, 1 2c 2 M ∂ 2 t v -1 2M ∆v + M c 2 2 v = -µu 2 , under the mass resonance condition M = 2m. (1.2)
Indeed, the modulated wave functions (u c , v c ) := (e itmc 2 u, e itM c 2 v) satisfy

   1 2c 2 m ∂ 2 t u c -i∂ t u c -1 2m ∆u c = -e itc 2 (2m-M ) λv c u c , 1 2c 2 M ∂ 2 t v c -i∂ t v c -1 2M ∆v c = -e itc 2 (M -2m) µu 2 c .
(1.3)

We see that the phase oscillations on the right hand sides vanish if and only if (1.2) holds, and the system (1.3) formally yields (1.1) as the speed of light c tends to infinity. By the standard scaling argument, the system (1.1) has the critical function space H d 2 -2 , where H s is the usual Sobolev space of order s. In particular, the system (1.1) is L 2 -critical for d = 4, is H 1 -critical for d = 6 and is intercritical for d = 5.

In [14], Hayashi-Ozawa-Takana studied the Cauchy problem for (1.1) in L 2 , H 1 and in the weighted L 2 space x -1 L 2 = F(H 1 ) under mass resonance condition, where x = 1 + |x| 2 is the the Japanese bracket and F is the Fourier transform. They showed the existence of ground states for (1.1) by using the variational methods. They also pointed out explicit finite time blow-up solutions for (1.1) under the mass resonance condition in dimension d = 4. Recently, Hamano in [START_REF] Hamano | Global dynamics below the ground state for the quadratic Schrödinger system in 5D[END_REF] showed the sharp threshold for scattering and blow-up for (1.1) under the mass resonance condition in dimension d = 5.

Let us recall the local well-posedness in H 1 for (1.1) due to [14]. The Cauchy problem (1.1) with data (u(t 0 ), v(t 0 )) = (u 0 , v 0 ) given at t = t 0 is treated in the form of system of integral equations (1.4)

         u(t) = U m (t -t 0 )u 0 -i ˆt t 0 U m (t -τ )λv(τ )u(τ )dτ, v(t) = U M (t -t 0 )v 0 -i ˆt t 0 U M (t -τ )µu 2 (τ )dτ,
where U m (t) = exp i t 2m ∆ and U M (t) = exp i t 2M ∆ are free propagators with masses m and M respectively.

To ensure the conservation law of total charge, it is natural to consider the following condition:

∃ c ∈ R\{0} : λ = cµ. (1.5) Proposition 1.1 (LWP in H 1 [14]). Let d ≤ 6 and let λ and µ satisfy (1.5). Then for any (u 0 , v 0 ) ∈ H 1 × H 1 , there exists a unique paire of local solutions (u, v) ∈ Y (I) × Y (I) of (1.4), where

Y (I) = (C ∩ L ∞ )(I, H 1 ) ∩ L 4 (I, W 1,∞ ) for d = 1, Y (I) = (C ∩ L ∞ )(I, H 1 ) ∩ L q 0 (I, W 1,r 0 ) for d = 2,
where 0 < 2 q 0 = 1 -2 r 0 < 1 with r 0 sufficiently large,

Y (I) = (C ∩ L ∞ )(I, H 1 ) ∩ L 2 (I, W 1, 2d d-2 ) for d ≥ 3.
Moreover, the solution satisfies the mass and energy conservation laws: for all t ∈ I, M (u(t), v(t)) := u(t) 2 L 2 + c v(t) 2 L 2 = M (u 0 , v 0 ),

E(u(t), v(t)) := 1 2m ∇u(t) 2 L 2 + c 4M ∇v(t) 2 L 2 + Re(λ v(t), u 2 (t) ) = E(u 0 , v 0 ),
where •, • is the scalar product in L 2 .

Note that for d ≤ 5, the existence time depends only on u 0 H 1 + v 0 H 1 . However, for d = 6, the existence time depends not only on H 1 -norm of initial data but also on the profile of the initial data.

From now on, we assume that λ and µ satisfy (1.5) with c > 0 and λ = 0, µ = 0. By change of variables

u(t, x) → c 2 |µ|u t, 1 2m x , v(t, x) → - λ 2 v t, 1 2m 
x ,

the system (1.1) becomes

(1.6) i∂ t u + ∆u = -2vu,

i∂ t v + κ∆v = -u 2 ,
where κ = m M is the mass ratio. In the sequel, we only consider the system (1.6) with initial data (u(0), v(0)) = (u 0 , v 0 ). Note that the mass now becomes

M (u(t), v(t)) = u(t) 2 L 2 + 2 v(t) 2 L 2 ,
and the energy is

E(u(t), v(t)) = 1 2 ( ∇u(t) 2 L 2 + κ ∇v(t) 2 L 2 ) -Re( v(t), u 2 (t) ).
The local well-posedness in H 1 for (1.6) reads as follows.

Proposition 1.2 (LWP in H 1 ). Let d ≤ 6. Then for any (u 0 , v 0 ) ∈ H 1 × H 1 , there exists a unique pair of local solutions (u, v) ∈ Y (I) × Y (I) of (1.6). Moreover, the solution satisfies the conservation of mass and energy: for all t ∈ I,

M (u(t), v(t)) := u(t) 2 L 2 + 2 v(t) 2 L 2 = M (u 0 , v 0 ), E(u(t), v(t)) := 1 2 ( ∇u(t) 2 L 2 + κ ∇v(t) 2 L 2 ) -Re( v(t), u 2 (t) ) = E(u 0 , v 0 ).
In the first part of the sequel, we study the existence and stability of ground state standing wave solutions for (1.6). A standing wave for (1.6) is a solution of the form (u(t), v(t)) with u(t, x) = e iω 1 t φ(x) and v(t, x) = e iω 2 t ψ(x), where ω 1 and ω 2 are real numbers and φ, ψ : R d → C satisfy the coupled system of elliptic equations

-∆φ + ω 1 φ = 2ψφ, -κ∆ψ + ω 2 ψ = φ 2 , (1.7)
In [14], Hayashi-Ozawa-Tanaka proved the existence of real-valued ground states for (1.7) with ω 2 = 2ω 1 = 2ω > 0 and d ≤ 5. We recall that a pair of complex-valued functions (φ, ψ) ∈ H 1 × H 1 is called a ground state for (1.7) with ω 2 = 2ω 1 = 2ω if it minimizes the associated functional

S ω (u, v) : = E(u, v) + ω 2 M (u, v) = 1 2 ( ∇u 2 L 2 + κ ∇v 2 L 2 ) + ω 2 ( u 2 L 2 + 2 v 2 L 2 ) -Re( v, u 2 )
among all non-zero solutions of (1.7). The proof is based on the variational argument using Strauss's compactness embedding H 1 rad (R d ) ⊂ L 3 (R d ) for 2 ≤ d ≤ 5. The case d = 1, they employed a concentration-compactness argument using Palais-Smale sequence. In this paper, our approach is different and is based on the concentration-compactness method of Lions [START_REF] Lions | The concentration-compactness method in the calculus of variations. The locally compact case I[END_REF]. Given any a, b > 0, we look for solutions (φ, ψ) ∈ H 1 × H 1 of (1.7) satisfying φ 2 L 2 = a and ψ 2 L 2 = b. Such solutions are of interest in physics (often referred to as normalized solutions). To this end, we consider, for d ≤ 3 and a, b > 0, the following variational problem

I(a, b) := inf{E(u, v) : (u, v) ∈ H 1 × H 1 , u 2 L 2 = a, v 2 = b}. (1.8)
We denote the set of nontrivial minimizers for I(a, b) by

G a,b = {(u, v) ∈ H 1 × H 1 : E(u, v) = I(a, b), u 2 L 2 = a, v 2 L 2 = b}.
Our first result is the existence of minimizers for (1.8).

Theorem 1.3. Let d ≤ 3 and a, b > 0. Then the following properties hold:

(1) The set G a,b is not empty. Any minimizing sequence

(u n , v n ) n≥1 for I(a, b) is relatively compact in H 1 × H 1 up to translations. That is, there exist (y n ) n≥1 ⊂ R d and (u, v) ∈ H 1 × H 1 such that (u n (• + y n ), v n (• + y n )) n≥1 has subsequence converging strongly to (u, v) in H 1 × H 1 . Moreover, (u, v) ∈ G a,b . (2) inf (w,z)∈G a,b ,y∈R d (u n (• + y), v n (• + y)) -(w, z) H 1 ×H 1 → 0 as n → ∞. (1.9) (3) inf (w,z)∈G a,b (u n , v n ) -(w, z) H 1 ×H 1 → 0 as n → ∞. (1.10) (4) Each (u, v) ∈ G a,b is a classical solution of (1.7) for some ω 1 , ω 2 ∈ R. Moreover, there exist θ 1 , θ 2 ∈ R and nonnegative functions ϑ, ζ such that u(x) = e iθ 1 ϑ(x) and v(x) = e iθ 2 ζ(x) for all x ∈ R d .
Note that we will use in this paper the following convention: a minimizing sequence for

I(a, b) is defined as a sequence (u n , v n ) n≥1 ⊂ H 1 × H 1 such that u n 2 L 2 → a, v n 2 L 2 → b and E(u n , v n ) → I(a, b) as n → ∞.
The proof of Theorem 1.3 is based on the concentration-compactness method of Lions [START_REF] Lions | The concentration-compactness method in the calculus of variations. The locally compact case I[END_REF]. Similar arguments have been used in [5] (see also [START_REF] Albert | Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system[END_REF]2,[START_REF] Bhattarai | Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations[END_REF]) to show the existence and stability of standing waves.

At the moment, we do not know the set G a,b are orbital stable under the flow of (1.6) or not. The main issue is that the quantities u(t) 2 L 2 and v(t) 2 L 2 are not conserved under the flow of (1.6). We only have the conservation of mass

M (u(t), v(t)) = u(t) 2 L 2 + 2 v(t) 2 L 2 = M (u 0 , v 0 ) and E(u(t), v(t)) = E(u 0 , v 0 )
. The orbital stability of standing waves for (1.6) is thus related to the following variational problem

J(c) := inf{E(u, v) : (u, v) ∈ H 1 × H 1 , M (u, v) = c}. (1.11)
The set of nontrivial minimizers for J(c) is denoted by

M c = inf{(u, v) ∈ H 1 × H 1 : E(u, v) = J(c), M (u, v) = c}.
Our next result is the existence of minimizers for J(c).

Theorem 1.4. Let d ≤ 3 and c > 0. Then the following properties hold:

(1) The set M c is not empty. Any minimizing sequence

(u n , v n ) n≥1 for J(c) is relatively compact in H 1 × H 1 up to translations. That is, there exist (y n ) n≥1 ⊂ R d and (u, v) ∈ H 1 × H 1 such that (u n (• + y n ), v n (• + y n )) n≥1 has subsequence converging strongly to (u, v) in H 1 × H 1 . Moreover, (u, v) ∈ M c . (2) inf (w,z)∈Mc,y∈R d (u n (• + y), v n (• + y)) -(w, z) H 1 ×H 1 → 0 as n → ∞. (1.12) (3) inf (w,z)∈Mc (u n , v n ) -(w, z) H 1 ×H 1 → 0 as n → ∞. (1.13) (4) Each (u, v) ∈ M c is a classical solution of (1.7) for some ω 2 = 2ω 1 = 2ω > 0. Moreover, there exist θ 1 , θ 2 ∈ R and nonnegative functions ϑ, ζ such that u(x) = e iθ 1 ϑ(x) and v(x) = e iθ 2 ζ(x) for all x ∈ R d . (5) Each (u, v) ∈ M c is a ground state for (1.7) with ω 2 = 2ω 1 = 2ω > 0.
We also have the orbital stability of standing waves for (1.6).

Theorem 1.5. Let d ≤ 3 and c > 0. Then the set M c is stable under the flow of (1.6) in the sense that for any ε > 0, there exists δ > 0 such that if

(u 0 , v 0 ) ∈ H 1 × H 1 satisfies inf (w,z)∈Mc (u 0 , v 0 ) -(w, z) H 1 ×H 1 < δ, then the global solution (u(t), v(t)) of (1.6) with initial data (u 0 , v 0 ) satisfies sup t≥0 inf (w,z)∈Mc (u(t), v(t)) -(w, z) H 1 ×H 1 < ε.
The second part of this paper is devoted to the existence of blow-up solutions and the characterization of finite time blow-up solutions with minimal mass for (1.6) under the mass resonance condition in dimension d = 4. Let d = 4 and κ = 1 2 . We consider the following system NLS:

(1.14)    i∂ t u + ∆u = -2vu, i∂ t v + 1 2 ∆v = -u 2 .
We first recall the sharp Gagliardo-Nirenberg inequality related to (1.14), namely

P (u, v) ≤ C opt K(u, v) M (u, v),
where

P (u, v) = Re( v, u 2 ), K(u, v) = ∇u 2 L 2 + 1 2 ∇v 2 L 2 , M (u, v) = u 2 L 2 + 2 v 2 L 2 .
We have 1

C opt := inf{J(u, v) : (u, v) ∈ P},
where

J(u, v) = K(u, v) M (u, v) P (u, v) ,
and

P := {(u, v) ∈ H 1 × H 1 \{(0, 0)} : P (u, v) > 0}.
Theorem 1.6 (Sharp Gagliardo-Nirenberg inequality [14]). Let d = 4 and κ = 1 2 . Then the sharp constant C opt is attained by a pair of functions (φ 0 , ψ 0 ) ∈ H 1 × H 1 which is a positive radially symmetric solution of

(1.15) -∆φ + φ = 2ψφ, -1 2 ∆ψ + 2ψ = φ 2 .
Moreover,

C opt = 1 2 M (φ 0 , ψ 0 ) . (1.16)
The main reason for considering the blow-up in dimension d = 4 comes from the following fact.

Proposition 1.7 (GWP in H 1 ). If d ≤ 3, then for any (u 0 , v 0 ) ∈ H 1 × H 1 , (1.6) has a unique pair of solutions (u, v) ∈ Y (R) × Y (R). If d = 4, then for any (u 0 , v 0 ) ∈ H 1 × H 1 with M (u 0 , v 0 ) < M (φ 0 , ψ 0 ),
where (φ 0 , ψ 0 ) is as in Theorem 1.6, (1.6) has a unique pair of solutions

(u, v) ∈ Y (R) × Y (R).
To see Proposition 1.7, we consider two cases: d ≤ 3 and d = 4. In the case d ≤ 3, we use the Gagliardo-Nirenberg inequality (1.17)

u L 3 ≤ C ∇u d 6 L 2 u 1-d 6 L 2 ,
and the conservation of mass to have

|P (u, v)| ≤ c v L 3 u 2 L 3 ≤ cC 3 ∇u d 3 L 2 u 2-d 3 L 2 ∇v d 6 L 2 v 1-d 6 L 2 ≤ cC 3 [K(u, v)] d 6 [M (u, v)] 1-d 6 1 κ K(u, v)
This implies that if M (u 0 , v 0 ) < M (φ 0 , ψ 0 ), then the kinetic energy is bounded uniformly. Therefore, in both cases, the H 1 -norm of initial data is bounded uniformly in time, and the result follows. Proposition 1.7 tells us that the dimension d = 4 is the smallest dimension for which the large data blow-up solutions of (1.6) may occur. Our next result is the blow-up criteria for (1.14) with non-radial initial data.

Theorem 1.8. Let d = 4 and κ = 1 2 . Let (u 0 , v 0 ) ∈ H 1 × H 1 be such that the corresponding solution (not necessary radial) to (1.14) exists on the maximal time interval [0, T ). If E(u 0 , v 0 ) < 0, then either the solution blows up in finite time or the solution blows up infinite time and there exists a time sequence (t n ) n≥1 such that t n → +∞ and

lim n→∞ (u(t n ), v(t n )) H 1 ×H 1 = ∞. (1.19)
The proof of this result is based on the argument of Du-Wu-Zhang [11] using the localized virial estimates. One can rule out the infinite time blow-up given in Theorem 1.8 by considering radially symmetric initial data with negative energy. Note that in the case initial data has finite variance and negative energy, the existence of finite time blow-up solutions was proved by Hayashi-Ozawa-Takana [14].

Theorem 1.9. Let d = 4 and κ = 1 2 . Let (u 0 , v 0 ) ∈ H 1 × H 1 be radial and satisfies E(u 0 , v 0 ) < 0. Then the corresponding solution to (1.14) blows up in finite time.

The proof of this result is based on localized radial virial estimates and an argument of [START_REF] Ogawa | Blow-up of H 1 solutions for the nonlinear Schrödinger equation[END_REF]. A similar argument has been used in [10] to show the existence of finite time blow-up solutions for the inhomogeneous nonlinear Schrödinger equation. Definition 1.10. We denote the set of minimizers of J which are positive radially symmetric solutions of (1.15) by G. It follows from (1.16) that all elements of G have the same mass, that is, there exists M gs > 0 such that M (φ, ψ) = M gs for any (φ, ψ) ∈ G.

An immediate consequence of Proposition 1.7 and Definition 1.10 is the following global well-posedness result.

Corollary 1.11. Let d = 4 and κ = 1 2 . Let (u 0 , v 0 ) ∈ H 1 × H 1 be such that M (u 0 , v 0 ) < M gs .
Then the corresponding solution to (1.14) exists globally in time.

Corollary 1.11 infers that M gs is the smallest mass for which the finite time blow-up solutions could appear. In [14], Hayashi-Ozawa-Takana constructed explicit solutions which blow up at finite time and have minimal mass M gs . More precisely, they proved the following result (see [14, Theorem 6.3]).

Proposition 1.12. Let d = 4 and κ = 1 2 . Let (φ, ψ) ∈ G. For T > 0, let

(1.20) u(t, x) = 1 (T -t) 2 exp -i |x| 2 4(T -t) + i t T (T -t) φ x T -t , v(t, x) = 1 (T -t) 2 exp -i |x| 2 2(T -t) + i 2t T (T -t) ψ x T -t .
Then (u, v) is a solution of (1.6), and satisfies:

(1) u, v ∈ C ∞ (-∞, T ), H ∞ (R 4 )), where H ∞ = ∩ m≥1 H m .
(

) (u(0), v(0)) = 1 T 2 exp -i |x| 2 4T φ x T , 1 T 2 exp -i |x| 2 2T ψ x T . (3) M (u(0), v(0)) = M (φ, ψ) = M gs = C 2 opt 4 . (4) K(u(t), v(t)) = O((T -t) -2 ) as t ↑ T . (5) P (u(t), v(t)) = O((T -t) -2 ) as t ↑ T . 2 
(6) M (u(t), v(t)) → M (φ, ψ)δ weakly star in D (R 4 ) as t ↑ T , where δ is the Dirac delta at the origin.

Our next result is the classification of finite time blow-up solutions with minimal mass for (1.14) in the case d = 4 and κ = 1 2 . Theorem 1.13 (Classification minimal mass blow-up solutions). Let d = 4 and κ = 1 2 . Let (u 0 , v 0 ) ∈ H 1 × H 1 be such that M (u 0 , v 0 ) = M gs . Assume that the corresponding solution to (1.14) blows up in finite time 0 < T < +∞. Then there exist (φ, ψ) ∈ G, θ 1 , θ 2 ∈ R and ρ > 0 such that

u 0 (x) = e iθ 1 e i ρ 2 T e -i |x| 2 4T ρ T 2 φ ρx T , v 0 (x) = e iθ 2 e i ρ 2 T e -i |x| 2 2T ρ T 2 ψ ρx T .
In particular,

(1.21)

u(t, x) = e iθ 1 e i ρ 2 T -t e -i |x| 2 4(T -t) ρ T -t 2 φ ρx T -t , v(t, x) = e iθ 2 e i ρ 2 T -t e -i |x| 2 2(T -t) ρ T -t 2 ψ ρx T -t .
Note that if we take θ 1 = -1 T , θ 2 = -2 T and ρ = 1, then (1.21) becomes (1.20). The proof of Theorem 1.13 is inspired by an argument of [START_REF] Hmidi | Blwoup theory for the critical nonlinear Schrödinger equations revisited[END_REF] using the profile decomposition (see also [9] for a different approach). This paper is organized as follows. In Section 2, we study the existence and stability of standing waves. More precisely, we study the variational problem I(a, b) in Subsection 2.1 where Theorem 1.3 is proved. The variational problem J(c) is studied in Subsection 2.2, and Theorem 1.4 and Theorem 1.5 are proved in this subsection. Section 3 is devoted to the existence of blow-up solutions and the characterization of finite time blow-up solutions with minimal mass. The existence of blow-up solutions given in Theorem 1.8 and Theorem 1.9 are considered in Subsection 3.1. The characterization of finite time blow-up solutions with minimal mass given in Theorem 1.13 is showed in Subsection 3.2.

Existence and stability of standing waves

Throughout this section, we use the following notations: 

K(u, v) := ∇u 2 L 2 + κ ∇v 2 L 2 , M (u, v) = u 2 L 2 + 2 v 2 L 2 , P (u, v) = Re( v, u 2 ).
Proof. Let (u, v) ∈ H 1 × H 1 be such that u 2 L 2 = a and v 2 L 2 = b.
Thanks to the Gagliardo-Nirenberg inequality (1.17) and estimating as in (1.18), we have

|P (u, v)| ≤ C(κ, a, b)[K(u, v)] d 4 .
where C(κ, a, b) depends only on κ, a, b and not on u and v. Thus

E(u, v) = 1 2 K(u, v) -P (u, v) ≥ 1 2 K(u, v) -C(κ, a, b)[K(u, v)] d 4 . Since d ≤ 3, it follows that E(u, v) > -∞. To see I(a, b) < 0, let us choose (u, v) ∈ H 1 × H 1 such that u 2 L 2 = a, v 2 L 2 = b and u(x), v(x) > 0 for all x ∈ R d . For γ > 0, set u γ (x) = γ d 2 u(γx) and v γ (x) = γ d 2 v(γx). It is easy to see that for all γ > 0, u γ 2 L 2 = u 2 L 2 = a and v γ 2 L 2 = v 2 L 2 = b. Moreover, E(u γ , v γ ) = 1 2 K(u γ , v γ ) -P (u γ , v γ ) = γ 2 2 K(u, v) -γ d 2 P (u, v).
Since d ≤ 3 and P (u, v) > 0, by taking γ sufficiently small, we obtain E(u γ , v γ ) < 0. The proof is complete.

Lemma 2.2. Let d ≤ 3 and a, b > 0. Let (u n , v n ) n≥1 be a minimizing sequence for I(a, b). Then there exist C > 0, ρ > 0 and η > 0 such that for sufficiently large n:

(1) K(u n , v n ) ≤ C; (2) ∇u n L 2 ≥ ρ and ∇v n L 2 ≥ η.
Proof. By (1.18), we have

1 2 K(u n , v n ) = E(u n , v n ) + P (u n , v n ) ≤ E(u n , v n ) + C(κ)[M (u n , v n )] 3 2 -d 4 [K(u n , v n )] d 4 . Since u n 2 L 2 → a, v n 2 L 2 → b and E(u n , v n ) → I(a, b) as n → ∞, it follows that for sufficiently large n, M (u n , v n ) ≤ C and E(u n , v n ) ≤ C for some constant C > 0. Note that the constant C > 0 may change from line to line. Thus 1 2 K(u n , v n ) ≤ C + C(κ)[K(u n , v n )] d 4 .
Since d ≤ 3, we get K(u n , v n ) ≤ C for some C > 0 and sufficiently large n. This proves the first item. Note that this item implies that every minimizing sequence for I(a, b) is bounded in

H 1 × H 1 . Let us show ∇u n L 2 ≥ ρ.
Assume by contradiction that up to a subsequence, lim n→∞ ∇u n L 2 = 0. By the Hölder inequality and Sobolev embedding, we have

|P (u n , v n )| ≤ C u n 2 L 4 v n L 2 ≤ C(b) ∇u n 2 L 2 → 0 as n → ∞. In particular, I(a, b) = lim n→∞ E(u n , v n ) = lim n→∞ κ 2 ∇v n 2 L 2 ≥ 0, which is a contradiction to Lemma 2.1. It follows that there exists ρ > 0 such that ∇u n L 2 ≥ ρ.
The proof of ∇v n L 2 ≥ η is similar, we omit the details. Now to each minimizing sequence (u n , v n ) n≥1 for I(a, b), we associate with the following sequence of nondecreasing functions (Lévy concentration functions)

M n : [0, ∞) → [0, a + b] defined by M n (R) := sup y∈R d ˆB(y,R) |u n (x)| 2 + |v n (x)| 2 dx. Since u n 2 L 2 → a and v n 2 L 2 → b as n → ∞, then (M n ) n≥1
is a uniformly bounded sequence of nondecreasing functions on [0, ∞). By Helly's selection theorem, we see that (M n ) n≥1 must have a subsequence, still denoted by (M n ) n≥1 , that converges pointwise and uniformly on compact sets to a nonnegative nondecreasing function

M : [0, ∞) → [0, a + b]. Let L := lim R→∞ M (R) = lim R→∞ lim n→∞ sup y∈R d ˆB(y,R) |u n (x)| 2 + |v n (x)| 2 dx. (2.1)
We have 0 ≤ L ≤ a + b. By the Lions' concentration compactness lemma ( [17, Lemma I.1]), there are three (mutually exclusive) possibilities for the value of L:

(1) (Vanishing) L = 0. Since M (R) is non-negative and nondecreasing, it follows that

M (R) = lim n→∞ sup y∈R d ˆB(y,R) |u n (x)| 2 + |v n (x)| 2 dx = 0, for every R ∈ [0, ∞); (2) (Dichotomy) L ∈ (0, a + b); (3) (Compactness) L = a + b. In this case, there exists a sequence (y n ) n≥1 ⊂ R d such that |u n (• + y n )| 2 + |v n (• + y n )| 2 is tight, that is, for all ε > 0, there exists R(ε) > 0 such that ˆB(yn,R(ε)) |u n (x)| 2 + |v n (x)| 2 dx ≥ (a + b) -ε,
for sufficiently large n. Let us start by rulling out the "vanishing" possibility. To do so, we recall the following well-known result (see [18, 

Lemma I.1]). Lemma 2.3. Let 2 < q < 2 * , where 2 * = ∞ for d = 1, 2 and 2 * = 2d d-2 for d ≥ 3. Assume that (f n ) n≥1 is a bounded sequence in H 1 (R d ) and satisfies sup y∈R d ˆB(y,R) |f n (x)| 2 dx → 0 as n → ∞, for some R > 0. Then f n → 0 in L q .
Lemma 2.4. Let d ≤ 3 and a, b > 0. Then for every minimizing sequence (u n , v n ) n≥1 for I(a, b), it holds that L > 0.

Proof. By contradiction, we suppose that L = 0. Then there exist R 0 > 0 and a subsequence of

(u n , v n ) n≥1 , still denoted by (u n , v n ) n≥1 , such that sup y∈R d ˆB(y,R 0 ) |u n (x)| 2 + |v n (x)| 2 dx → 0 as n → ∞.
Using the fact that (u n , v n ) n≥1 is bounded in H 1 × H 1 (by Item (1) of Lemma 2.2) and Lemma 2.3, we see that u n L q , v n L q → 0 as n → ∞ with 2 < q < 2 * . In particular, we have

|P (u n , v n )| ≤ u n 2 L 3 v n L 3 → 0 as n → ∞. Therefore, I(a, b) = lim n→∞ E(u n , v n ) = lim n→∞ 1 2 K(u n , v n ) ≥ 0,
which contradicts to Lemma 2.1. The proof is complete.

We next rule out the "dichotomy" possibility. To do so, we need the following lemmas. Proof. We first observe that I(a, 0),

I(0, b) ≥ 0. Indeed, let (u 1 n , v 1 n ) n≥1 be a minimizing sequence for I(a, 0), i.e lim n→∞ u 1 n 2 L 2 = a, lim n→∞ v 1 n 2 L 2 = 0 and lim n→∞ E(u 1 n , v 1 n ) = I(a, 0). Since (u 1 n , v 1 n ) n≥1 is a bounded sequence in H 1 × H 1
, the Hölder inequality and Sobolev embedding imply that

|P (u 1 n , v 1 n )| ≤ C u 1 n 2 L 4 v 1 n L 2 ≤ C ∇u 1 n 2 L 2 v 1 n L 2 → 0 as n → ∞. Thus I(a, 0) = lim n→∞ E(u 1 n , v 1 n ) = lim n→∞ 1 2 K(u 1 n , v 1 n ) ≥ 0. The lemma follows immediately since I(a, b) < 0 by Lemma 2.1. Lemma 2.6. Let a 1 , b 1 , a 2 , b 2 > 0. Then I(a 1 + a 2 , b 1 ) < I(a 1 , b 1 ) + I(a 2 , 0), I(a 2 , b 1 + b 2 ) < I(0, b 1 ) + I(a 2 , b 2 ).
Proof. We only give the proof for the first item, the second one is similar. Let (u 1 n , v 1 n ) n≥1 and (u 2 n , v 2 n ) n≥1 be minimizing sequences for I(a 1 , b 1 ) and I(a 2 , 0), i.e. lim

n→∞ u 1 n 2 L 2 = a 1 , lim n→∞ v 1 n 2 L 2 = b 1 , lim n→∞ E(u 1 n , v 1 n ) = I(a 1 , b 1 ), lim n→∞ u 2 n 2 L 2 = a 2 , lim n→∞ v 2 n 2 L 2 = 0, lim n→∞ E(u 2 n , v 2 n ) = I(a 2 , 0).
We look for a sequence of functions

(u n , v n ) n≥1 in H 1 × H 1 such that lim n→∞ u n 2 L 2 = a 1 + a 2 , lim n→∞ v n 2 L 2 = b 1 and lim n→∞ E(u n , v n ) = I(a 1 +a 2 , b 1 ) such that I(a 1 +a 2 , b 1 ) < I(a 1 , b 1 )+ I(a 2 , 0).
To do so, without loss of generality, we may assume that

u 1 n , u 2 n and v 1 n , v 2 n are nonnegative. Since (u 1 n , v 1 n ) n≥1 and (u 2 n , v 2 n ) n≥1 are bounded in H 1 × H 1 ,

up to subsequence, we consider the values

A 1 = 1 a 2 lim n→∞ 1 2 ∇u 2 n 2 L 2 -ˆv1 n (u 2 n ) 2 dx , A 2 = 1 a 1 lim n→∞ 1 2 ∇u 1 n 2 L 2 -ˆv1 n (u 1 n ) 2 dx . Assume first A 2 > A 1 . Set α 11 = 1 + a 1 a 2 . It follows that √ α 11 u 2 n 2 L 2 = a 1 + a 2 , v 1 n 2 L 2 = b 1 . By the non-negativity of u 1 n , u 2 n and v 1 n , v 2 n , we have I(a 1 + a 2 , b 1 ) ≤ E( √ α 11 u 2 n , v 1 n ) = 1 2 K( √ α 11 u 2 n , v 1 n ) -ˆv1 n ( √ α 11 u 2 n ) 2 dx = α 11 2 ∇u 2 n 2 L 2 + κ 2 ∇v 1 n 2 L 2 -α 11 ˆv1 n (u 2 n ) 2 dx = 1 2 ∇u 2 n 2 L 2 + κ 2 ∇v 1 n 2 L 2 -ˆv1 n (u 2 n ) 2 dx + a 1 a 2 1 2 ∇u 2 n 2 L 2 -ˆv1 n (u 2 n ) 2 dx (2.2) = 1 2 K(u 2 n , v 2 n ) + κ 2 ∇v 1 n 2 L 2 + a 1 a 2 1 2 ∇u 2 n 2 L 2 -ˆv1 n (u 2 n ) 2 dx -ˆv1 n (u 2 n ) 2 dx - κ 2 ∇v 2 n 2 L 2 ≤ 1 2 K(u 2 n , v 2 n ) + κ 2 ∇v 1 n 2 L 2 + a 1 a 2 1 2 ∇u 2 n 2 L 2 -ˆv1 n (u 2 n ) 2 dx .
Set δ = a 1 (A 2 -A 1 ) > 0. Passing the limit as n → ∞ in the above inequality and note that

I(a 2 , 0) = lim n→∞ 1 2 K(u 2 n , v 2 n ), we get I(a 1 + a 2 , b 1 ) ≤ I(a 2 , 0) + lim n→∞ κ 2 ∇v 1 n 2 L 2 + a 1 a 2 (a 2 A 1 ) = I(a 2 , 0) + lim n→∞ κ 2 ∇v 1 n 2 L 2 + a 1 A 2 -δ = I(a 2 , 0) + lim n→∞ E(u 1 n , v 1 n ) -δ = I(a 2 , 0) + I(a 1 , b 1 ) -δ < I(a 1 , b 1 ) + I(a 2 , 0). In the case A 1 > A 2 . Set α 11 = 1 + a 2 a 1 . It follows that I(a 1 + a 2 , b 1 ) ≤ E( √ α 11 u 1 n , v 1 n ) = α 11 2 ∇u 1 n 2 L 2 + κ 2 ∇v 1 n 2 L 2 -α 11 ˆv1 n (u 2 n ) 2 dx = E(u 1 n , v 1 n ) + a 2 a 1 1 2 ∇u 1 n 2 L 2 -ˆv1 n (u 1 n ) 2 dx ≤ E(u 1 n , v 1 n ) + a 2 a 1 1 2 ∇u 1 n 2 L 2 -ˆv1 n (u 1 n ) 2 dx + κ 2 ∇v 2 n 2 L 2 + ˆv1 n (u 2 n ) 2 dx. Set δ = a 2 (A 1 -A 2 ) > 0.
Passing the limit as n → ∞, we obtain

I(a 1 + a 2 , b 1 ) ≤ I(a 1 , b 1 ) + a 2 a 1 (a 1 A 2 ) + lim n→∞ κ 2 ∇v 2 n 2 L 2 + lim n→∞ ˆv1 n (u 2 n ) 2 dx = I(a 1 , b 1 ) + lim n→∞ 1 2 ∇u 2 n 2 L 2 -lim n→∞ ˆv1 n (u 2 n ) 2 dx -δ + lim n→∞ κ 2 ∇v 2 n 2 L 2 + lim n→∞ ˆv1 n (u 2 n ) 2 dx = I(a 1 , b 1 ) + lim n→∞ 1 2 K(u 2 n , v 2 n ) -δ = I(a 1 , b 1 ) + I(a 2 , 0) -δ < I(a 1 , b 1 ) + I(a 2 , 0).

Finally, we consider the case

A 1 = A 2 . Set α 11 = 1 + a 1 a 2 . By (2.
2), we have

I(a 1 + a 2 , b 1 ) ≤ E( √ α 11 u 2 n , v 1 n ) = α 11 2 ∇u 2 n 2 L 2 + κ 2 ∇v 1 n 2 L 2 -α 11 ˆv1 n (u 2 n ) 2 dx = 1 2 K(u 2 n , v 2 n ) + κ 2 ∇v 1 n 2 L 2 + a 1 a 2 1 2 ∇u 2 n 2 L 2 -ˆv1 n (u 2 n ) 2 dx -ˆv1 n (u 2 n ) 2 dx - κ 2 ∇v 2 n 2 L 2 .
We claim that there exists δ > 0 such that for sufficiently large n, ˆv1

n (u 2 n ) 2 dx > δ. Indeed, suppose that lim n→∞ ´v1 n (u 2 n ) 2 dx = 0. Since v 1 n , u 2 n are nonnegative, we have v 1 n (u 2 n ) 2 → 0 amost everywhere in R d . It contradicts to the fact lim n→∞ v 1 n 2 L 2 = b 1 > 0 and lim n→∞ u 2 n 2 L 2 = a 2 > 0.
Passing the limit as n → ∞, we obtain

I(a 1 + a 2 , b 1 ) ≤ I(a 2 , 0) + lim n→∞ κ 2 ∇v 1 n 2 L 2 + a 1 a 2 (a 2 A 1 ) -δ = I(a 2 , 0) + lim n→∞ κ 2 ∇v 1 n 2 L 2 + a 1 A 2 -δ = I(a 2 , 0) + lim n→∞ E(u 1 n , v 1 n ) -δ = I(a 2 , 0) + I(a 1 , b 1 ) -δ < I(a 1 , b 1 ) + I(a 2 , 0). The proof is complete. Lemma 2.7. Let a 1 , b 1 , a 2 , b 2 > 0. Then I(a 1 + a 2 , b 1 + b 2 ) < I(a 1 , b 1 ) + I(a 2 , b 2 ). Proof. Let (u 1 n , v 1 n ) n≥1 and (u 2 n , v 2 n ) n≥1 be minimizing sequences for I(a 1 , b 1 ) and I(a 2 , b 2 ), i.e. lim n→∞ u 1 n 2 L 2 = a 1 , lim n→∞ v 1 n 2 L 2 = b 1 , lim n→∞ E(u 1 n , v 1 n ) = I(a 1 , b 1 ), lim n→∞ u 2 n 2 L 2 = a 2 , lim n→∞ v 2 n 2 L 2 = b 2 , lim n→∞ E(u 2 n , v 2 n ) = I(a 2 , b 2 ).
We look for a sequence of functions

(u n , v n ) n≥1 in H 1 × H 1 such that lim n→∞ u n 2 L 2 = a 1 + a 2 , lim n→∞ v n 2 L 2 = b 1 + b 2 and lim n→∞ E(u n , v n ) = I(a 1 + a 2 , b 1 + b 2 ) such that I(a 1 + a 2 , b 1 + b 2 ) < I(a 1 , b 1 ) + I(a 2 , b 2 ).
Without loss of generality, we may assume that u 1 n , u 2 n and v 1 n , v 2 n are nonnegative. By a density argument, we may also suppose that u 1 n , u 2 n and v 1 n , v 2 n have compact support. For each n, we choose

x n ∈ R d so that ṽ1 n (•) = v 1 n (• -x n ) and v 2 n have disjoint support. Since (u 1 n , v 1 n ) n≥1 and (u 2 n , v 2 n ) n≥1 are bounded in H 1 × H 1 ,
passing to subsequences, we can consider the following values

A 1 = 1 a 1 lim n→∞ ∇u 1 n 2 L 2 2 -ˆv1 n (u 1 n ) 2 dx , A 2 = 1 a 2 lim n→∞ ∇u 2 n 2 L 2 2 -ˆv2 n (u 2 n ) 2 dx . Let v n = ṽ1 n + v 2 n . Since ṽ1 n , v 2 n have disjoint support, we have that lim n→∞ v n 2 L 2 = b 1 + b 2 . Assume first A 2 > A 1 . Set α 11 = 1 + a 2 a 1 and ũ1 n (•) = u 1 n (• -x n ). It follows that I(a 1 + a 2 , b 1 + b 2 ) ≤ E( √ α 11 ũ1 n , v n ) = α 11 2 ∇ũ 1 n 2 L 2 + κ 2 ∇v n 2 L 2 -α 11 ˆvn (ũ 1 n ) 2 dx = α 11 2 ∇ũ 1 n 2 L 2 + κ 2 ∇ṽ 1 n 2 L 2 + κ 2 ∇v 2 n 2 L 2 -α 11 ˆṽ 1 n (ũ 1 n ) 2 dx (2.3) -α 11 ˆv2 n (ũ 1 n ) 2 dx ≤ E(u 1 n , v 1 n ) + κ 2 ∇v 2 n 2 L 2 + a 2 a 1 ∇u 1 n 2 L 2 2 -ˆv1 n (u 1 n ) 2 dx .
Set δ = a 2 (A 2 -A 1 ) > 0. Passing the limit as n → ∞, we obtain

I(a 1 + a 2 , b 1 + b 2 ) ≤ I(a 1 , b 1 ) + lim n→∞ κ 2 ∇v 2 n 2 L 2 + a 2 a 1 (a 1 A 1 ) = I(a 1 , b 1 ) + lim n→∞ κ 2 ∇v 2 n 2 L 2 + a 2 A 2 -δ = I(a 1 , b 1 ) + lim n→∞ E(u 2 n , v 2 n ) -δ = I(a 1 , b 1 ) + I(a 2 , b 2 ) -δ < I(a 1 , b 1 ) + I(a 2 , b 2 ).
Let us now consider the case A 1 > A 2 . Set α 11 = 1 + a 1 a 2 . We have

I(a 1 + a 2 , b 1 + b 2 ) ≤ E( √ α 11 u 2 n , v n ) = α 11 2 ∇u 2 n 2 L 2 + κ 2 ∇v n 2 L 2 -α 11 ˆvn (u 2 n ) 2 dx = α 11 2 ∇u 2 n 2 L 2 + κ 2 ∇ṽ 1 n 2 L 2 + κ 2 ∇v 2 n 2 L 2 -α 11 ˆṽ 1 n (u 2 n ) 2 dx -α 11 ˆv2 n (u 2 n ) 2 dx ≤ E(u 2 n , v 2 n ) + κ 2 ∇v 1 n 2 L 2 + a 1 a 2 ∇u 2 n 2 L 2 2 -ˆv2 n (u 2 n ) 2 dx .
Set δ = a 1 (A 1 -A 2 ) > 0. Passing the limit as n → ∞, we get

I(a 1 + a 2 , b 1 + b 2 ) ≤ I(a 2 , b 2 ) + lim n→∞ κ 2 ∇v 1 n 2 L 2 + a 1 a 2 (a 2 A 2 ) = I(a 2 , b 2 ) + lim n→∞ κ 2 ∇v 1 n 2 L 2 + a 1 A 1 -δ = I(a 2 , b 2 ) + lim n→∞ E(u 1 n , v 1 n ) -δ = I(a 2 , b 2 ) + I(a 1 , b 1 ) -δ < I(a 1 , b 1 ) + I(a 2 , b 2 ).
Finally, we consider the case A 1 = A 2 . Set α 11 = 1 + a 2 a 1 . By (2.3), we have

I(a 1 + a 2 , b 1 + b 2 ) ≤ E( √ α 11 ũ1 n , v n ) = α 11 2 ∇ũ 1 n 2 L 2 + κ 2 ∇ṽ 1 n 2 L 2 + κ 2 ∇(v 2 n ) * 2 L 2 -α 11 ˆv1 n (u 1 n ) 2 dx -α 11 ˆv2 n (ũ 1 n ) 2 dx = E(u 1 n , v 1 n ) + κ 2 ∇v 2 n 2 L 2 + a 2 a 1 ∇u 1 n 2 L 2 2 -ˆv1 n (u 1 n ) 2 dx -α 11 ˆv2 n (ũ 1 n ) 2 dx.
As in the proof of Lemma 2.6, there exists δ > 0 such that lim n→∞ ´v2 n (ũ 1 n ) 2 dx > δ. Passing the limit as n → ∞, we get

I(a 1 + a 2 , b 1 + b 2 ) ≤ I(a 1 , b 1 ) + lim n→∞ κ 2 ∇v 2 n 2 L 2 + a 2 a 1 (a 1 A 1 ) -δ = I(a 1 , b 1 ) + lim n→∞ κ 2 ∇v 2 n 2 L 2 + a 2 A 2 -δ = I(a 1 , b 1 ) + lim n→∞ E(u 2 n , v 2 n ) -δ = I(a 1 , b 1 ) + I(a 2 , b 2 ) -δ < I(a 1 , b 1 ) + I(a 2 , b 2 ).
The proof is now complete.

Combining Lemmas 2.5, 2.6, 2.7, we have the subadditivity property of I(a, b).

Corollary 2.8. Let a 1 , a 2 , b 1 , b 2 ≥ 0 be such that a 1 + a 2 > 0, b 1 + b 2 > 0, a 1 + b 1 > 0 and a 2 + b 2 > 0. Then it holds that I(a 1 + a 2 , b 1 + b 2 ) < I(a 1 , b 1 ) + I(a 2 , b 2 ).
Lemma 2.9. Let L be as in (2.1). Let a, b > 0 and (u n , v n ) n≥1 be a minimizing sequence for I(a, b). Then there exists (a

1 , b 1 ) ∈ [0, a] × [0, b] such that L = a 1 + b 1 and I(a 1 , b 1 ) + I(a -a 1 , b -b 1 ) ≤ I(a, b). (2.4)
Proof. Let ε > 0 be arbitrary. It follows from the definition of L that there exist R ε > 0 and

N ε ∈ N such that for R ≥ R ε and n ≥ N ε , one has L -ε < M (R) ≤ M (2R) ≤ L and L -ε < M n (R) ≤ M n (2R) ≤ L + ε. Thus by the definition of M n , for every n ≥ N ε , there exists a sequence of points (y n ) n≥1 ⊂ R d such that ˆB(yn,R) |u n (x)| 2 + |v n (x)| 2 dx > L -ε and ˆB(yn,2R) |u n (x)| 2 + |v n (x)| 2 dx < L + ε. (2.5) Now let ϑ ∈ C ∞ 0 (B(0, 2)) be such that ϑ ≡ 1 on B(0, 1) and χ ∈ C ∞ (R d ) be such that ϑ 2 + χ 2 = 1 on R d . For any R > 0, we define ϑ R (x) = ϑ(x/R), χ R (x) = χ(x/R).
We next define the functions

(u 1 n (x), v 1 n (x)) := ϑ R (x -y n )(u n (x), v n (x)), x ∈ R d , (u 2 n (x), v 2 n (x)) := χ R (x -y n )(u n (x), v n (x)), x ∈ R d . Since (u i n , v i n ) n≥1 , i = 1, 2 are bounded in L 2 . Up to subsequence, we see that u 1 n 2 L 2 → a 1 , v 1 n 2 L 2 → b 1 as n → ∞, where a 1 ∈ [0, a] and b 1 ∈ [0, b]. We also have that u 2 n 2 L 2 → a -a 1 , v 2 n 2 L 2 → b -b 1 as n → ∞. Thus a 1 + b 1 = lim n→∞ ˆ|u 1 n (x)| 2 + |v 1 n (x)| 2 dx = lim n→∞ ˆϑ2 R (x -y n )(|u n (x)| 2 + |v n (x)| 2 )dx. (2.6)
By (2.5) and (2.6), we have

|a 1 + b 1 -L| < ε. (2.7)
We claim now that there exists C > 0 such that for every n,

E(u 1 n , v 1 n ) + E(u 2 n , v 2 n ) ≤ E(u n , v n ) + Cε. (2.8) Indeed, E(u 1 n , v 1 n ) = ∇u 1 n 2 2 + κ 2 ∇v 1 n 2 L 2 -Re ˆv1 n (u 1 n ) 2 dx = ∇(ϑ R u n ) 2 L 2 2 + κ 2 ∇(ϑ R v n ) 2 L 2 -Re ˆϑ3 R v n (u n ) 2 dx.
We see that

∇(ϑ R u n ) 2 L 2 ≤ ( ϑ R ∇u n 2 L 2 + ∇ϑ R u n 2 L 2 ) 2 = ϑ R ∇u n 2 L 2 + ∇ϑ R u n 2 L 2 + 2 ϑ R ∇u n L 2 ∇ϑ R u n L 2 ≤ ϑ R ∇u n 2 L 2 + ∇ϑ R 2 L ∞ u n 2 L 2 + 2 ϑ R L ∞ ∇u n L 2 ∇ϑ R L ∞ u n L 2 = ϑ R ∇u n 2 L 2 + ∇ϑ 2 L ∞ R 2 u n 2 L 2 + 2 ϑ R L ∞ ∇ϑ L ∞ R ∇u n L 2 u n L 2 ≤ ϑ R ∇u n 2 L 2 + Cε.
The last inequality follows by taking R sufficiently large and using the fact that u n is bounded in H 1 . Similarly, we have

∇(ϑ R v n ) 2 L 2 ≤ ϑ R ∇v n 2 L 2 + Cε. Thus E(u 1 n , v 1 n ) ≤ ϑ R ∇u n 2 L 2 2 + κ 2 ϑ R ∇v n 2 L 2 -Re ˆϑ2 R v n (u n ) 2 dx + Re ˆ(ϑ 2 R -ϑ 3 R )v n (u n ) 2 dx + Cε.
Due to the support of ϑ R and (2.5), we have

Re ˆ(ϑ 2 R -ϑ 3 R )v n (u n ) 2 dx ≤ C ˆR<|x-yn|<2R |v n ||u n | 2 dx ≤ C ˆR<|x-yn|<2R |v n | 3 + |u n | 3 dx ≤ C ˆR<|x-yn|<2R |v n | 2 + |u n | 2 dx ≤ Cε.
We obtain

E(u 1 n , v 1 n ) ≤ ˆϑ2 R 1 2 |∇u n | 2 + κ 2 |∇v n | 2 -Re(v n (u n ) 2 ) dx + Cε.
Similarly, we have

E(u 2 n , v 2 n ) ≤ ˆχ2 R 1 2 |∇u n | 2 + κ 2 |∇v n | 2 -Re(v n (u n ) 2 ) dx + Cε.
Suming these two quantities and using the fact ϑ 2 R + χ 2 R = 1, we get (2.8).

V. D. DINH

We now consider the case all a 1 , b 1 , a -a 1 , b -b 1 are positive. We set

α 1 n = √ a 1 u 1 n L 2 , β 1 n = √ b 1 v 1 n L 2 , α 2 n = √ a -a 1 u 2 n L 2 , β 2 n = √ b -b 1 v 2 n L 2 .
It follows that

α 1 n u 1 n 2 L 2 = a 1 , β 1 n v 1 n 2 L 2 = b 1 , α 2 n u 2 n 2 L 2 = a -a 1 , β 2 n v 2 n 2 L 2 = b -b 1 .
Note that all the scaling α 1 n , β 1 n , α 2 n and β 2 n tend to 1 as n → ∞. Thus, up to subsequence,

I(a 1 , b 1 ) + I(a -a 1 , b -b 1 ) ≤ lim n→∞ E(u 1 n , v 1 n ) + E(u 2 n , v 2 n ). (2.9)
In the case a 1 = 0, we see that u 1 n 2

L 2 → 0 as n → ∞. This implies that Re ˆv1 n (u 1 n ) 2 dx → 0 as n → ∞.
Therefore,

I(0, b 1 ) ≤ lim n→∞ κ 2 ∇v 1 n 2 L 2 ≤ lim n→∞ E(u 1 n , v 1 n ).
Arguing as in the first case, we get

I(a, b -b 1 ) ≤ lim n→∞ E(u 2 n , v 2 n ).
Hence we still get (2.9). The case b 1 = 0 is similar. Therefore in all cases, we have (2.9). Combining (2.9) with (2.8), we obtain

I(a 1 , b 1 ) + I(a -a 1 , b -b 1 ) ≤ lim n→∞ E(u 1 n , v 1 n ) + E(u 2 n , v 2 n ) ≤ lim n→∞ E(u n , v n ) + Cε ≤ I(a, b) + Cε.
(2.10) As ε > 0 is arbitrary, the result follows from (2.7) and (2.10).

We are now able to rule out the "dichotomy" possibility.

Lemma 2.10. Let d ≤ 3, a, b > 0 and L be as in (2.1). Then for any minimizing sequence (u n , v n ) n≥1 for I(a, b), it holds that L / ∈ (0, a + b), that is, the dichotomy cannot occur.

Proof. Assume by contradiction that the dichotomy occurs, that is, L ∈ (0, a + b). Let a 1 , b 1 be as in Lemma 2.9, i.e. a 1 + b 1 = L and

I(a 1 , b 1 ) + I(a -a 1 , b -b 1 ) ≤ I(a, b). (2.11) On the other hand, since a, b > 0, a 1 + b 1 = L > 0 and a -a 1 + b -b 1 = a + b -L > 0, it follows from Corollary 2.8 that I(a, b) < I(a 1 , b 1 ) + I(a -a 1 , b -b 1 )
which contradicts to (2.11). The proof is complete.

We are now able to show the existence of minimizers for I(a, b).

Lemma 2.11. Let d ≤ 3 and a, b > 0. Let (u n , v n ) n≥1 be any minimizing sequence for I(a, b).

Then there exists a sequence (y n ) n≥1 ⊂ R d such that the sequence (u n (• + y n ), v n (• + y n )) n≥1 has a subsequence which converges strongly in H 1 × H 1 to some (u, v), which is a minimizer for I(a, b). That is the set G a,b is not empty.

Proof. By Lemma 2.4 and Lemma 2.10, we have L = a + b. Thus by the Lions' concentration compactness lemma, there exists a sequence (y n ) n≥1 ⊂ R d such that for each k ∈ N, there exists

R k > 0 such that ˆB(yn,R k ) |u n (x)| 2 + |v n (x)| 2 ≥ (a + b) - 1 k , equivalently ˆB(0,R k ) |ũ n (x)| 2 + |ṽ n (x)| 2 dx > (a + b) - 1 k , (2.12)
where ũn (x) = u n (x + y n ) and ṽn (x) = v n (x + y n ). Since the translated sequence (ũ n , ṽn ) n≥1 is bounded in

H 1 × H 1 , so up to subsequence, (ũ n , ṽn ) (u, v) in H 1 × H 1 . By the Fatou's lemma, we see that u 2 L 2 + v 2 L 2 ≤ a+b. For each k ∈ N, the embedding H 1 (B(0, R k )) → L 2 (B(0, R k )) is compact, so up to a subsequence, we have (ũ n , ṽn ) → (u, v) strongly in L 2 (B(0, R k ))×L 2 (B(0, R k )).
By a standard diagonalization argument, one may assume that there exists a subsequence of (ũ n , ṽn ) n≥1 , still denoted by (ũ n , ṽn ) n≥1 , satisfies

(ũ n , ṽn ) → (u, v) strongly in L 2 (B(0, R k )) × L 2 (B(0, R k )) for every k ∈ N.
Passing the limit as n → ∞ in (2.12), we obtain

(a + b) - 1 k ≤ lim n→∞ ˆB(0,R k ) |ũ n | 2 + |ṽ n | 2 dx = u 2 L 2 (B(0,R k )) + v 2 L 2 (B(0,R k )) ≤ u 2 L 2 + v 2 L 2 . Since u 2 L 2 + v 2 L 2 ≤ a + b and k ∈ N is arbitrary, it follows that u 2 L 2 + v 2 L 2 = a + b. Thus (ũ n , ṽn ) n≥1 → (u, v) strongly in L 2 × L 2 . Since (ũ n , ṽn ) (u, v) weakly in H 1 × H 1 , we have ∇u 2 L 2 ≤ lim inf n→∞ ∇ũ n 2 L 2 , ∇v 2 L 2 ≤ lim inf n→∞ ∇ṽ n 2 L 2 .
On the other hand, Re ˆṽ n (ũ n ) 2 dx → Re ˆvu 2 dx as n → ∞.

(2.13) Indeed, by Hölder's inequality and Sobolev embedding,

ˆ(ṽ n )(ũ n ) 2 dx -ˆvu 2 dx ≤ ˆ(ṽ n -v)(ũ n ) 2 dx + ˆv((ũ n ) 2 -u 2 )dx ṽn -v L 2 ũn 2 L 4 + v L 4 ũn -u L 2 ũn + u L 4 ṽn -v L 2 ∇ũ n 2 L 2 + ∇v L 2 ũn -u L 2 ∇(ũ n + u) L 2 → 0, as n → ∞. This implies that E(u, v) ≤ lim n→∞ E(ũ n , ṽn ) = I(a, b). On the other hand, u 2 L 2 = lim n→∞ ũn 2 L 2 = a and v 2 L 2 = lim n→∞ ṽn 2 L 2 = b, we have I(a, b) ≤ E(u, v). Therefore, I(a, b) = E(u, v) or (u, v) is a minimizer for I(a, b) or (u, v) ∈ G a,b .
Finally, since E(u, v) = lim n→∞ E(ũ n , ṽn ) and (2.13), we have 1 2

∇u 2 L 2 + κ 2 ∇v 2 L 2 = lim n→∞ 1 2 ∇ũ n 2 L 2 + κ 2 ∇ṽ n 2 L 2 .
This combined with u 2

L 2 + v 2 L 2 = lim n→∞ ũn 2 L 2 + ṽn 2 L 2 implies that (u, v) H 1 ×H 1 = lim n→∞ (ũ n , ṽn ) H 1 ×H 1 . Since (ũ n , ṽn ) → (u, v) weakly in H 1 × H 1 , we see that (ũ n , ṽn ) → (u, v) strongly in H 1 × H 1 .
The proof is complete.

Proof of Theorem 1.3. Item (1) follows from Lemma 2.11. We prove Item (2) by contradiction. Suppose that (1.9) is not true. Then there exist a subsequence (u n k , v n k ) k≥1 of (u n , v n ) n≥1 and a constant δ > 0 such that 

lim n→∞ inf (w,z)∈G a,b ,y∈R d (u n k (• + y), v n k (• + y)) -(w, z) H 1 ×H 1 ≥ δ. (2.14) Since (u n k , v n k ) k≥1 is
(u n k (• + y k ), v n k (• + y k )) -(g, h) H 1 ×H 1 = 0,
which contradicts to (2.14). Item (2) is thus proved. Item (3) follows directly from Item (2) using the fact that if (w, z) ∈ G a,b , then (w(• -y), z(• -y)) ∈ G a,b for any y ∈ R d . Finally, we show Item (4). Since (u, v) is a minimizer of I(a, b), then there exist Lagrange multipliers

ω 1 , ω 2 ∈ R such that K (u, v)[χ, ϑ] = 0, ∀(χ, ϑ) ∈ C ∞ 0 × C ∞ 0 , where K(u, v) = E(u, v) + ω 1 2 u 2 L 2 + ω 2 2 v 2
L 2 and the prime denotes the Fréchet derivative. A direct computation shows Re

ˆ ∇u • ∇χ + κ∇v • ∇ϑ + ω 1 uχ + ω 2 vϑ -2vuχ -u 2 ϑ dx = 0.
Testing (iχ, iϑ) instead of (χ, ϑ) and using the fact Re(iz) = -Im(z), we obtain

Im ˆ ∇u • ∇χ + κ∇v • ∇ϑ + ω 1 uχ + ω 2 vϑ -2vuχ -u 2 ϑ dx = 0. Thus ˆ ∇u • ∇χ + κ∇v • ∇ϑ + ω 1 uχ + ω 2 vϑ -2vuχ -u 2 ϑ dx = 0. Hence        ˆ∇u • ∇χdx + ω 1 ˆuχdx = 2 ˆvuχdx, κ ˆ∇v • ∇ϑdx + ω 2 ˆvϑdx = ˆu2 ϑdx, for any (χ, ϑ) ∈ C ∞ 0 × C ∞ 0 . This implies that (u, v) solves (1.7) in the sense of distribution. Moreover, by [21, Lemma 1.3], (u, v) is also a classical solution of (1.6). Since ∇(|u|) 2 L 2 ≤ ∇u 2 L 2
and Re( v, u 2 ) ≤ |v|, |u| 2 , we see that

E(|u|, |v|) ≤ E(u, v).
This shows that (|u|, |v|) is also a minimizer of I(a, b) and 

E(|u|, |v|) = E(u, v). It follows that ∇(|u|) 2 L 2 = ∇u 2 L 2 and ∇(|v|) 2 L 2 = ∇v 2 L 2 . We now set ũ(x) := u(x) |u(x)| . Since |ũ| 2 = 1,

Thus, we get |∇u|

2 = |∇(|u|)| 2 + |u| 2 |∇ũ| 2 . Since ∇(|u|) 2 L 2 = ∇u 2 L 2 , it follows that ˆ|u| 2 |∇ũ| 2 dx = 0.
Thus |∇ũ| = 0 and hence ũ is a constant with |ũ| = 1. This shows that there exists θ 1 ∈ R such that u(x) = e iθ 1 ϑ(x), where ϑ(x) = |u(x)|. Similarly, there exists θ 2 ∈ R such that v(x) = e iθ 2 ζ(x), where ζ(x) = |v(x)|. The proof is complete.

The variational problem J(c).

In this subsection, we study the variational problem (1.11).

Lemma 2.12. Let d ≤ 3 and c > 0. Then -∞ < J(c) < 0. Moreover, any minimizing sequence of J(c) is bounded in 18), we see that

H 1 × H 1 . Proof. Let (u, v) ∈ H 1 × H 1 be such that M (u, v) = c. By (1.
|P (u, v)| ≤ C[M (u, v)] 3 2 -d 4 [K(u, v)] d 4 . Since M (u, v) = c, it follows that |P (u, v)| ≤ A[K(u, v)] d 4
for some constant A = A(c) > 0. Since d ≤ 3, we apply the Young inequality to obtain for any ε > 0,

A[K(u, v)] d 4 ≤ εK(u, v) + C(ε, A). Thus E(u, v) ≥ 1 2 -ε K(u, v) -C(ε, A). (2.15) By choosing 0 < ε < 1 2 , we see that E(u, v) > -C(ε, A)
. This shows that J(c) > -∞. The proof for J(c) < 0 is similar to the one for I(a, b) < 0 given in Lemma 2.1. The boundeness in H 1 × H 1 of any minimizing sequence for J(c) follows similarly as in the proof of Item (1) of Lemma 2.2. The proof is complete.

Lemma 2.13. Let d ≤ 3 and c > 0. If (u n , v n ) n≥1 is a minimizing problem for J(c), then there exist a subsequence, still denoted by (u n , v n ) n≥1 , and a number 0 < a < c such that

lim n→∞ u n 2 L 2 = a, lim n→∞ E(u n , v n ) = I a, c -a 2 .
In particular, J(c) = I a, c-a 2 . Proof. Since M (u n , v n ) → c as n → ∞, it follows that the sequence ( u n 2 L 2 ) n≥1 is bounded. Thus up to a subsequence, we can assume that u n 2

L 2 → a as n → ∞ with 0 ≤ a ≤ c. Hence, v n 2 L 2 → c-a
2 as n → ∞. We first claim that a > 0. Suppose that a = 0. Since u n 2 L 2 → 0, the Hölder inequality, Sobolev embedding and the fact (

u n , v n ) n≥1 is bounded in H 1 × H 1 imply that |P (u n , v n )| → 0 as n → ∞. Thus J(c) = lim n→∞ E(u n , v n ) = lim n→∞ 1 2 K(u n , v n ) ≥ 0,
which is a contradiction to the fact J(c) < 0. Similarly, we show a < c. Finally, we show J(c) = I a, c-a 2 . Let (u, v) be a minimizer of I a, c-a 2 (This is possible due to Theorem 1.3). It follows that u

2 L 2 = a and v 2 L 2 = c-a 2 , hence M (u, v) = c. Thus J(c) ≤ E(u, v) = I a, c -a 2 . (2.16)
We now show the inverse inequality. Since 0 < a < c, we see that a and c-a 2 are both positive. We set

α n = √ a u n L 2 , β n = c-a 2 v n L 2 .
It follows that

α n u n 2 L 2 = a, β n v n 2 L 2 = c -a 2 .
Note that the scallings α n and β n tend to 1 as n → ∞. Thus

I a, c -a 2 ≤ lim n→∞ E(α n u n , β n v n ) = lim n→∞ E(u n , v n ) = J(c).
This combined with (2.16) imply that J(c) = I a, c-a 2 . The proof is complete. We are now able to prove Theorem 1.4. Proof of Theorem 1.4. Let (u n , v n ) n≥1 be a minimizing sequence for J(c). By Lemma 2.13, we see that there exists 0 < a < c such that up to a subsequence, (u n , v n ) n≥1 is a minimizing sequence for I a, c-a 2 . Since both a and c-a 2 are positive, by Item (1) of Theorem 1.3, there exist (

y n ) n≥1 ⊂ R d and (u, v) ∈ G a, c-a 2 such that (u n (• + y n ), v n (• + y n )) n≥1 has a subsequence converging to (u, v) in H 1 × H 1 . Since u 2 L 2 = a, v 2 L 2 = c-a 2 and E(u, v) = I a, c-a 2 = J(c), it follows that M (u, v) = c, E(u, v) = J(c).
This implies that (u, v) is a minimizer for J(c) and hence (u, v) ∈ M c .

Let us now prove (1.12). Assume by contradiction that (1.12) is not true, then there exist a subsequence (u

n k , v n k ) k≥1 of (u n , v n ) and a constant δ > 0 such that lim n→∞ inf (w,z)∈Mc,y∈R d (u n k (• + y), v n k (• + y)) -(w, z) H 1 ×H 1 ≥ δ.
(2.17) Since (u n k , v n k ) k≥1 is still a minimizing sequence of J(c), by Lemma 2.13, there exists a number 0 < a < c such that up to subsequence, (u n k , v n k ) k≥1 is a minimizing sequence for I a, c-a 2 and J(c) = I a, c-a 2 . By Item (1) of Theorem 1.3, there exist a sequence (y k ) k≥1 ⊂ R d and (g, h) ∈ G a, c-a 2 such that up to subsequence,

lim n→∞ (u n k (• + y k ), v n k (• + y k )) -(g, h) H 1 ×H 1 = 0. Now note that (g, h) ∈ G a, c-a 2 and J(c) = I a, c-a 2
imply that (g, h) ∈ M c . We thus get a contradiction to (2.17).

Item (3) follows from Item (2) since if (w, z) ∈ M c , then (w(• -y), z(• -y)) ∈ M c . We next prove Item (4). Since (u, v) is a minimizer of J(c), there exists a Lagrange multiplier

ω ∈ R such that H (u, v)[χ, ϑ] = 0, ∀(χ, ϑ) ∈ C ∞ 0 × C ∞ 0 , where H(u, v) = E(u, v) + ω 2 M (u, v)
. By the same calculations as in the proof of Theorem 1.3, we see that (u, v) is a classical solution of (1.7) with ω 2 = 2ω 1 = 2ω ∈ R. Before finishing the proof, we need the following result.

Lemma 2.14. Let (φ, ψ) ∈ H 1 × H 1 be a solution to (1.7) with ω 2 = 2ω 1 = 2ω. Then the following identities hold:

K(φ, ψ) + ωM (φ, ψ) = 3P (φ, ψ), P (φ, ψ) = 2S ω (φ, ψ), K(φ, ψ) = dS ω (φ, ψ), ωM (φ, ψ) = (6 -d)S ω (φ, ψ).
Proof. Multiplying both sides of the first equation in (1.7) with φ, integrating over R d and taking the real part, we have

∇φ 2 L 2 + ω φ 2 L 2 = 2Re ˆψφ 2 dx.
Similarly, multiplying both sides of the second equation in (1.7) with ψ, integrating over R d and taking the real part, we get 1 2

∇ψ 2 L 2 + 2ω ψ 2 L 2 = Re ˆψφ 2 dx.
Adding these two equalities, we obtain K(φ, ψ)+ωM (φ, ψ) = 3P (φ, ψ). Using this identity together with the fact S ω (φ, ψ) = 1 2 (K(φ, ψ) + ωM (φ, ψ)) -P (φ, ψ), it yields that P (φ, ψ) = 2S ω (φ, ψ). Multiplying both sides of the first equation with x • ∇φ, integrating over R d and taking the real part, we have

-Re ˆ∆φx • ∇φdx + ωRe ˆφx • ∇φdx = 2Re ˆψφx • ∇φdx. A direct calculation shows that Re ˆ∆φx • ∇φdx = d -2 2 ∇φ 2 L 2 , Re ˆφx • ∇φdx = - d 2 φ 2 L 2 , Re ˆψφx • ∇φdx = - d 2 Re ˆψφ 2 dx - 1 2 Re ˆφ2 x • ∇ψdx.
We thus get

- d -2 2 ∇φ 2 L 2 - dω 2 φ 2 L 2 = -dRe ˆψφ 2 dx -Re ˆφ2 x • ∇ψdx. (2.18)
By the same argument, multiplying both sides of the second equation in (1.7) with x • ∇ψ, integrating over R d and taking the real part, we get

- d -2 4 ∇ψ 2 L 2 -dω ψ 2 L 2 = Re ˆφ2 x • ∇ψdx. (2.19)
Adding (2.18) and (2. [START_REF] Csobo | Minimal mass blow-up solutions for the L 2 critical NLS with inverse-square potential[END_REF]) together, we obtain

d -2 2 K(φ, ψ) + dω 2 M (φ, ψ) = dP (φ, ψ).
This identity together with the definition of S ω (φ, ψ) imply that K(φ, ψ) = dS ω (φ, ψ). The last identity also yields that ωM (φ, ψ) = (6 -d)S ω (φ, ψ). The proof is complete.

We now continue the proof of Item (4) by showing that ω > 0. Since (u, v) is a solution of (1.7) with ω 2 = 2ω 1 = 2ω, we have the following identities

K(u, v) = dS ω (u, v), ωM (u, v) = (6 -d)S ω (u, v).
This implies ω > 0 since d ≤ 3 and K(u, v), M (u, v), S ω (u, v) are all positive. The rest of Item (4) follows exactly the same as in the proof of Item (4) in Theorem 1.3.

Finally, we show that each (u, v) ∈ M c is a ground state for (1.7) with ω 2 = 2ω 1 = 2ω > 0. Let (ũ, ṽ) be a solution of (1.7) with ω 2 = 2ω 1 = 2ω > 0. Our goal is to show

S ω (u, v) ≤ S ω (ũ, ṽ).
Assume by contradiction that S ω (ũ, ṽ) < S ω (u, v). Since (ũ, ṽ) is a solution of (1.7) with ω 2 = 2ω 1 = 2ω > 0, we have the following identities K(ũ, ṽ) = dS ω (ũ, ṽ), ωM (ũ, ṽ) = (6 -d)S ω (ũ, ṽ), P (ũ, ṽ) = 2S ω (ũ, ṽ).

In particular, we have

E(ũ, ṽ) = d 2 -2 S ω (ũ, ṽ) = d 2 -2 ω 6 -d M (ũ, ṽ).
Of course, similar identities hold for (u, v) since (u, v) is also a solution of (1.7) with ω 2 = 2ω 1 = 2ω > 0. Now set

γ := c M (ũ, ṽ) 1 4-d and define w(x) := γ 2 ũ(γx), z(x) := γ 2 ṽ(γx). It is easy to check that M (w, z) = γ 4-d M (ũ, ṽ) = c. Since (u, v) ∈ M c , we have d 2 -2 ω 6 -d c = E(u, v) ≤ E(w, z) = γ 6-d E(ũ, ṽ) = γ 6-d d 2 -2 ω 6 -d M (ũ, ṽ).
This implies that c ≥ γ 6-d M (ũ, ṽ) since d ≤ 3. We thus get

γ 6-d ≤ c M (ũ, ṽ) = γ 4-d or γ ≤ 1.
On the other hand,

ω 6 -d M (ũ, ṽ) = S ω (ũ, ṽ) < S ω (u, v) = ω 6 -d c.
Hence M (ũ, ṽ) < c or γ > 1 which is absurd. The proof of Item ( 5) is now complete. We now prove the orbital stability of standing waves for (1.6) given in Theorem 1.5. Proof of Theorem 1.5. Assume by contradiction that the claim is not true. Then there exists ε 0 > 0 and a sequence of initial data (u 0,n , v 0,n ) n≥1 such that inf (w,z)∈Mc

(u 0,n , v 0,n ) -(w, z) H 1 ×H 1 < 1 n , (2.20) 
and there exists a time sequence (t n ) n≥1 ⊂ [0, +∞) such that the corresponding solution sequence

(u n (t n ), v n (t n )) n≥1 of (1.6) satisfies inf (w,z)∈Mc (u n (t n ), v n (t n )) -(w, z) H 1 ×H 1 ≥ ε 0 . (2.21)
By (2.20) and the conservation of mass, we have

M (u n (t n ), v n (t n )) = M (u 0,n , v 0,n ) → M (w, z) = c as n → ∞.
On the other hand, since (u 0,n , v 0,n

) n≥1 → (w, z) in H 1 × H 1 as n → ∞, we have lim n→∞ E(u 0,n , v 0,n ) = lim n→∞ 1 2 K(u 0,n , v 0,n ) -Re( v 0,n , (u 0,n ) 2 ) = 1 2 K(w, z) -Re( z, w 2 ) = E(w, z).
By the conservation of energy, we get

E(u n (t n ), v n (t n )) = E(u 0,n , v 0,n ) → E(w, z) = J(c).
Thus, (u n (t n ), v n (t n )) n≥1 is a minimizing sequence for J(c). By Item (1) of Theorem 1.4, there exist a sequence (y

n ) n≥1 ⊂ R d and (g, h) ∈ M c such that lim n→∞ (u n (t n , • + y n ), v n (t n , • + y n )) -(g, h) H 1 ×H 1 = 0. Since (g(• -y n ), h(• -y n )) ∈ M c , we see that for sufficiently large n, inf (w,z)∈Mc (u n (t n ), v n (t n )) -(w, z) H 1 ×H 1 < ε 0 ,
which contradicts to (2.21). The proof is complete.

Existence and characterization of blow-up solutions

3.1. Existence of blow-up solutions. In this subsection, we study the existence of blowup solutions to (1.14) with d = 4 and κ = 1 2 . In [14], Hayashi-Ozawa-Takana showed the existence of finite time blow-up solutions in the case E(u 0 , v 0 ) < 0 and (u 0 , v 0 ) ∈ Σ × Σ, where Σ = H 1 ∩ L 2 (|x| 2 dx). Moreover, they pointed out explicit solutions which blows up in finite time and has mass equal to the mass of the ground state. Note that in this case the enery is zero. Our goal is to prove that for initial data in H 1 × H 1 (not necessary finite variance or radially symmetric) with negative energy, then the corresponding solution either blows up in finite time or blows up infinite time. Moreover, one can rule out the infinite time blow-up by considering additionally initial data has finite variance (i.e. (xu 0 , xv 0 ) ∈ L 2 × L 2 ) or is radially symmetric.

To do so, we need some virial estimates related to (1.14). Given a real-valued function χ, we define the virial potential V χ associated to (1.14) by

V χ (t) := ˆχ(x)(|u(t, x)| 2 + 2|v(t, x)| 2 )dx.
We have the following virial identity related to (1.14).

Lemma 3.1. Let d = 4 and κ = 1 2 . Let (u(t), v(t)) be a solution to (1.14). Then it holds that

d dt V χ (t) = 2 ˆ∇χ • Im(∇u(t)u(t) + ∇v(t)v(t))dx, (3.1) and d 2 dt 2 V χ (t) = -ˆ∆2 χ |u(t)| 2 + 1 2 |v(t)| 2 dx + jk Re ˆ∂2 jk χ (4∂ j u(t)∂ k u(t) + 2∂ j v(t)∂ k v(t)) dx -2Re ˆ∆χv(t)u 2 (t)dx. (3.2)
Proof. We only make a formal calculation. The rigorous proof requires a regularization procedure. Since (u(t), v(t)) is a solution to (1.14), we have

d dt V χ (t) = 2 ˆχRe(∂ t uu + 2∂ t vv)dx = -2 ˆχIm(∆u + 2vu)u + (∆v + 2u 2 )v)dx = -2 ˆχIm(∆uu + ∆vv)dx = 2 ˆ∇χ • Im(∇uu + ∇vv)dx.
We next have We also have

d 2 dt 2 V χ (t) =
Re ˆ∆χ∆uudx = jk Re ˆ∂2 j χ∂ 2 k uudx = - jk Re ˆ∂3 jjk χ∂ k uu + ∂ 2 j χ∂ k u∂ k udx = jk Re ˆ∂4 jjkk χ|u| 2 + ∂ 3 jjk χu∂ k udx -ˆ∆χ|∇u| 2 dx = 1 2 ˆ∆2 χ|u| 2 dx -ˆ∆χ|∇u| 2 dx. Thus ˆ∇χ • Re(∇(∆u + 2vu)u)dx = - 1 2 ˆ∆2 χ|u| 2 dx + ˆ∆χ|∇u| 2 dx -2Re ˆ∆χvu 2 dx -Re ˆ∇χ • ∇u(∆u + 2vu)dx. Similarly, ˆ∇χ • Re(∇(∆v + 2u 2 )v)dx = - 1 2 ˆ∆2 χ|v| 2 dx + ˆ∆χ|∇v| 2 -2Re ˆ∆χvu 2 dx -Re ˆ∇χ • ∇v(∆v + 2(u) 2 )dx.
We get In order to prove the existence of finite time blow-up solutions for (1.14) with radial data, we need localized virial estimates. To do so, we introduce a function θ : [0, ∞) → [0, ∞) satisfying

d 2 dt 2 V χ (t) = -ˆ∆2 χ |u| 2 + 1 2 |v| 2 dx + 2 ˆ∆χ |∇u| 2 + 1 2 |∇v| 2 dx -6Re ˆ∆χvu 2 dx -4Re ˆ∇χ • ∇u(∆u + 2vu)dx -2Re ˆ∇χ • ∇v(∆v + 2(u) 2 )dx. (3.3) Now Re ˆ∇χ • ∇u(∆u + 2vu)dx = Re ˆ∇χ • ∇u∆udx + 2Re ˆ∇χ • ∇uvudx = - jk Re ˆ∂2 jk χ∂ j u∂ k udx + 1 2 ˆ∆χ|∇u| 2 dx + 2Re ˆ∇χ • ∇uvudx. (3.
θ(r) = r 2 if 0 ≤ r ≤ 1, 2 if r ≥ 2,
and θ (r) ≤ 2 for r ≥ 0. (3.6) For R > 0, we define the radial function

χ R (x) = χ R (r) := R 2 θ(r/R), r = |x|. (3.7)
We see easily that

2 -χ R (r) ≥ 0, 2 - χ R (r) r ≥ 0, 8 -∆χ R (x) ≥ 0. (3.8) Lemma 3.2. Let d = 4 and κ = 1
2 . Let R > 0 and χ R be as in (3.7). Let (u(t), v(t)) be a radial solution to (1.14) defined on the maximal time interval [0, T ). Then for any ε > 0 and any t ∈ [0, T ),

d 2 dt 2 V χ R (t) ≤ 16E(u(t), v(t)) -4 ˆ(χ 1,R -Cεχ 2 2,R )|∇u(t)| 2 dx -2 ˆ(χ 1,R -Cεχ 2 2,R )|∇v(t)| 2 dx + O(R -2 + εR -2 + ε -1/3 R -2 ), (3.9)
for some constant C > 0, where

χ 1,R = 2 -χ R , χ 2,R = 8 -∆χ R . (3.10)
The implicit constant depends only on the conserved mass M (u, v).

Proof. Thanks to the virial identity (3.2), we write

d 2 dt 2 V χ R (t) = 16E(u, v) -ˆ∆2 χ R |u| 2 + 1 2 |v| 2 dx + jk Re ˆ∂2 jk χ R (4∂ j u∂ k u + 2∂ j v∂ k v)dx -2Re ˆ∆χ R vu 2 dx -8 ∇u 2 L 2 + 1 2 ∇v 2 L 2 + 16Re ˆvu 2 dx.
Since (u, v) is radial, we use the fact

∂ j = x j r ∂ r , ∂ 2 jk = δ jk r - x j x k r 3 ∂ r + x j x k r 2 ∂ 2 r (3.11) to have jk ∂ 2 jk χ R ∂ j u∂ k u = χ R |∂ r u| 2 = χ R |∇u| 2 .
We thus write

d 2 dt 2 V χ R (t) = 16E(u, v) -ˆ∆2 χ R |u| 2 + 1 2 |v| 2 dx -4 ˆχ1,R |∇u| 2 dx -2 ˆχ1,R |∇v| 2 dx + 2Re ˆχ2,R vu 2 dx,
where χ 1,R and χ 2,R are as in (3.10). We next use the radial Sobolev embedding (see e.g. [START_REF] Csobo | Minimal mass blow-up solutions for the L 2 critical NLS with inverse-square potential[END_REF])

sup x =0 |x| d-1 2 |f (x)| ≤ C(d) ∇f 1 2 L 2 f 1 2 L 2
and the conservation of mass to estimate

Re ˆχ2,R vu 2 dx ≤ ˆ|x|>R χ 2,R |v||u| 2 dx ≤ sup |x|>R |χ 2,R (x)v(t, x)| u 2 L 2 ≤ R -3 2 sup |x|>R |x| 3 2 |χ 2,R (x)v(t, x)| u 2 L 2 R -3 2 ∇(χ 2,R v) 1 2 L 2 χ 2,R v 1 2 L 2 u 2 L 2 R -3 2 ∇(χ 2,R v) 1 2
L 2 . We next use the Young inequality to have for any ε > 0,

R -3 2 ∇(χ 2,R v) 1 2 L 2 ε ∇(χ 2,R v) 2 L 2 + ε -1 3 R -2 ≤ ε (∇χ 2,R )v 2 L 2 + χ 2,R ∇v 2 L 2 + ε -1 3 R -2 ε χ 2,R ∇v 2 L 2 + εR -2 + ε -1 3 R -2 .
Here we use the fact that ∇χ

2,R L ∞ R -2 . Therefore, Re ˆχ2,R vu 2 dx ε ˆχ2 2,R |∇v| 2 dx + εR -2 + ε -1 3 R -2 . (3.12) Similarly, we have Re ˆχ2,R vu 2 dx ≤ ˆ|x|>R χ 2,R |v||u| 2 dx ≤ sup |x|>R |χ 2,R (x)u(t, x)| v L 2 u L 2 . Thus, Re ˆχ2,R vu 2 dx ε ˆχ2 2,R |∇u| 2 dx + εR -2 + ε -1 3 R -2 . (3.13)
Combining (3.12) and (3.13), we prove the claim.

We first prove the blow-up criteria for (1.14) 

(u(t), v(t)) H 1 ×H 1 < ∞. (3.14)
The key step is to control L 2 -norm of the solution outside a large ball. To do this, we introduce

ϑ : [0, ∞) → [0, 1] a smooth function satisfying ϑ(r) = 0 if 0 ≤ r ≤ 1/2 and ϑ(r) = 1 if r ≥ 1. Given R > 0, we define the radial function ϕ R (x) = ϕ R (r) := ϑ(r/R), r = |x|.
It is easy to see that ∇ϕ R L ∞ R -1 . We next define

I ϕ R (t) := ˆϕR (x) |u(t, x)| 2 + 2|v(t, x)| 2 dx.
By the fundamental theorem of calculus, we have

I ϕ R (t) = I ϕ R (0) + ˆt 0 d ds I ϕ R (s)ds ≤ V ϕ R (0) + sup s∈[0,t] d ds I ϕ R (s) t.
By (3.14) and the conservation of mass, sup s∈[0,t]

d ds I ϕ R (s) = sup s∈[0,t] 2 ˆ∇ϕ R • Im(∇uu + ∇vv)dx ∇ϕ R L ∞ sup s∈[0,t] ( ∇u(s) L 2 u(s) L 2 + ∇v(s) L 2 v(s) L 2 ) ∇ϕ R L ∞ sup s∈[0,t] (u(s), v(s)) H 1 ×H 1 CR -1 ,
for some constant C > 0 independent of R. We thus obtain

I ϕ R (t) ≤ V ϕ R (0) + CR -1 t.
It follows from the choice of ϑ and the conservation of mass that

I ϕ R (0) = ˆϕR (x)(|u 0 (x)| 2 + 2|v 0 (x)| 2 )dx ≤ ˆ|x|>R/2 |u 0 (x)| 2 + 2|v 0 (x)| 2 dx → 0 as R → ∞. Thus I ϕ R (0) = o R (1). Since ˆ|x|≥R |u(t, x)| 2 + 2|v(t, x)| 2 dx ≤ I ϕ R (t),
we obtain the following control on the L 2 -norm of the solution outside a large ball.

Lemma 3.3. Let d = 4 and κ = 1. Let ε > 0 and R > 0. Then there exists a constant C independent of R such that for any t ∈ [0, T 0 ] with T

0 := εR C , ˆ|x|≥R |u(t, x)| 2 + 2|v(t, x)| 2 ≤ o R (1) + ε. (3.15) Now let χ R be as in (3.7). By (3.2), d 2 dt 2 V χ R (t) = -ˆ∆2 χ R |u| 2 + 1 2 |v| 2 dx + jk Re ˆ∂2 jk χ R (4∂ j u∂ k u + 2∂ j u∂ k u)dx -2Re ˆ∆χ R vu 2 dx.
Since χ R is radial, by using (3.11), it is not hard to check that

jk Re ˆ∂2 jk χ R ∂ j u∂ k udx = ˆχ R r |∇u| 2 dx + ˆ χ R r 2 - χ R r 3 |x • ∇u| 2 dx,
and similarly for v. We thus write

d 2 dt 2 V χ R (t) = 16E(u, v) -8 ∇u 2 L 2 + 1 2 ∇v 2 L 2 + 16Re ˆvu 2 dx -ˆ∆2 χ R |u| 2 + 1 2 |v| 2 dx -2Re ˆ∆χ R vu 2 dx +4 ˆχ R r |∇u| 2 dx + 4 ˆ χ R r 2 - χ R r 3 |x • ∇u| 2 dx +2 ˆχ R r |∇v| 2 dx + 2 ˆ χ R r 2 - χ R r 3 |x • ∇v| 2 dx = 16E(u, v) -ˆ∆2 χ R |u| 2 + 1 2 |v| 2 dx + 2Re ˆ(8 -∆χ R )vu 2 dx +4 ˆ χ R r -2 |∇u| 2 dx + 4 ˆ χ R r 2 - χ R r 3 |x • ∇u| 2 dx +2 ˆ χ R r -2 |∇v| 2 dx + 2 ˆ χ R r 2 - χ R r 3 |x • ∇v| 2 dx. Since ∆ 2 χ R L ∞ R -2 and supp(∆ 2 χ R ) ⊂ {|x| ≥ R}, we have ˆ∆2 χ R |u| 2 + 1 2 |v| 2 dx R -2 u 2 L 2 (|x|≥R) + 2 v 2 L 2 (|x|≥R) . Since χ R ≤ 2, the Cauchy-Schwarz inequality |x • ∇u| ≤ |x||∇u| = r|∇u implies that ˆ χ R r -2 |∇u| 2 dx + ˆ χ R r 2 - χ R r 3 |x • ∇u| 2 dx ≤ 0,
and similarly for v. Moreover, since 8 -∆χ R L ∞ 1 and supp(8 -∆χ R ) ⊂ {|x| ≥ R}, the Sobolev embedding and (3.14) imply that Re ˆ(8

-∆χ R )vu 2 dx ˆ|x|≥R |v||u| 2 dx v L 4 u L 4 u L 2 (|x|≥R) ∇v L 2 ∇u L 2 u L 2 (|x|≥R) u L 2 (|x|≥R) + 2 v L 2 (|x|≥R) .
Collecting the above estimates, we get the following result.

Lemma 3.4. Let d = 4 and κ = 1 2 . Let R > 0 and χ R be as in (3.7). Then there exists C > 0 independent of R such that

d 2 dt 2 V χ R (t) ≤ 16E(u, v) + CR -2 u(t) 2 L 2 (|x|≥R) + 2 v(t) 2 L 2 (|x|≥R) + C u(t) 2 L 2 (|x|≥R) + 2 v(t) 2 L 2 (|x|≥R) .
We are now complete the proof of Theorem 1.8. Applying Lemma 3.3 and Lemma 3.4, we get for any ε > 0 and R > 0, there exists C > 0 independent of ε and R such that for any t ∈ [0, T 0 ] with T

0 := εR C , d 2 dt 2 V χ R (t) ≤ 16E(u 0 , v 0 ) + CR -2 (o R (1) + ε) + C(o R (1) + ε).
Note that the constant C may change from lines to lines but is independent of ε and R. We choose ε > 0 such that Cε = -8E(u 0 , v 0 ) > 0. We next choose R 1 large enough such that CR

-2 (o R (1) + ε) + Co R (1) = -4E(u 0 , v 0 ). Then d 2 dt 2 V χ R (t) ≤ 4E(u 0 , v 0 )
for any t ∈ [0, T 0 ]. Integrating from 0 to T 0 , we get

V χ R (T 0 ) ≤ V χ R (0) + V χ R (0)T 0 + 2E(u 0 , v 0 )T 2 0 ≤ V χ R (0) + V χ R εR C + 2E(u 0 , v 0 ) ε 2 R 2 C 2 .
We next claim that

V χ R (0) = o R (1)R 2 , V χ R (0) = o R (1)R.
Using this claim, we have

V χ R (T 0 ) ≤ o R (1)R 2 + 2ηR 2 , where η := E(u 0 ,v 0 )ε 2 C 2 < 0. Taking R 1 large enough, we obtain V χ R (T 0 ) ≤ ηR 2 < 0,
which contradicts to the fact V χ R (T 0 ) is non-negative. It remains to prove the claim. We seet that for R 1 large enough,

V χ R (0) = ˆχR (|u 0 | 2 + 2|v 0 | 2 )dx = ˆ|x|≤ √ R |x| 2 (|u 0 | 2 + 2|v 0 | 2 )dx + ˆ√R<|x|<2R χ R (|u 0 | 2 + 2|v 0 | 2 )dx + ˆ|x|≥2R 2(|u 0 | 2 + 2|v 0 | 2 )dx ≤ RM (u 0 , v 0 ) + R 2 ˆ|x|> √ R |u 0 | 2 + 2|v 0 | 2 dx = o R (1)R 2 .
We also have

V χ R (0) = 2 ˆ∇χ R • Im(∇u 0 u 0 + ∇v 0 v 0 )dx = 2 ˆχ R r x • Im(∇u 0 u 0 + ∇v 0 v 0 )dx = 2 ˆ|x|≤ √ R χ R r x • Im(∇u 0 u 0 + ∇v 0 v 0 )dx + 2 ˆ√R<|x|<2R χ R r x • Im(∇u 0 u 0 + ∇v 0 v 0 )dx ≤ 4 √ R ( ∇u 0 L 2 u 0 L 2 + ∇v 0 L 2 v 0 L 2 ) +8R ∇u 0 L 2 (|x|> √ R) u 0 L 2 (|x|> √ R) + ∇v 0 L 2 (|x|> √ R) v 0 L 2 (|x|> √ R) = o R (1)R.
The claim is proved and the proof of Theorem 1.8 is complete. We end this subsection by giving the proof of Theorem 1.9. minimizer of J which is not radial. Let (u * 0 , v * 0 ) be the symmetric rearrangement of (u 0 , v 0 ). We have from [START_REF] Lieb | Analysis[END_REF]Theorem 3.4] that ˆv0 (u 0 ) 2 dx < ˆv * 0 (u * 0 ) 2 dx, and also ∇u * 0 L 2 ≤ ∇u 0 L 2 , u * 0 L 2 = u 0 L 2 . We get J(u * 0 , v * 0 ) < J(u 0 , v 0 ) which is a contradiction. Therefore, (|u|, |v|) is radial. We learn from the proof of [14, Theorem 5.1] that there exists (φ, ψ) ∈ G and ρ > 0 such that Since E(e isϕ u, e 2isϕ v) ≥ 0 for any s ∈ R, the discriminant of the equation in s must be non-positive, and the result follows.

We also need the virial identity related to (1.14).

Lemma 3.9. Let d = 4 and κ = 1 2 . Let (u 0 , v 0 ) ∈ H Besides, the semi-continuity of weak convergence implies that

K(U, V ) ≤ lim inf n→∞ K(u n (• + x n ), v n (• + x n )) = lim inf n→∞ K(u n , v n ) = K(φ 0 , ψ 0 ).
Thus K(U, V ) = lim n→∞ K(u n (•+x n ), v n (•+x n )) = K(φ 0 , ψ 0 ). Therefore (u n (•+x n ), v n (•+x n )) → (U, V ) strongly in Ḣ1 × Ḣ1 . Hence (u n (• + x n ), v n (• + x n )) → (U, V ) strongly in H 1 × H 1 as n → ∞. Moreover, M (U, V ) = M gs , K(U, V ) = K(φ 0 , ψ 0 ) and P (U, V ) = 1 2 K(φ 0 , ψ 0 ). There thus exists (U, V ) ∈ H 1 × H 1 satisfying M (U, V ) = M gs and E(U, V ) = 0. Lemma 3.7 implies that there exist ( φ, ψ) ∈ G, ϑ 1 , ϑ 2 ∈ R and > 0 such that (U (x), V (x)) = (e iϑ 1 2 φ( x), e iϑ 2 2 ψ( x)). 

I R (t) ≤ C(u 0 , v 0 )(T -t) 2 .
Taking R → ∞, we get

8t 2 E e i |x| 2 4t u 0 , e i |x| 2 2t v 0 = xu(t) 2 + 2 xv(t) 2 L 2 ≤ C(u 0 , v 0 )(T -t) 2 .
By letting t → T , we see that E e i |x| 2 4T u 0 , e i |x| 2 2T v 0 = 0. Moreover, M e i |x| 2 4T u 0 , e i |x| 2 2T v 0 = M (u 0 , v 0 ) = M gs .

Lemma 3.7 then implies that there exist (φ, ψ) ∈ G, θ1 , θ2 ∈ R and ρ > 0 such that e i |x| 2 4T u 0 (x) = e i θ1 ρ2 φ(ρx), e i |x| 2 2T v 0 (x) = e i θ2 ρ2 ψ(ρx).

Redefining ρ = ρ T and θ1 = θ 1 + ρ 2 T and θ2 = θ 2 + ρ 2 T , we obtain By the uniqueness of solution to (1.14), it follows that (u(t), v(t)) is given as in (1.21). The proof is complete.

2. 1 .

 1 The variational problem I(a, b). Let d ≤ 3 and a, b > 0. We consider the variational problem (1.8). Lemma 2.1. Let d ≤ 3 and a, b > 0. Then -∞ < I(a, b) < 0.

  Lemma 2.5. For a, b > 0, it holds that I(a, b) < I(a, 0) + I(0, b).

  still a minimizing sequence for I(a, b), by Item (1), there exist a sequence (y k ) k≥1 ⊂ R d and (g, h) ∈ G a,b such that up to subsequence, lim n→∞

  we have Re(ũ∇ũ) = 0 and ∇u = (∇(|u|))ũ + |u|∇ũ = ũ(∇(|u|) + |u|ũ∇ũ).

  ˆ∇χ • ∇v(∆v + 2(u) 2 )dx =jk Re ˆ∂2 jk χ∂ j v∂ k vdx + 1 2 ˆ∆χ|∇v| 2 dx -2Re ˆ∆χvu 2 dx -4Re ˆ∇χ • ∇uvudx. (3.5)Combining (3.3), (3.4) and (3.5), we prove the result.

2 .+

 2 |u(x)| = ρ a φ(ρx), |v(x)| = ρ a ψ(ρx)for some a ∈ R. Since M (|u|, |v|) = M (u, v) = M gs = M (φ, ψ), it follows that a = 2. It remains to show that ũ(x) = u(x)|u(x)| and ṽ(x) = v(x) |v(x)| are constant on R 4 . This fact follows by the same lines as in the proof of Item (4) of Theorem 1.3. The proof is complete.We also need the following Cauchy-Schwarz inequality due to Banica [3]Lemma 3.8. Let d = 4 and κ = 1 2 . Let (u, v) ∈ H 1 × H 1 be such that M (u, v) = M gs . It follows that for any real-valued function ϕ ∈ C 1 satisfying ∇ϕ is bounded, ˆ∇ϕ • Im(∇uu + ∇vv)dx ≤ 2E(u, v) ˆ|∇ϕ| 2 (|u| 2 + 2|v| 2 )dx 1/Proof. We first note that if M (u, v) = M gs , then E(u, v) ≥ 0. This fact follows easily from the sharp Gagliardo-Nirenberg inequality. Since M (e isϕ u, e 2isϕ v) = M (u, v) = M gs , we get E(e isϕ u, e 2isϕ v) ≥ 0 for any real number s. On the other hand, E(e isϕ u, e 2isϕ v) = 1 2 K(e isϕ u, e 2isϕ v) -P (e isϕ u, e 2isϕ v) ∇v| 2 dx -P (u, v) = s 2 2 ˆ|∇ϕ| 2 (|u| 2 + 2|v| 2 )dx + s ˆ∇ϕ • Im (∇uu + ∇vv)dx + E(u, v).

4 n

 4 Thus (u n (• + x n ), v n (• + x n )) = ( 2 n u(t n , n (• + x n )), 2 n v(t n , n (• + x n ))) → (e iϑ 1 2 φ( •), e iϑ 2 2 ψ( •)) strongly in H 1 × H 1 as n → ∞. Set ˜ n := n / , xn := n x n , θ1 = -ϑ 1 , θ2 = -ϑ 2 .We obtain(e i θ1 ˜ 2 n u(t n , ˜ n • +x n ), e i θ2 ˜ 2 n v(t n , ˜ n • +x n )) → ( φ, ψ) (3.24)strongly in H 1 × H 1 as n → ∞. This yields the claim. To see this, we change variable x = ˜ n y + xn to have for anyϕ ∈ C ∞ 0 that ˆ(|u(t n , x)| 2 + 2|v(t n , x)| 2 )ϕ(x)dx = ˆ˜ (|u(t n , ˜ n y + xn )| 2 + 2|v(t n , ˜ n y + xn )| 2 )ϕ(˜ n y + xn )dx = ˆ |˜ 2 n u(t n , ˜ n y + xn )| 2 + 2|˜ 2 n v(t n , ˜ n y + xn )| 2 -(| φ(y)| 2 + 2| ψ(y)| 2 ) ϕ(˜ n y + xn )dx + ˆ(| φ(y)| 2 + 2| ψ(y)| 2 )(ϕ(˜ n y + xn ) -ϕ(x n ))dy + ˆ(| φ(y)| 2 + 2| ψ(y)| 2 )ϕ(x n )dy. This implies that ˆ(|u(t n , x)| 2 + 2|v(t n , x)| 2 )ϕ(x)dx -M ( φ, ψ)ϕ(x n ) ≤ ϕ L ∞ ˆ |˜ 2 n u(t n , ˜ n y + xn )| 2 -| φ(y)| 2 + 2 |˜ 2 n v(t n , ˜ n y + xn )| 2 -| ψ(y)| 2 dx + ˆ(| φ(y)| 2 + 2|ψ(y)| 2 )|ϕ(˜ n y + xn ) -ϕ(x n )|dy. By (3.24), we have |˜ 2 n u(t n , ˜ n • +x n )| 2 → | φ| 2 in L 1 and |˜ 2 n v(t n , ˜ n • +x n )| 2 → | ψ| 2 in L 1 as n → ∞,this implies the first integral in the right hand side vanishes as n → ∞. Moreover, since ˜ n → 0, the second integral in the right hand side also vanishes by the dominated convergence. The claim is thus proved.We now able to show the classification of finite time blow-up solutions with minimal mass. Up to subsequence, we may assume that xn → x 0 ∈ {0, ∞}. Now let χ be a smooth non-negative radial compactly supported function satisfyingχ(x) = |x| 2 if |x| < 1 and |∇χ(x)| 2 ≤ Cχ(x) for some constant C > 0. For R > 0, we define χ R (x) = R 2 χ(x/R), I R (t) := ˆχR (x)(|u(t, x)| 2 + 2|v(t, x)| 2 )dx.Using the Cauchy-Schwarz inequality given in Lemma 3.8, we get|I R (t)| = 2 ˆ∇χ R • Im(∇uu + ∇vv)dx ≤ 2 2E(u 0 , v 0 ) ˆ|∇χ R | 2 (|u(t)| 2 + 2|v(t)| 2 )dx 1/2 ≤ 2C E(u 0 , v 0 ) ˆχR (|u(t)| 2 + 2|v(t)| 2 )dx 1/2 = C(u 0 , v 0 ) I R (t).Integrating with respect to t, we get| I R (t) -I R (t n )| ≤ C(u 0 , v 0 )|t n -t|. (3.25) It follows from the claim above that I R (t n ) → 0 as n → ∞. Indeed, if |x n | → 0, then I R (t n ) → M (φ, ψ)χ R (0) = 0 as n → ∞. If |x n | → ∞, then I R (t n ) → 0 since χ R is compactly supported. Taking n → ∞ in (3.25), we obtain

u 0

 0 (x) = e iθ 1 e i ρ 2 T e -i |x| 2 (x) = e iθ 2 e i ρ 2 T e -i |x| 2

  2 ˆ∇χ • Im (∇∂ t uu + ∇u∂ t u + ∇∂ t vv + ∇v∂ t v) dx = 2 ˆ∇χ • Re (∇(∆u + 2vu)u -∇u(∆u + 2vu)) dx + ˆ∇χ • Re ∇(∆v + 2u 2 )v -∇v(∆v + 2(u) 2 ) dx.

	A direct computation shows that ˆ∇χ • Re(∇(∆u + 2vu)u)dx =	Re ˆ∂j χ∂ j (∆u + 2vu)udx
	j = -	Re ˆ∂2 j χ(∆u + 2vu)u + ∂ j χ∂ j u(∆u + 2vu)dx
	j = -Re ˆ∆χ∆uu + 2∆χvu 2 + ∇χ • ∇u(∆u + 2vu)dx.

  given in Theorem 1.8. Proof of Theorem 1.8. The proof is based on the argument of Du-Wu-Zhang [11]. If T < +∞, we are done. If T = +∞, then we need to show (1.19). Assume by contradiction that the solution exists globally in time and satisfies

	sup
	t∈[0,+∞)

  1 × H 1 be such that (|x|u 0 , |x|v 0 ) ∈ L 2 × L 2 . Then the corresponding solution to (1.14) satisfies + 4tIm ˆx • ∇u 0 u 0 + x • ∇v 0 v 0 dx + 8t 2 E(u 0 , v 0 ) = 8t 2 E e i |x| 2 4t u 0 , e i |x| 2 2t v 0 . (3.23)

	(3.22)	d 2 dt 2 xu(t) 2 L 2 + 2 xv(t) 2 L 2 = 16E(u 0 , v 0 ).
	In particular,		
	xu(t) 2 L 2 + 2 xv(t) 2 L 2 = xu 0	2 L 2 + 2 xv 0	2 L 2
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Proof of Theorem 1.9. We use the localized virial estimate (3.9) to have

where χ 1,R = 2 -χ R , χ 2,R = 8 -∆χ R . If we choose a suitable function χ R defined in (3.7) so that χ 1,R (r) -Cεχ 2,R (r) 2 ≥ 0, ∀r ≥ 0, (3. [START_REF] Lieb | Analysis[END_REF] for a suifficiently small ε > 0, then by choosing R 1 large enough depending on ε, we obtain d 2 dt 2 V χ R (t) ≤ 8E(u 0 , v 0 ) < 0, for any t in the existence time. The classical argument of Glassey [START_REF] Glassey | On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations[END_REF] implies that the solution must blows up in finite time.

To finish the proof, let us show (3. [START_REF] Lieb | Analysis[END_REF]). We use the argument of [START_REF] Ogawa | Blow-up of H 1 solutions for the nonlinear Schrödinger equation[END_REF]. Let us define the following function

r ≥ 2, and θ(r) := ˆr 0 ϑ(s)ds.

We see that the function θ satisfies (3.6). We next define χ R as in (3. [START_REF] Colin | Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction[END_REF]. With this choice of χ R , the condition (3.16) is satisfied. Indeed, for 0 ≤ r ≤ R, (3. [START_REF] Lieb | Analysis[END_REF]) is trivial since χ 1,R = χ 2,R = 0. For R < r < (1 + 1/ √ 3)R, we have

and

By choosing ε > 0 small enough, we see that the condition (3.16) is satisfied. For r > (1

Therefore, the condition (3.16) is also satisfied by choosing ε > 0 small enough. The proof is complete.

3.2. Characterization of finite time blow-up solutions with minimal mass. The main purpose of this subsection is to classify finite time blow-up solutions of (1.14) with minimal mass. We want to show that if (u, v) is a solution which blows up at finite time T , then up to symmetries of the system, it is the pseudo-conformal transformation of the ground states (φ, ψ) for (1.7) with ω 2 = 2ω 1 = 2.

To this end, we need the profile decomposition related to (1.14).

Then there exist a subsequence, still denoted by (u n , v n ) n≥1 , a family (x j n ) n≥1 of sequences in R 4 and a sequence (U j , V j ) j≥1 of H 1 × H 1 -functions such that (1) for every j = k,

(2) for every l ≥ 1 and every x ∈ R 4 ,

for every q ∈ (2, 4). Moreover, for every l ≥ 1,

where o n (1) → 0 as n → ∞.

Proof. The proof is based on the argument of [START_REF] Hmidi | Blwoup theory for the critical nonlinear Schrödinger equations revisited[END_REF]. For reader's convenience, we recall some details. Let (u, v) = (u n , v n ) n≥1 be a bounded sequence in H 1 × H 1 . Since H 1 × H 1 is a Hilbert space, we denote Ω(u, v) the set of functions obtained as weak limits of sequences of (u

If η(u, v) = 0, then we can take (U j , V j ) = (0, 0) for all j ≥ 1. Otherwise we choose (U

By definition of Ω(u, v), there exists a sequence (

where

and repeat the same process. If η(u 1 , v 1 ) = 0, then we choose (U j , V j ) = (0, 0) for all j ≥ 2. Otherwise there exists (U 2 , V 2 ) ∈ Ω(u 1 , v 1 ) and a sequence (

and (u

An argument of iteration and orthogonal extraction allow us to construct family (x j n ) j≥1 of sequences in R 4 and a sequence (U j , V j ) j≥1 of H 1 × H 1 -functions satisfying the conclusion of Proposition 3.5. To complete the proof, let us show (3.18). Since the series ∞ j=1 M (U j , V j ) + K(U j , V j ) is convergent, it follows that M (U j , V j ) + K(U j , V j ) → 0 as j → ∞.

By construction, we get η(u j , v j ) → 0 as j → ∞. We now introduce θ : R 4 → [0, 1] satisfying θ(ξ) = 1 for |ξ| ≤ 1 and θ(ξ) = 0 for |ξ| ≥ 2. For R > 0, we define χR (ξ) := θ(ξ/R), where • is the Fourier transform. We next write

where * is the convolution operator and δ is the Dirac delta function. Let q ∈ (2, 4) be fixed. Using Sobolev embedding and the Plancherel formula, we have

, where γ = 2 -2 q ∈ (0, 1). On the other hand, by Hölder inequality, we have

Using the fact lim sup

By the Plancherel formula, we get

We obtain for every l ≥ 1,

We now choose R = η(u l , v l ) 1 2 -ε for some ε > 0 small enough, we get

Since η(u l , v l ) → 0 as l → ∞, the uniform boundedness in

The proof is complete.

Using the profile decomposition, we have the following compactness lemma.

Lemma 3.6. Let d = 4 and κ = 1 2 . Let (u n , v n ) n≥1 be a bounded sequence in

Then there exists (x n ) n≥1 ⊂ R d such that up to a subsequence

we can apply the profile decomposition given in Proposition 3.5. By (3.21), we have

Here we use the fact that lim sup n→∞ P (u l n , v l n ) → 0 as l → ∞ which follows easily from Hölder's inequality and (3.18). Using the sharp Gagliardo-Nirenberg inequality, we bound

We have from (3.20) that

Since ∞ j=1 M (U j , V j ) is convergent, the above supremum is attained. There thus exists j 0 such that M (U j 0 , V j 0 ) ≥ 4a 2 A 2 M (φ 0 , ψ 0 ). We also have

and similarly for v n (x + x j 0 n ). Note that the pairwise orthogonality (3.17) implies that for j = j 0 ,

We thus get

where (ũ l , ṽl ) is the weak limit in

as l → ∞. By the uniqueness of the weak limit, we get (ũ l , ṽl ) = (0, 0) for every l ≥ j 0 . Thus

The proof is complete.

To classify blow-up solutions with minimal mass, we also need the following lemma.

Lemma 3.7.

Then there exist (φ, ψ) ∈ G, θ 1 , θ 2 ∈ R and ρ > 0 such that (u(x), v(x)) = (e iθ 1 ρ 2 φ(ρx), e iθ 2 ρ 2 ψ(ρx)).

Proof. Since M (u, v) = M gs and E(u, v) = 0, we see that

This implies that (u, v) is a minimizer of J. On the other hand, since ∇|u| L 2 ≤ ∇u L 2 and P (|u|, |v|) ≥ P (u, v), it follows that J(|u|, |v|) ≤ J(u, v) or (|u|, |v|) is also a minimizer of J. Note that any positive minimizer of J is radial. In fact, suppose that there exists (u 0 , v 0 ) a positive 

The proof is complete.

We are now able to show the characterization of finite time blow-up solutions of (1.14) with minimal mass. Proof of Theorem 1.13. Let (t n ) n≥1 be a time sequence satisfying t n ↑ T as n → ∞. Set

where (φ 0 , ψ 0 ) is as in Theorem 1.6. We first claim that there exist (

where δ x=xn is the Dirac measure at x = xn . Indeed, since (u

In particular, the last convergence implies that P (u n , v n ) → 1 2 K(φ 0 , ψ 0 ) as n → ∞. The sequence (u n , v n ) n≥1 satisfies conditions of Lemma 3.6 with A = K(φ 0 , ψ 0 ) and a = 1 2 K(φ 0 , ψ 0 ). There thus exist (x n ) n≥1 ⊂ R d and (U, V ) ∈ H 1 × H 1 such that

A 2 M (φ 0 , ψ 0 ) = M (φ 0 , ψ 0 ) = M gs . By the semi-continuity of weak convergence, we have

Thus M (U, V ) = lim n→∞ M (u n (• + x n ), v n (• + x n )) = M gs . Therefore, (u n (• + x n ), v n (• + x n )) → (U, V ) strongly in L 2 × L 2 as n → ∞. On the other hand, we estimate

Using the Sobolev embedding L 4 ⊂ H 1 and the fact (u n , v n ) n≥1 , (U, V ) are bounded in H 1 × H 1 , the strong L 2 × L 2 -convergence (u n (• + x n ), v n (• + x n )) → (U, V ) implies that P (u n , v n ) → P (U, V ) as n → ∞. We thus get from the sharp Gagliardo-Nirenberg inequality that 1 2 K(φ 0 , ψ 0 ) = lim n→∞ P (u n , v n ) = P (U, V ) ≤ 1 2