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On blowup solutions to the focusing L 2 -supercritical nonlinear fractional Schrödinger equation

I. INTRODUCTION

In this paper, we consider the Cauchy problem for the focusing L 2 -supercritical nonlinear fractional Schrödinger equation

i∂ t u -(-∆) s u = -|u| α u, on [0, +∞) × R d , u(0) = u 0 , (1.1) 
where u : [0, +∞) × R d → C, s ∈ (0, 1)\{1/2} and α > 0. The operator (-∆) s is the fractional Laplacian which is the Fourier multiplier by |ξ| 2s . The fractional Schrödinger equation was discovered by N. Laskin 24 as a result of extending the Feynmann path integral, from the Brownian-like to Lévy-like quantum mechanical paths. The fractional Schrödinger equation also appears in the study of water waves equations (see e.g. Refs. [START_REF] Ionescu | Nonlinear fractional Schrödinger equations in one dimension[END_REF] A calculation shows

u λ (0) Ḣγ = λ γ+ 2s α -d 2 u 0 Ḣγ .
From this, we define the critical Sobolev exponent

s c := d 2 - 2s α , (1.2) 
as well as the critical Lebesgue exponent

α c := 2d d -2s c = dα 2s . (1.3) 
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By definition, we have the Sobolev embedding Ḣsc → L αc . The equation (1.1) is called L 2 -subcritical (L 2 -critical or L 2 -supercritical) if s c < 0 (s c = 0 or s c > 0) respectively. The local well-posedness for (1.1) in Sobolev spaces with non-radial initial data was studied in Ref. 19 (see also Ref. 10). In the non-radial setting, the unitary group e -it(-∆) s enjoys Strichartz estimates (see Ref. 5 or Ref. 10): e -it(-∆) s ψ L p (R,L q ) |∇| γp,q ψ L 2 , where (p, q) satisfies the Schrödinger admissible condition

p ∈ [2, ∞], q ∈ [2, ∞), (p, q, d) = (2, ∞, 2), 2 p + d q ≤ d 2 ,
and

γ p,q = d 2 - d q - 2s p .
It is easy to see that the condition 2 p + d q ≤ d 2 implies γ p,q > 0 for all Schrödinger admissible pairs (p, q) except (p, q) = (∞, 2). This means that for non-radial data, Strichartz estimates for e -it(-∆) s have a loss of derivatives except for (p, q) = (∞, 2). This makes the study of local well-posedness in the non-radial case more difficult. The local theory for (1.1) showed in Refs. 10 and 19 is much weaker than the one for classical nonlinear Schrödinger equation, i.e. s = 1. In particular, in the Ḣs -subcritical case (i.e. s c < s) the equation (1.1) is locally well-posed in H s only for dimensions d = 1, 2, 3. The loss of derivatives in Strichartz estimates can be removed if one considers radial initial data. More precisely, we have for d ≥ 2, d 2d-1 ≤ s < 1 and ψ radial, e -it(-∆) s ψ L p (R,L q ) ψ L 2 , provided that (p, q) satisfies the fractional admissible condition

p ∈ [2, ∞], q ∈ [2, ∞), (p, q) = 2, 4d -2 2d -3 , 2s p + d q = d 2 .
These Strichartz estimates with no loss of derivatives allow us to show a better local theory for (1.1) with radial initial data. We refer the reader to Section II for more details.

The existence of blowup solutions to (1.1) was studied numerically in Ref. 23. Later, Boulenger-Himmelsbach-Lenzmann 2 established blowup criteria for radial H s solutions to (1.1). Note that in Ref. 2, they considered H 2s solutions due to the lack of a full local theory at the time of consideration. Thanks to the local theory given in Section II, we can recover H s solutions by approximation arguments. More precisely, they proved the following:

Theorem 1.1 (Ref. 2). Let d ≥ 2, s ∈ (1/2, 1
) and α > 0. Let u 0 ∈ H s be radial and assume that the corresponding solution to (1.1) exists on the maximal forward time interval [0, T ).

• Mass-critical case: If s c = 0 or α = 4s

d and E(u 0 ) < 0, then the solution u either blows up in finite time, i.e. T < +∞ or blows up infinite time, i.e. T = +∞ and

u(t) Ḣs ≥ ct s , ∀t ≥ t * ,
for some C > 0 and t * > 0 depending only on u 0 , s and d.

• Mass-supercritical and energy-subcritical case:

If 0 < s c < s or 4s d < α < 4s d-2s
and α < 4s and either E(u 0 ) < 0, or if E(u 0 ) ≥ 0, we assume that

E sc (u 0 )M s-sc (u 0 ) < E sc (Q)M s-sc (Q), u 0 sc Ḣs u 0 s-sc L 2 > Q sc Ḣs Q s-sc L 2 ,
where Q is the unique (up to symmetries) positive radial solution to the elliptic equation

(-∆) s Q + Q -|Q| α Q = 0,
then the solution blows up in finite time, i.e. T < +∞.

• Energy-critical case: If s c = s or α = 4s d-2s and α < 4s and either E(u 0 ) < 0, or if E(u 0 ) ≥ 0, we assume that

E(u 0 ) < E(W ), u 0 Ḣs > W Ḣs ,
where W is the unique (up to symmetries) positive radial solution to the elliptic equation

(-∆) s W -|W | 4s d-2s W = 0,
then the solution blows up in finite time, i.e. T < +∞.

Here M (u) and E(u) are the conserved mass and energy respectively.

The blowup criteria of Boulenger-Himmelsbach-Lenzmann 2 naturally lead to the study of dynamical properties such as blowup rate, concentration and limiting profile,.. of blowup solutions to (1.1).

In the mass-critical case s c = 0 or α = 4s d , the dynamics of blowup H s solutions was recently considered in Ref. 11 (see also Ref. [START_REF] Feng | On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined powertype nonlinearities[END_REF]). The study of blowup H s solutions to the focusing mass-critical nonlinear fractional Schrödinger equation is connected to the notion of ground state which is the unique (up to symmetries) positive radial solution of the elliptic equation

(-∆) s Q + Q -|Q| 4s d Q = 0.
(1.4)

Note that the existence and uniqueness (modulo symmetries) of ground state to (1.4) were shown in Refs. 14 and 15. Using the sharp Gagliardo-Nirenberg inequality

f 4s d +2 L 4s d +2 ≤ C GN f 4s d L 2 f 2 Ḣs ,
with

C GN = 2s + d d Q -4s d L 2 ,
the conservation of mass and energy show that if 

u 0 ∈ H s satisfies u 0 L 2 < Q L 2 ,
v n Ḣs ≤ M, lim sup n→∞ v n L 4s d +2 ≥ m.
Then there exists a sequence (x n ) n≥1 in R d such that up to a subsequence,

v n (• + x n ) V weakly in H s , for some V ∈ H s satisfying V 4s d L 2 ≥ d d + 2s m 4s d +2 M 2 Q 4s d L 2 .
Thanks to this compactness lemma, the author in Ref. 11 showed that the L 2 -norm of blowup solutions must concentrate by an amount which is bounded from below by Q L 2 at the blowup time. He also showed the limiting profile of blowup solutions with minimal mass u 0 L 2 = Q L 2 , that is, up to symmetries of the equation, the ground state Q is the profile for blowup solutions with minimal mass.

The main goal of this paper is to study dynamical properties of blowup solutions to (1.1) in the mass-supercritical and energy-subcritical case with initial data in Ḣsc ∩ Ḣs . To this end, we first show the local well-posedness for (1.1) with initial data in Ḣsc ∩ Ḣs . For data in H s , the local well-posedness in non-radial and radial cases was showed in Refs. 11 and 19. In the non-radial setting, the inhomogeneous Sobolev embedding W s,q → L r plays a crucial role (see e.g. Ref. 19). Since we are considering data in Ḣsc ∩ Ḣs , the inhomogeneous Sobolev embedding does not help. We thus have to rely on Strichartz estimates without loss of derivatives and the homogeneous Sobolev embedding Ẇ s,q → L r . We hence restrict ourself to radially symmetric initial data, d ≥ 2 and d 2d-1 ≤ s < 1 for which Strichartz estimates without loss of derivatives are available. After the local theory is established, we show the existence of blowup Ḣsc ∩ Ḣs solutions. The existence of blowup H s solutions for (1.1) was shown in Ref. 2 (see Theorem 1.1). Note that the conservation of mass plays a crucial role in the argument of Ref. 2. In our consideration, the lack of mass conservation laws makes the problem more difficult. We are only able to show blowup criteria for negative energy intial data in Ḣsc ∩ Ḣs with an additional assumption sup

t∈[0,T ) u(t) Ḣsc < ∞, (1.5) 
where [0, T ) is the maximal forward time of existence. In the mass-critical case s c = 0, this assumption holds trivially by the conservation of mass. We refer to Section II for more details. To study blowup dynamics for data in Ḣsc ∩ Ḣs , we prove the profile decomposition for bounded sequences in Ḣsc ∩ Ḣs which is proved by following the argument of Ref. 20 (see also Refs. 12 and 18). This profile decomposition allows us to study the variational structure of the sharp constant to the Gagliardo-Nirenberg inequality

f α+2 L α+2 ≤ A GN f α Ḣsc f 2 Ḣs . (1.6)
We will see in Proposition 3.2 that the sharp constant A GN is attained at a function U ∈ Ḣsc ∩ Ḣs of the form

U (x) = aQ(λx + x 0 ),
for some a ∈ C * , λ > 0 and x 0 ∈ R d , where Q is a solution to the elliptic equation

(-∆) s Q + (-∆) sc Q -|Q| α Q = 0.
Moreover,

A GN = α + 2 2 Q -α Ḣsc .
The sharp Gagliardo-Nirenberg inequality (1.6) together with the conservation of energy yield the global existence for solutions satisfying sup

t∈[0,T ) u(t) Ḣsc < Q Ḣsc .
Another application of the profile decomposition is the compactness lemma, that is, for any bounded sequence (v n ) n≥1 in Ḣsc ∩ Ḣs satisfying lim sup

n→∞ v n Ḣs ≤ M, lim sup n→∞ v n L α+2 ≥ m,
there exists a sequence (x n ) n≥1 in R d such that up to a subsequence,

v n (• + x n ) V weakly in Ḣsc ∩ Ḣs ,
for some V ∈ Ḣsc ∩ Ḣs satisfying

V α Ḣsc ≥ 2 α + 2 m α+2 M 2 Q α Ḣsc .
As a consequence, we show that the Ḣsc -norm of blowup solutions satisfying (1.5) must concentrate by an amount which is bounded from below by Q Ḣsc at the blowup time (see Theorem 4.1). We finally show in Theorem 5.2 the limiting profile of blowup solutions with critical norm sup

t∈[0,T ) u(t) Ḣsc = Q Ḣsc . (1.7)
The paper is organized as follows. In Section II, we recall Strichartz estimates and show the local well-posednesss for data in Ḣsc ∩ Ḣs . We also prove blowup criteria for negative energy data in Ḣsc ∩ Ḣs as well as the profile decomposition of bounded sequences in Ḣsc ∩ Ḣs .

In Section III, we give some applications of the profile decomposition including the sharp Gagliardo-Nirenberg inequality (1.6) and the compactness lemma. In Section IV, we show the Ḣsc -concentration of blowup solutions. Finally, the limiting profile of blowup solutions with critical norm (1.7) will be given in Section V.

II. PRELIMINARIES A. Homogeneous Sobolev spaces

We recall the definition of homogeneous Sobolev spaces needed in the sequel (see e.g. Refs. 1, 16 or 28). Denote S 0 the subspace of the Schwartz space S consisting of functions φ satisfying D β φ(0) = 0 for all β ∈ N d , where • is the Fourier transform on S. Given γ ∈ R and 1 ≤ q ≤ ∞, the generalized homogeneous Sobolev space Ẇ γ,q is defined as a closure of S 0 under the norm

u Ẇ γ,q := |∇| γ u L q < ∞.
Under this setting, the spaces Ẇ γ,q are Banach spaces. We shall use Ḣγ := Ẇ γ,2 . Note that the spaces Ḣγ1 and Ḣγ2 cannot be compared for the inclusion. Nevertheless, for γ 1 < γ < γ 2 , the space Ḣγ is an interpolation space between Ḣγ1 and Ḣγ2 .

B. Strichartz estimates

We next recall Strichartz estimates for the fractional Schrödinger equation. To do so, we define for I ⊂ R and p, q ∈ [1, ∞] the mixed norm

u L p (I,L q ) := I R d |u(t, x)| q dx p q 1 p ,
with a usual modification when either p or q are infinity. The unitary group e -it(-∆) s enjoys several types of Strichartz estimates, for instance non-radial Strichartz estimates, radial Strichartz estimates and weighted Strichartz estimates (see e.g. Ref. 6). We only recall here two types: non-radial and radial Strichartz estimates.

• Non-radial Strichartz estimates (see e.g. Refs. 5 and 10): for d ≥ 1 and s ∈ (0, 1)\{1/2}, the following estimates hold:

e -it(-∆) s ψ L p (R,L q ) |∇| γp,q ψ L 2 , t 0 e -i(t-τ )(-∆) s f (τ )dτ L p (R,L q ) |∇| γp,q-γ a ,b -2s f L a (R,L b ) ,
where (p, q) and (a, b) are Schrödinger admissible pairs, i.e.

p ∈ [2, ∞], q ∈ [2, ∞), (p, q, d) = (2, ∞, 2), 2 p + d q ≤ d 2 ,
and

γ p,q = d 2 - d q - 2s p ,
and similarly for γ a ,b . As mentioned in the introduction, these Strichartz estimates have a loss of derivatives except for (p, q) = (a, b) = (∞, 2). 

e -it(-∆) s ψ L p (R,L q ) ψ L 2 , (2.1) 
t 0 e -i(t-τ )(-∆) s f (τ )dτ L p (R,L q ) f L a (R,L b ) , (2.2) 
where ψ and f are radially symmetric and (p, q), (a, b) sastisfy the fractional admissible condition:

p ∈ [2, ∞], q ∈ [2, ∞), (p, q) = 2, 4d -2 2d -3 , 2s p + d q = d 2 .
(2.3)

C. Local well-posedness

In this subsection, we show the local well-posedness for (1.1) with initial data in Ḣsc ∩ Ḣs . Before entering some details, let us recall the local well-posedness for (1.1) with initial data in H s .

Proposition 2.1 (Local well-posedness in H s11 ). Let                    d = 1, 1 3 < s < 1 2 , 0 < α < 4s 1-2s , u 0 ∈ H s non-radial, d = 1, 1 2 < s < 1, 0 < α < ∞, u 0 ∈ H s non-radial, d = 2, 1 2 < s < 1, 0 < α < 4s 2-2s , u 0 ∈ H s non-radial, d = 3, 3 5 ≤ s ≤ 3 4 , 0 < α < 4s 3-2s , u 0 ∈ H s radial, d = 3, 3 4 < s < 1, 0 < α < 4s 3-2s , u 0 ∈ H s non-radial, d ≥ 4, d 2d-1 ≤ s < 1, 0 < α < 4s d-2s , u 0 ∈ H s radial.
(2.4)

Then the equation (1.1) is locally well-posed in H s . In addition, the maximal forward time of existence satisfies either T = +∞ or T < +∞ and lim t↑T u Ḣs = ∞. Moreover, the solution enjoys the conservation of mass and energy, i.e. M (u(t)) = M (u 0 ) and E(u(t)) = E(u 0 ) for all t ∈ [0, T ), where

M (u(t)) = |u(t, x)| 2 dx, E(u(t)) = 1 2 |(-∆) s/2 u(t, x)| 2 dx - 1 α + 2 |u(t, x)| α+2 dx.
We now give the local well-posedness for (1.1) with initial data in Ḣsc ∩ Ḣs .

Proposition 2.2 (Local well-posedness in Ḣsc ∩ Ḣs ). Let d ≥ 2, d 2d-1 ≤ s < 1 and 4s d ≤ α < 4s d-2s . Let p = 4s(α + 2) α(d -2s) , q = d(α + 2) d + αs . (2.5)
Then for any u 0 ∈ Ḣsc ∩ Ḣs radial, there exist T > 0 and a unique solution u to (1.1) satisfying

u ∈ C([0, T ), Ḣsc ∩ Ḣs ) ∩ L p loc ([0, T ), Ẇ sc,q ∩ Ẇ s,q ).
The maximal forward time of existence satisfies either T = +∞ or T < +∞ and lim t↑T u(t) Ḣsc + u(t) Ḣs = ∞. Moreover, the solution enjoys the conservation of energy, i.e. E(u(t)) = E(u 0 ) for all t ∈ [0, T ).

Remark 2.3. When s c = 0 or α = 4s d , Proposition 2.2 is a consequence of Proposition 2.1 since Ḣ0 = L 2 and L 2 ∩ Ḣs = H s .
Proof of Proposition 2.2. It is easy to check that (p, q) satisfies the fractional admissible condition (2.3). We next choose (m, n) so that

1 p = 1 p + α m , 1 q = 1 q + α n .
We see that

θ := α m - α p = 1 - (d -2s)α 4s > 0, q ≤ n = dq d -sq .
The later fact ensures the Sobolev embedding Ẇ s,q → L n . Consider

X := u ∈ C(I, Ḣsc ∩ Ḣs ) ∩ L p (I, Ẇ sc,q ∩ Ẇ s,q ) : u L ∞ (I, Ḣsc ∩ Ḣs ) + u L p (I, Ẇ sc ,q ∩ Ẇ s,q ) ≤ M , equipped with the distance d(u, v) := u -v L ∞ (I,L 2 ) + u -v L p (I,L q ) ,
where I = [0, ζ] and M, ζ > 0 to be determined later. Thanks to Duhamel's formula, it suffices to show that the functional

Φ(u)(t) := e -it(-∆) s u 0 + i t 0 e -i(t-τ )(-∆) s |u(τ )| α u(τ )dτ is a contraction on (X, d). Thanks to Strichartz estimates (2.1) and (2.2), Φ(u) L ∞ (I, Ḣsc ∩ Ḣs ) + Φ(u) L p (I, Ẇ sc ,q ∩ Ẇ s,q ) u 0 Ḣsc ∩ Ḣs + |u| α u L p (I, Ẇ sc,q ∩ Ẇ s,q ) , Φ(u) -Φ(v) L ∞ (I,L 2 ) + Φ(u) -Φ(v) L p (I,L q ) |u| α u -|v| α v L p (I,L q ) .
By the fractional derivatives (see e.g. Proposition 3.1 of Ref. 9) and the choice of (m, n), the Hölder inequality implies

|u| α u L p (I, Ẇ sc,q ∩ Ẇ s,q ) u α L m (I,L n ) u L p (I, Ẇ sc ,q ∩ Ẇ s,q ) |I| θ u α L p (I,L n ) u L p (I, Ẇ sc ,q ∩ Ẇ s,q ) |I| θ u α L p (I, Ẇ s,q ) u L p (I, Ẇ sc ,q ∩ Ẇ s,q ) .
Similarly,

|u| α u -|v| α v L p (I,L q ) u α L m (I,L n ) + v α L m (I,L n ) u -v L p (I,L q ) |I| θ u α L p (I, Ẇ s,q ) + v α L p (I, Ẇ s,q ) u -v L p (I,L q ) .
This shows that for all u, v ∈ X, there exists C > 0 independent of ζ and u 0 ∈ Ḣsc ∩ Ḣs such that

Φ(u) L ∞ (I, Ḣsc ∩ Ḣs ) + Φ(u) L p (I, Ẇ sc ,q ∩ Ẇ s,q ) ≤ C u 0 Ḣsc ∩ Ḣs + Cζ θ M α+1 , (2.6) d(Φ(u), Φ(v)) ≤ Cζ θ M α d(u, v).
If we set M = 2C u 0 Ḣsc ∩ Ḣs and choose ζ > 0 so that

Cζ θ M α ≤ 1 2 ,
then Φ is a strict contraction on (X, d). This proves the existence of solution

u ∈ C(I, Ḣsc ∩ Ḣs ) ∩ L p (I, Ẇ sc,q ∩ Ẇ s,q ).
Note that by radial Strichartz estimates, the solution belongs to L a (I, Ẇ sc,b ∩ Ẇ s,b ) for any fractional admissible pairs (a, b). The blowup alternative is easy since the time of existence depends only on the Ḣsc ∩ Ḣs -norm of initial data. The conservation of energy follows from the standard approximation. The proof is complete.

Corollary 2.4 (Blowup rate). Let d ≥ 2, d 2d-1 ≤ s < 1, 4s d ≤ α < 4s d-2s
and u 0 ∈ Ḣsc ∩ Ḣs be radial. Assume that the corresponding solution u to (1.1) given in Proposition 2.2 blows up at finite time 0 < T < +∞. Then there exists C > 0 such that

u(t) Ḣsc ∩ Ḣs > C (T -t) s-sc 2s , (2.7) 
for all 0 < t < T .

Proof. Let 0 < t < T . If we consider (1.1) with initial data u(t), then it follows from (2.6) and the fixed point argument that if for some M > 0,

C u(t) Ḣsc ∩ Ḣs + C(ζ -t) θ M α+1 ≤ M, then ζ < T . Thus, C u(t) Ḣsc ∩ Ḣs + C(T -t) θ M α+1 > M, for all M > 0. Choosing M = 2C u(t) Ḣsc ∩ Ḣs , we see that (T -t) θ u(t) α Ḣsc ∩ Ḣs > C.
This implies

u(t) Ḣsc ∩ Ḣs > C (T -t) θ α , which is exactly (2.7) since θ α = 4s-α(d-2s) 4αs = s-sc 2s .
The proof is complete.

D. Blowup criteria

In this subsection, we prove blowup criteria for Ḣsc ∩ Ḣs solutions to the masssupercritical and energy-subcritical (1.1). For initial data in H s , Boulenger-Himmelsbach-Lenzmann proved blowup criteria for the equation (see Theorem 1.1 for more details). The main difficulty in our consideration is that the conservation of mass is no longer available. We overcome this difficulty by assuming that the solution satisfies the uniform bound (1.5). More precisely, we have the following:

Proposition 2.5 (Blowup criteria). Let d ≥ 2, d 2d-1 ≤ s < 1, 4s d < α < 4s d-2s
and α < 4s. Let u 0 ∈ Ḣsc ∩ Ḣs be radial satisfying E(u 0 ) < 0. Assume that the corresponding solution to (1.1) defined on a maximal forward time interval [0, T ) satisfies (1.5). Then the solution u blows up in finite time, i.e. T < +∞.

Remark 2.6. The condition α < 4s comes from the radial Sobolev embedding (a analogous condition appears in Ref. 2 (see again Theorem 1.1)).

Proof of Proposition 2.5. Let χ : [0, ∞) → [0, ∞) be a smooth function such that

χ(r) = r 2 if r ≤ 1, 0 if r ≥ 2,
and χ (r) ≤ 2 for r ≥ 0.

For a given R > 0, we define the radial function χ R :

R d → R by ϕ R (x) = ϕ R (r) := R 2 χ(r/R), |x| = r.
It is easy to see that

2 -ϕ R (r) ≥ 0, 2 - ϕ R (r) r ≥ 0, 2d -∆ϕ R (x) ≥ 0, ∀r ≥ 0, ∀x ∈ R d .
Moreover,

∇ j ϕ R L ∞ R 2-j , j = 0, • • • , 4, and 
supp(∇ j ϕ R ) ⊂ {|x| ≤ 2R} for j = 1, 2, {R ≤ |x| ≤ 2R} for j = 3, 4.
Now let u ∈ Ḣsc ∩ Ḣs be a solution to (1.1). We define the local virial action by

M ϕ R (t) := 2 ∇ϕ R (x) • Im(u(t, x)∇u(t, x))dx.
The virial action M ϕ R (t) is well-defined. Indeed, we first learn from the Hölder inequality and the Sobolev embedding Ḣsc → L αc that

u L 2 (|x| R) R sc u L αc (|x| R) R sc u Ḣsc (|x| R) .
(2.8)

Using the fact supp(∇ϕ R ) ⊂ {|x| R}, (2.8) and the estimate given in Lemma A.1 of Ref.

2, we have

|M ϕ R (t)| ≤ C(χ, R) |∇| 1 2 u(t) 2 L 2 (|x| R) + u(t) L 2 (|x| R) |∇| 1 2 u(t) L 2 (|x| R) ≤ C(χ, R) u(t) 2-1 s L 2 (|x| R) u(t) 1 s Ḣs (|x| R) + u(t) 2-1 2s L 2 (|x| R) u(t) 1 2s
Ḣs (|x| R)

(2.9)

≤ C(χ, R) u(t) 2-1 s Ḣsc (|x| R) u(t) 1 s Ḣs (|x| R) + u(t) 2-1 2s Ḣsc (|x| R) u(t) 1 2s
Ḣs (|x| R) .

This shows that M ϕ R (t) is well-defined for all t ∈ [0, T ). Note that in the case χ(r) = r 2 or ϕ R (x) = |x| 2 , we have formally the virial identity (see Lemma 2.1 of Ref.

2):

M |x| 2 (t) = 8s u(t) 2 Ḣs - 4dα α + 2 u(t) α+2 L α+2 = 4dαE(u(t)) -2(dα -4s) u(t) 2 Ḣs .
(2.10)

We also have from Lemma 2.1 of 2 that for any t ∈ [0, T ),

M ϕ R (t) = - ∞ 0 m s ∆ 2 ϕ R |u m (t)| 2 dxdm + 4 d j,k=1 ∞ 0 m s ∂ 2 jk ϕ R ∂ j u m (t)∂ k u m (t)dxdm - 2α α + 2 ∆ϕ R |u(t)| α+2 dx,
where

u m (t) := c s 1 -∆ + m u(t) = c s F -1 û(t) |ξ| 2 + m , m > 0, with c s := sin πs π . Since ϕ R (x) = |x| 2 for |x| ≤ R, we use (2.10) to write M ϕ R (t) = 8s u(t) 2 Ḣs - 4dα α + 2 u(t) α+2 L α+2 -8s u(t) 2 Ḣs (|x|>R) + 4dα α + 2 u(t) α+2 L α+2 (|x|>R) - ∞ 0 m s |x|>R ∆ 2 ϕ R |u m (t)| 2 dxdm +4 ∞ j,k=1 ∞ 0 m s |x|>R ∂ 2 jk ϕ R ∂ j u m (t)∂ k u m (t)dxdm - 2α α + 2 |x|>R ∆ϕ R |u(t)| α+2 dx = 4dαE(u(t)) -2(dα -4s) u(t) 2 Ḣs +4 ∞ j,k=1 ∞ 0 m s |x|>R ∂ 2 jk ϕ R ∂ j u m (t)∂ k u m (t)dxdm -8s u(t) 2 Ḣs (|x|>R) - ∞ 0 m s |x|>R ∆ 2 ϕ R |u m (t)| 2 dxdm + 2α α + 2 |x|>R (2d -∆ϕ R )|u(t)| α+2 dx.
Using

∂ 2 jk = δ jk - x j x k r 2 ∂ r r + x j x k r 2 ∂ 2 r , we write 4 ∞ j,k=1 ∞ 0 m s |x|>R ∂ 2 jk ϕ R ∂ j u m (t)∂ k u m (t)dxdm = 4 ∞ 0 m s |x|>R ϕ R |∇u m (t)| 2 dxdm. Note that (see (2.12) in Ref. 2) ∞ 0 m s |∇f m | 2 dxdm = sin πs π ∞ 0 m s (|ξ| 2 + m) 2 dm |ξ| 2 | f (ξ)| 2 dξ = s f 2 Ḣs .
We thus get

4 ∞ j,k=1 ∞ 0 m s |x|>R ∂ 2 jk ϕ R ∂ j u m (t)∂ k u m (t)dxdm = 8s u(t) 2 Ḣs (|x|>R) -4 ∞ 0 m s |x|>R (2 -ϕ R )|∇u m (t)| 2 dxdm ≤ 8s u(t) 2 Ḣs (|x|>R) .
Thanks to Lemma A.2 of Ref. 2, the definition of ϕ R and the uniform bound (1.5), we estimate

∞ 0 m s |x|>R ∆ 2 ϕ R |u m (t)| 2 dxdm ∆ 2 ϕ R s L ∞ ∆ϕ R 1-s L ∞ u 2 L 2 (|x| R) R -2s R 2sc u(t) 2 Ḣsc (|x| R) R -2(s-sc) .
We thus obtain

M ϕ R (t) ≤ 4dαE(u(t)) -2(dα -4s) u(t) 2 Ḣs + CR -2(s-sc) + 2α α + 2 |x|>R (2d -∆ϕ R )|u(t)| α+2 dx. Since 2d -∆ϕ R L ∞ 1, it remains to bound u(t) α+2 L α+2 (|x|>R) .
To do this, we make use of the argument of Ref. 25 (see also Ref. 12). Consider for A > 0 the annulus C = {A < |x| ≤ 2A}, we claim that for any > 0,

u(t) α+2 L α+2 (|x|>R) ≤ u(t) 2 Ḣs + C( )A -2(s-sc) .
(2.11)

To show (2.11), we recall the radial Sobolev embedding (see e.g. Ref. 4):

sup x =0 |x| d 2 -β |f (x)| ≤ C(d, β) f Ḣβ , for all radial functions f ∈ Ḣβ (R d ) with 1 2 < β < d 2 .
Thanks to radial Sobolev embedding and (2.8), we have

u(t) α+2 L α+2 (C) sup C |u(t, x)| α u(t) 2 L 2 (C) A -( d 2 -β)α u(t) α Ḣβ (C) u(t) 2 L 2 (C) 1 2 < β < d 2 A -( d 2 -β)α u(t) β s Ḣs (C) u(t) 1-β s L 2 (C) α u(t) 2 L 2 (C) 1 2 < β < s < d 2 A -( d 2 -β)α u(t) αβ s Ḣs (C) u(t) (1-β s )α+2 L 2 (C) A -ϑ u(t) αβ s Ḣs (C) , (2.12) 
where

ϑ := d 2 -β α - 1 - β s α + 2 s c .
It is easy to check that

ϑ = 2(s -s c ) 1 - αβ 2s .
By our assumption α < 4s, we can choose 1 2 < β < s so that ϑ > 0. We next apply the Young inequality to have for any > 0,

A -ϑ u(t) αβ s Ḣs (C) u(t) 2 Ḣs (C) + C( )A -2sϑ 2s-αβ = u(t) 2 Ḣs (C) + C( )A -2(s-sc) .
This combined with (2.12) prove (2.11). We now write

|x|>R |u(t)| α+2 dx = ∞ j=0 2 j R<|x|≤2 j+1 R |u(t)| α+2 dx,
and apply (2.11) with A = 2 j R to get

|x|>R |u(t)| α+2 dx ≤ ∞ j=0 u(t) 2 Ḣs (2 j R<|x|≤2 j+1 R) + C( ) ∞ j=0 (2 j R) -2(s-sc) ≤ u(t) 2 Ḣs (|x|>R) + C( )R -2(s-sc) .
This shows that for any > 0,

u(t) α+2 L α+2 (|x|>R) ≤ u(t) 2 Ḣs (|x|>R) + C( )R -2(s-sc) ,
and hence

M ϕ R (t) ≤ 4dαE(u(t)) -2(dα -4s) u(t) 2 Ḣs + O R -2(s-sc) + u(t) 2 Ḣs + C( )R -2(s-sc) .
By the conservation of energy with E(u 0 ) < 0 and the fact dα > 4s, we take > 0 small enough and R > 0 large enough to obtain

M ϕ R (t) ≤ 2dαE(u 0 ) -δ u(t) 2 Ḣs , (2.13) 
where δ := dα -4s > 0. We now follow the argument of Ref. 2. Since E(u 0 ) < 0, we learn from (2.13) that M ϕ R (t) ≤ -c for c > 0. From this, we conclude that M ϕ R (t) < 0 for all t > t 1 for some sufficiently large time t 1 1. Taking integration over [t 1 , t], we have

M ϕ R (t) ≤ -δ t t1 u(τ ) 2 Ḣs dτ ≤ 0, ∀t ≥ t 1 .
(2.14)

We have from (2.9) and the assumption (1.5) that

|M ϕ R (t)| ≤ C(χ, R) u(t) 1 s
Ḣs + u(t)

1 2s
Ḣs .

(2.15)

We also have

u(t) Ḣs 1, ∀t ≥ 0. (2.16)
Indeed, suppose it is not true. Then there exists a sequence (t n ) n ⊂ [0, +∞) such that u(t n ) Ḣs → 0 as n → ∞. Thanks to the Gagliardo-Nirenberg inequality (1.6) and the assumption (1.5), we see that u(t n ) L α+2 → 0. We thus get E(u(t n )) → 0, which is a contradiction to E(u(t)) = E(u 0 ) < 0. This shows (2.16). Combining (2.15) and (2.16), we obtain

|M ϕ R (t)| ≤ C(χ, R) u(t) 1 s
Ḣs .

(2.17) Therefore, (2.14) and (2.17) yield

M ϕ R (t) ≤ C(χ, R) t t1 |M ϕ R (τ )| 2s dτ, ∀t ≥ t 1 .
By nonlinear integral inequality, we get

M ϕ R (t) C(χ, R)|t -t * | 1-2s ,
for s > 1/2 with some t * < +∞. Therefore, M ϕ R (t) → -∞ as t ↑ t * . Hence the solution cannot exist for all times t ≥ 0. The proof is complete.

E. Profile decomposition

In this subsection, we recall the profile decomposition for bounded sequences in Ḣsc ∩ Ḣs .

Theorem 2.7 (Profile decomposition). Let d ≥ 1, 0 < s < 1 and 4s d < α < 2 , where

2 := 4s d-2s if d > 2s, ∞ if d ≤ 2s.
(2.18)

Let (v n ) n≥1 be a bounded sequence in Ḣsc ∩ Ḣs . Then there exist a subsequence still denoted (v n ) n≥1 , a family (x j n ) j≥1 of sequences in R d and a sequence (V j ) j≥1 of functions in Ḣsc ∩ Ḣs such that

• for every k = j, |x k n -x j n | → ∞, as n → ∞, (2.19) 
• for every l ≥ 1 and every

x ∈ R d , v n (x) = l j=1 V j (x -x j n ) + v l n (x), with lim sup n→∞ v l n L q → 0, as l → ∞, (2.20) 
for every q ∈ (α c , 2 + 2 ), where α c is given in (1.3). Moreover,

v n 2 Ḣsc = l j=1 V j 2 Ḣsc + v l n 2 Ḣsc + o n (1), (2.21) v n 2 Ḣs = l j=1 V j 2 Ḣs + v l n 2 Ḣs + o n (1), (2.22)
as n → ∞.

Remark 2.8. In the case s c = 0 or α = 4s d , Theorem 2.7 is exactly Theorem 3.1 in Ref. 11 due to the fact Ḣ0 = L 2 and L 2 ∩ Ḣs = H s .

Proof of Theorem 2.7. The proof is based on the argument of Ref. 20 (see also Refs. 12 and 18). For reader's convenience, we give some details. Since Ḣsc ∩ Ḣs is a Hilbert space, we denote Ω(v n ) the set of functions obtained as weak limits of sequences of the translated

v n (• + x n ) with (x n ) n≥1 a sequence in R d . Set η(v n ) := sup{ v Ḣsc + v Ḣs : v ∈ Ω(v n )}. Clearly, η(v n ) ≤ lim sup n→∞ v n Ḣsc + v n Ḣs .
We will show that there exist a sequence (V j ) j≥1 of Ω(v n ) and a family (x j n ) j≥1 of sequences in R d such that for every k = j,

|x k n -x j n | → ∞,
which shows that η(v j n ) → 0 as j → ∞. It remains to show (2.20). To this end, we introduce for R > 1 a function φ R ∈ S satisfying φR : R d → [0, 1] and

φR (ξ) = 1 if 1/R ≤ |ξ| ≤ R, 0 if |ξ| ≤ 1/2R ∨ |ξ| ≥ 2R.
We write

v l n = φ R * v l n + (δ -φ R ) * v l n
, where δ is the Dirac function and * is the convolution operator. Let q ∈ (α c , 2 + 2 ) be fixed. By Sobolev embedding and the Plancherel formula,

(δ -φ R ) * v l n L q (δ -φ R ) * v l n Ḣβ |ξ| 2β |(1 -φR (ξ))v l n (ξ)| 2 dξ 1/2 |ξ|≤1/R |ξ| 2β |v l n (ξ)| 2 dξ 1/2 + |ξ|≥R |ξ| 2β |v l n (ξ)| 2 dξ 1/2 R sc-β v l n Ḣsc + R β-s v l n Ḣs ,
where β = d 2 -d q ∈ (s c , s). Besides, the Hölder interpolation inequality yields

φ R * v l n L q φ R * v l n αc q L αc φ R * v l n 1-αc q L ∞ v l n αc q Ḣsc φ R * v l n 1-αc q L ∞ . Observe that lim sup n→∞ φ R * v l n L ∞ = sup xn lim sup n→∞ |φ R * v l n (x n )|.
By the definition of Ω(v l n ), we see that

lim sup n→∞ φ R * v l n L ∞ ≤ sup φ R (-x)v(x)dx : v ∈ Ω(v l n ) .
The Plancherel formula then implies

φ R (-x)v(x)dx = φR (ξ)v(ξ)dξ ξ| -sc φR L 2 |ξ| sc v L 2 R d 2 -sc φR Ḣ-sc v Ḣsc R 2s α η(v l n ). Thus, for every l ≥ 1, lim sup n→∞ v l n L q lim sup n→∞ (δ -φ R ) * v l n L q + lim sup n→∞ φ R * v l n L q R sc-β v l n Ḣsc + R β-s v l n Ḣs + v l n αc q Ḣsc R 2s α η(v l n ) (1-αc q ) . Choosing R = η(v l n ) -1 α 2s
for some > 0 small enough, we learn that lim sup

n→∞ v l n L q η(v l n ) (β-sc)( α 2s -) v l n Ḣsc + η(v l n ) (s-β)( α 2s -) v l n Ḣs +η(v l n ) 2s α (1-αc q ) v l n αc q Ḣsc .
Letting l → ∞ and using the uniform boundedness of (v l n ) l≥1 in Ḣsc ∩ Ḣs together with the fact that η(v l n ) → 0 as l → ∞, we obtain lim sup

n→∞ v l n L q → 0, as l → ∞.
This completes the proof of Theorem 2.7.

III. VARIATIONAL ANALYSIS

Let d ≥ 1, 0 < s < 1 and 4s d < α < 2 where 2 is given in (2.18). We consider the variational problems

A GN := max{H(f ) : f ∈ Ḣsc ∩ Ḣs }, H(f ) := f α+2 L α+2 ÷ f α Ḣsc f 2 Ḣs , B GN := max{K(f ) : f ∈ L αc ∩ Ḣs }, K(f ) := f α+2 L α+2 ÷ f α L αc f 2 Ḣs .
Here A GN and B GN are respectively sharp constants in the following Gagliardo-Nirenberg inequalities

f α+2 L α+2 ≤ A GN f α Ḣsc f 2 Ḣs , f α+2 L α+2 ≤ B GN f α L αc f 2 Ḣs .
Lemma 3.1. If g and h are maximizers of H(f ) and K(f ) respectively, then g and h satisfy

A GN g α Ḣsc (-∆) s g + α 2 A GN g α-2 Ḣsc g 2 Ḣs (-∆) sc g - α + 2 2 |g| α g = 0, ( 3.1) 
B GN h α L αc (-∆) s h + α 2 B GN h α-αc L αc h 2 Ḣs |h| αc-2 h - α + 2 2 |h| α h = 0, (3.2) respectively. 
Proof. Since g is a maximizer of H in Ḣsc ∩ Ḣs , g satisfies the Euler-Lagrange equation

d d | =0 H(g + φ) = 0,
for all φ ∈ S 0 . A calculation shows

d d =0 g + φ α+2 L α+2 = (α + 2) Re(|g| α gφ)dx, d d =0 g + φ α Ḣsc = α g α-2
Ḣsc Re((-∆) sc gφ)dx, and

d d =0 g + φ 2 Ḣs = 2 Re((-∆) s gφ)dx.
We thus get

(α + 2) g α Ḣsc g 2 Ḣs |g| α g -α g α+2 L α+2 g α-2 Ḣsc g 2 Ḣs (-∆) sc g -2 g α+2 L α+2 g α Ḣsc (-∆) s g = 0.
Dividing by 2 g α Ḣsc g 2 Ḣs , we obtain (3.1). The proof of (3.2) is similar by using

d d =0 h + φ α L αc = α h α-αc L αc
Re(|h| αc-2 hφ)dx.

The proof is complete.

A first application of the profile decomposition given in Theorem 2.7 is the following variational structure of the sharp constants A GN and B GN .

Proposition 3.2 (Variational structure of sharp constants). Let d ≥ 1, 0 < s < 1 and 4s d < α < 2 . • The sharp constant A GN is attained at a function U ∈ Ḣsc ∩ Ḣs of the form U (x) = aQ(λx + x 0 ),
for some a ∈ C * , λ > 0 and x 0 ∈ R d , where Q is a solution to the elliptic equation

(-∆) s Q + (-∆) sc Q -|Q| α Q = 0. ( 3.3) 
Moreover,

A GN = α + 2 2 Q -α Ḣsc .
• The sharp constant B GN is attained at a function V ∈ L αc ∩ Ḣs of the form

V (x) = bR(µx + y 0 ),
for some b ∈ C * , µ > 0 and y 0 ∈ R d , where R is a solution to the elliptic equation

(-∆) s R + |R| αc-2 R -|R| α R = 0. (3.4)
Moreover,

B GN = α + 2 2 R -α L αc .
Proof. We only prove Item 1, the proof for Item 2 is similar using the Sobolev embedding Ḣsc → L αc . Observe that H is invariant under the scaling

f µ,λ (x) := µf (λx), µ, λ > 0.
Indeed, a simple computation shows

f µ,λ α+2 L α+2 = µ α+2 λ -d f α+2 L α+2 , f µ,λ α Ḣsc = µ α λ -2s f α Ḣsc , f µ,λ 2 Ḣs = µ 2 λ 2s-d f 2 Ḣs .
Thus, H(f µ,λ ) = H(f ) for any µ, λ > 0. Moreover, if we set g(x) = µf (λx) with

µ =   f d 2 -s Ḣsc f 2s α Ḣs   1 s-sc , λ = f Ḣsc f Ḣs 1 s-sc , then g Ḣsc = g Ḣs = 1 and H(g) = H(f ). Now let (v n ) n≥1 be the maximizing sequence of H, i.e. H(v n ) → A GN as n → ∞. By scaling invariance, we may assume that v n Ḣsc = v n Ḣs = 1 and H(v n ) = v n α+2 L α+2 → A GN as n → ∞. It follows that (v n ) n≥1
is bounded in Ḣsc ∩ Ḣs , and the profile decomposition given in Theorem 2.7 shows that there exist a sequence (V j ) j≥1 of Ḣsc ∩ Ḣs functions and a family (x j n ) j≥1 of sequences in R d such that up to a subsequence,

v n (x) = l j=1 V j (x -x j n ) + v l n (x),
and (2. 19), (2.20), (2.21) and (2.22) hold. In particular, for any l ≥ 1,

l j=1 V j 2 Ḣsc ≤ 1, l j=1 V j 2 Ḣs ≤ 1, (3.5) 
and lim sup

n→∞ v l n α+2 L α+2 → 0, as l → ∞.
Thus,

A GN = lim n→∞ v n α+2 L α+2 = lim sup n→∞ l j=1 V j (• -x j n ) + v l n α+2 L α+2 ≤ lim sup n→∞ l j=1 V j (• -x j n ) L α+2 + v l n L α+2 α+2 ≤ lim sup n→∞ ∞ j=1 V j (• -x j n ) α+2 L α+2 . ( 3.6) 
By the elementary inequality

l j=1 a j α+2 - l j=1 |a j | α+2 ≤ C j =k |a j ||a k | α+1 , (3.7) 
the pairwise orthogonality (2.19) leads the mixed terms in the sum (3.6) to vanish as n → ∞. This shows that

A GN ≤ ∞ j=1 V j α+2 L α+2 .
We also have from the definition of A GN that

V j α+2 L α+2 A GN ≤ V j α Ḣsc V j 2 Ḣs , which implies 1 ≤ ∞ j=1 V j α+2 L α+2 A GN ≤ sup j≥1 V j α Ḣsc ∞ j=1 V j 2 Ḣs .
Since j≥1 V j 2 Ḣsc is convergent, there exists j 0 ≥ 1 such that

V j0 Ḣsc = sup j≥1 V j Ḣsc .
By (3.5), we see that

1 ≤ V j0 α Ḣsc ∞ j=1 V j 2 Ḣs ≤ V j0 α Ḣsc .
It follows from (3.5) that V j0 Ḣsc = 1 which shows that there is only one term V j0 is non-zero. Hence,

V j0 Ḣsc = V j0 Ḣs = 1, V j0 α+2 L α+2 = A GN .
It means that V j0 is the maximizer of H, and Lemma 3.1 shows that

A GN (-∆) s V j0 + α 2 A GN (-∆) sc V j0 - α + 2 2 |V j0 | α V j0 = 0. Now if we set V j0 (x) = aQ(λx + x 0 ) for some a ∈ C * , λ > 0 and x 0 ∈ R d , then Q solves (3.3) provided that |a| = 2λ 2s A GN α + 2 1 α , λ = α 2 1 2(s-sc) . (3.8)
This shows the existence of solutions to (3.3). We next compute the sharp constant A GN in terms of Q. We have

1 = V j0 α Ḣsc = |a| α λ -2s Q α Ḣsc = 2A GN α + 2 Q α Ḣsc .
This implies

A GN = α+2 2 Q -α
Ḣsc . The proof is complete.

Remark 3.3. By (3.8) and the fact

1 = V j0 α Ḣsc = |a| α λ -2s Q α Ḣsc , 1 = V j0 2 Ḣs = |a| 2 λ 2s-d Q 2 Ḣs , A GN = V j0 α+2 L α+2 = |a| α+2 λ -d Q α+2 L α+2 ,
we have the following Pohozaev identities

Q 2 Ḣsc = α 2 Q 2 Ḣs = α α + 2 Q α+2 L α+2 . (3.9) 
The above identities can be showed by multiplying (3.3) with Q and x • ∇Q and integrating over R d and performing integration by parts. Indeed, multiplying (3.3) with Q and integrating by parts, we get 

Q 2 Ḣs + Q 2 Ḣsc -Q α+2 L α+2 = 0. ( 3 
s - d 2 Q 2 Ḣs + s c - d 2 Q 2 Ḣsc + d α + 2 Q α+2 L α+2 = 0. ( 3.11) 
From (3.10) and (3.11), we obtain (3.9). Here we use the fact that for γ ≥ 0,

Re (-∆) γ Qx • ∇Qdx = γ - d 2 Q 2 Ḣγ .
The Pohozaev identities (3.9) imply in particular that

H(Q) = Q α+2 L α+2 ÷ Q α Ḣsc Q 2 Ḣs = α + 2 2 Q -α Ḣsc = A GN , E(Q) = 0.
Similarly, we have

R 2 L αc = α 2 R 2 Ḣs = α α + 2 R α+2 L α+2 .
In particular,

K(R) = R α+2 L α+2 ÷ R α L αc R 2 Ḣs = α + 2 2 R -α L αc = B GN , E(R) = 0.
Definition 3.4 (Ground state).

• We call Sobolev ground states the maximizers of H which are solutions to (3.3). We denote the set of Sobolev ground states by G.

• We call Lebesgue ground states the maximizers of K which are solutions to (3.4).

We denote the set of Lebesgue ground states by H.

Note that by Lemma 3.1, if g, h are respectively Sobolev and Lebesgue ground states, then

A GN = α + 2 2 g -α Ḣsc , B GN = α + 2 2 h -α L αc .
This implies that Sobolev ground states have the same Ḣsc -norm, and all Lebesgue ground states have the same L αc -norm. Denote S gs := g Ḣsc , ∀g ∈ G, (3.12) L gs := h L αc , ∀h ∈ H.

(3.13)

In particular, we have the following sharp Gagliardo-Nirenberg inequalities

f α+2 L α+2 ≤ A GN f α Ḣsc f 2 Ḣs , (3.14) 
f α+2 L α+2 ≤ B GN f α L αc f 2 Ḣs , (3.15) 
with

A GN = α + 2 2 S -α gs , B GN = α + 2 2 L -α gs .
Another application of the profile decomposition given in Theorem 2.7 is the following compactness lemma. • Then there exists a sequence (x n ) n≥1 in R d such that up to a subsequence,

v n (• + x n ) V weakly in Ḣsc ∩ Ḣs , for some V ∈ Ḣsc ∩ Ḣs satisfying V α Ḣsc ≥ 2 α + 2 m α+2 M 2 S α gs . (3.16) 
• Then there exists a sequence (y n ) n≥1 in R d such that up to a subsequence,

v n (• + y n ) W weakly in L αc ∩ Ḣs , for some W ∈ L αc ∩ Ḣs satisfying W α L αc ≥ 2 α + 2 m α+2 M 2 L α gs .
(3.17)

Remark 3.6. The lower bounds (3.16) and (3.17) are optimal. In fact, if we take v n = Q ∈ G in the first case and v n = R ∈ H in the second case where Q and R are given in Proposition 3.2, then we get the equalities.

Proof of Theorem 3.5. We only consider the first case, the second case is treated similarly using the Sobolev embedding Ḣsc → L αc . By Theorem 2.7, there exist a sequence (V j ) j≥1 of Ḣsc ∩ Ḣs functions and a family (x j n ) j≥1 of sequences in R d such that up to a subsequence, the sequence (v n ) n≥1 can be written as

v n (x) = l j=1 V j (x -x j n ) + v l n (x),
and (2.20), (2.21) and (2.22) hold. This implies that

m α+2 ≤ lim sup n→∞ v n α+2 L α+2 = lim sup n→∞ l j=1 V j (• -x j n ) + v l n α+2 L α+2 ≤ lim sup n→∞ l j=1 V j (• -x j n ) L α+2 + v l n L α+2 α+2 ≤ lim sup n→∞ ∞ j=1 V j (• -x j n ) α+2 L α+2 . (3.18)
By the elementary inequality (3.7) and the pairwise orthogonality (2.19), the mixed terms in the sum (3.18) vanish as n → ∞. We thus get

m α+2 ≤ ∞ j=1 V j α+2 L α+2 .
By the sharp Gagliardo-Nirenberg inequality (3.14), we bound

∞ j=1 V j α+2 L α+2 ≤ α + 2 2 1 S α gs sup j≥1 V j α Ḣsc ∞ j=1 V j 2 Ḣs .
By (2.22), we infer that

∞ j=1 V j 2 Ḣs ≤ lim sup n→∞ v n 2 Ḣs ≤ M 2 . Therefore, sup j≥1 V j α Ḣsc ≥ 2 α + 2 m α+2 M 2 S α gs .
Since the series j≥1 V j 2 Ḣsc is convergent, the supremum above is attained. That is, there exists j 0 such that

V j0 α Ḣsc ≥ 2 α + 2 m α+2 M 2 S α gs . Rewriting v n (x + x j0 n ) = V j0 (x) + 1≤j≤l j =j 0 V j (x + x j0 n -x j n ) + ṽl n (x),
with ṽl n (x) := v l n (x + x j0 n ), it follows from the pairwise orthogonality of the family (x j n ) j≥1 that

V j (• + x j0 n -x j n ) 0 weakly in Ḣsc ∩ Ḣs ,
as n → ∞ for every j = j 0 . This shows that

v n (• + x j0 n ) V j0 + ṽl , as n → ∞, (3.19) 
where ṽl is the weak limit of (ṽ l n ) n≥1 . On the other hand,

ṽl L α+2 ≤ lim sup n→∞ ṽl n L α+2 = lim sup n→∞ v l n L α+2 → 0, as l → ∞.
By the uniqueness of the weak limit (3.19), we get ṽl = 0 for every l ≥ j 0 . Therefore, we obtain

v n (• + x j0 n ) V j0 .
The sequence (x j0 n ) n≥1 and the function V j0 now fulfill the conditions of Theorem 3.5. This ends the proof.

We end this section by giving some applications of sharp Gagliardo-Nirenberg inequalities (3.14) and (3.15). 

Then T = +∞, i.e. the solution exists globally in time.

Proof. Note that the assumption on d, s, α and u 0 comes from the local theory (see Section II). By the sharp Gagliardo-Nirenberg inequality (3.14), we bound

E(u(t)) = 1 2 u(t) 2 Ḣs - 1 α + 2 u(t) α+2 L α+2 ≥ 1 2 1 - u(t) Ḣsc S gs α u(t) 2 Ḣs .
Thanks to the conservation of energy and the assumption (3.20), we obtain sup t∈[0,T ) u(t) Ḣs < ∞. By the blowup alternative given in Proposition 2.2 and (3.20), the solution exists globally in time. The proof is complete.

Proposition 3.8. Let d ≥ 2, d 2d-1 ≤ s < 1 and 4s d < α < 4s d-2s
. Let u 0 ∈ Ḣsc ∩ Ḣs be radial and the corresponding solution u to (1.1) defined on the maximal forward time interval [0, T ). Assume that

S gs ≤ sup t∈[0,T ) u(t) Ḣsc < ∞, sup t∈[0,T ) u(t) L αc < L gs . (3.21) 
Then T = +∞, i.e. the solution exists globally in time.

The proof is similar to the one of Proposition 3.7 by using the shap Gagliardo-Nirenberg inequality (3.15).

IV. BLOWUP CONCENTRATION

Theorem 4.1 (Blowup concentration). Let d ≥ 2, d 2d-1 ≤ s < 1 and 4s d < α < 4s d-2s . Let u 0 ∈ Ḣsc ∩ Ḣs be radial such that the corresponding solution u to (1.1) blows up at finite time 0 < T < +∞. Assume that the solution satisfies (1.5). Let a(t) > 0 be such that a(t) u(t) By the blowup alternative and the assumption (1.5), we see that λ n → 0 as n → ∞. Moreover, we have The sequence (v n ) n≥1 satisfies the conditions of Theorem 3.5 with

v n Ḣsc = u(t n ) Ḣsc < ∞,
m α+2 = α + 2 2 g 2 Ḣs , M 2 = g 2 Ḣs .
Therefore, there exists a sequence (x n ) n≥1 in R d such that up to a subsequence, for some x(t) ∈ R d . This shows (4.2). The proof for (4.3) is similar using Item 2 of Theorem 3.5. The proof is complete.

v n (• + x n ) = λ

V. LIMITING PROFILE WITH CRITICAL NORMS

Let us start with the following characterization of the ground state. This proves (5.3) and the proof is complete.

  .10) Multiplying (3.3) with x • ∇Q, integrating by parts and taking the real part, we have

Theorem 3 . 5 (

 35 Compactness lemma). Let d ≥ 1, 0 < s < 1 and 4s d < α < 2 . Let (v n ) n≥1 be a bounded sequence in Ḣsc ∩ Ḣs such that lim sup n→∞ v n Ḣs ≤ M, lim sup n→∞ v n L α+2 ≥ m.

Proposition 3 . 7 (

 37 Global existence in Ḣsc ∩ Ḣs ). Let d ≥ 2, d 2d-1 ≤ s < 1 and 4s d < α < 4s d-2s . Let u 0 ∈ Ḣsc ∩ Ḣs be radial and the corresponding solution u to (1.1) defined on the maximal forward time interval [0, T ). Assume that sup t∈[0,T ) u(t) Ḣsc < S gs .

  , v n (x) := λ 2s α n u(t n , λ n x).

uniformly in n and v n

 n Ḣs = λ s-sc n u(t n ) Ḣs = g Ḣs ,andE(v n ) = λ 2(s-sc) n E(u(t n )) = λ 2(s-sc) n E(u 0 ) → 0, as n → ∞.

  2s α n u(t n , λ n • +x n )V weakly in Ḣsc ∩ Ḣs , as n → ∞ with V Ḣsc ≥ S gs . In particular, (-∆)sc 2 v(• + x n ) = λ d 2 n [(-∆) sc 2 u](t n , λ n • +x n ) (-∆) sc 2 V weakly in L 2 .This implies for every R > 0(t n , λ n x + x n )| 2 dx ≥ |x|≤R (t n , x)| 2 dx ≥ |x|≤R |(-∆) sc 2 V (x)| 2 dx.In view of the assumption a(tn) λn → ∞ as n → ∞, we getlim inf n→∞ sup y∈R d |x-y|≤a(tn) |(-∆) sc 2 u(t n , x)| 2 dx ≥ |x|≤R |(-∆) sc 2 V (x)| 2 dx,for every R > 0, which means that lim infn→∞ sup y∈R d |x-y|≤a(tn) |(-∆) sc 2 u(t n , x)| 2 dx ≥ |(-∆) sc 2 V (x)| 2 dx ≥ S 2 gs .Since the sequence (t n ) n≥1 is arbitrary, we infer that lim inft↑T sup y∈R d |x-y|≤a(t) |(-∆) sc 2 u(t, x)| 2 dx ≥ S 2 gs .But for every t ∈ (0, T ), the function y → |x-y|≤a(t) |(-∆) sc 2 u(t, x)| 2 dx is continuous and goes to zero at infinity. As a result, we get sup y∈R d |x-y|≤a(t) |(-∆) sc 2 u(t, x)| 2 dx = |x-x(t)|≤a(t) |(-∆) sc 2 u(t, x)| 2 dx,

Lemma 5. 1 .

 1 Let d ≥ 1, 0 < s < 1 and 4s d < α < 2 . • If u ∈ Ḣsc ∩ Ḣs is such that u Ḣsc = S gs and E(u) = 0, then u is of the form u(x) = e iθ λ 2s α g(λx + x 0 ), for some g ∈ G, θ ∈ R, λ > 0 and x 0 ∈ R d . • If u ∈ L αc ∩ Ḣs is such that u L αc = L gs and E(u) = 0, then u is of the form u(x) = e iϑ µ 2s α h(µx + y 0 ), for some h ∈ H, ϑ ∈ R, µ > 0 and y 0 ∈ R d .By Lemma 5.1, there exists g ∈ G such that V (x) = e iθ λ 2s α g(λx + x 0 ) for some θ ∈ R, λ > 0 and x 0 ∈ R d . Thusv n (• + x n ) = λ 2s α n u(t n , λ n • +x n ) → V = e iθ λ 2s α g(λ • +x 0 ) strongly in Ḣsc ∩ Ḣs as n → ∞.Redefining variables as λn:= λ n λ -1 , xn := λ n λ -1 x 0 + x n ,we get e -iθ λ 2s α n u(t n , λn • +x n ) → g strongly in Ḣsc ∩ Ḣs as n → ∞.

  then the corresponding solution exists globally in time. This suggests that Q L 2 is the critical mass for formation of singularities. To study dynamical properties of blowup H s solutions to the mass-critical (1.1), the author in Ref. 11 proved a compactness lemma related to the equation by means of the profile decomposition for bounded sequences in H s .

Proposition 1.2 (Compactness lemma 11 ). Let d ≥ 1 and 0 < s < 1. Let (v n ) n≥1 be a bounded sequence in H s such that lim sup n→∞

  as t ↑ T . Then there exist x(t), y(t) ∈ R d such that Remark 4.2. By the blowup rate given in Corollary 2.4 and the assumption (1.5), we have → 0 as t ↑ T fulfills the conditions of Theorem 4.1.Proof of Theorem 4.1. Let (t n ) n≥1 be a sequence such that t n ↑ T and g ∈ G. Set λ n := g Ḣs u(t n ) Ḣs

				lim inf t↑T	|x-x(t)|≤a(t)	|(-∆)	sc 2 u(t, x)| 2 dx ≥ S 2 gs ,	(4.2)
	and												
				lim inf t↑T	|x-y(t)|≤a(t)	|u(t, x)| αc dx ≥ L 2 gs .	(4.3)
							u(t) Ḣs >	C (T -t)	2s s-sc	,
	for t ↑ T . Rewriting										
	1 a(t) u(t)	1 s-sc Ḣs	=	2s √ a(t) T -t	2s √	1 T -t u(t)	1 s-sc Ḣs	2s √ a(t) T -t < C = 2s √ T -t a(t)	,	(T -t)	1 s-sc 2s	u(t) Ḣs	1 s-sc
	we see that any function a(t) > 0 satisfying	2s √ a(t) T -t		
									1				
									s-sc Ḣs	→ ∞,		(4.1)
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as n → ∞ and up to a subsequence, we can write for every l ≥ 1 and every x ∈ R d ,

with η(v l n ) → 0 as l → ∞. Moreover, (2.21) and (2.22) hold as n → ∞. Indeed, if η(v n ) = 0, then we take V j = 0 for all j ≥ 1 and the proof is done. Otherwise we choose

By definition, there exists a sequence (x 1 n ) n≥1 in R d such that up to a subsequence,

and repeat the same argument. If η(v 1 n ) = 0, then we take V j = 0 for all j ≥ 2 and the proof is done. Otherwise there exist

and

as n → ∞. We now show that

as n → ∞. Indeed, if it is not true, then up to a subsequence,

and using the fact v 1 n (• + x 1 n ) converges weakly to 0, we see that V 2 = 0. This implies that η(v 1 n ) = 0, which is a contradiction. An argument of iteration and orthogonal extraction allows us to construct the family (x j n ) j≥1 of sequences in R d and the sequence (V j ) j≥1 of functions in Ḣsc ∩ Ḣs satisfying the claim above. Moreover, the convergence of the series

Ḣs implies that

By construction,

Proof. We only prove Item 1, Item 2 is treated similarly. Since E(u) = 0, we have

Thus

This shows that u is the maximizer of H. Proposition 3.2 then implies that u is of the form u(x) = ag(λx + x 0 ) for some g ∈ G, a ∈ C , λ > 0 and

The proof is complete.

We are now able to show the limiting profile of blowup solutions with critical norms.

Theorem 5.2 (Limiting profile with critical norms).

. Let u 0 ∈ Ḣsc ∩ Ḣs be radial such that the corresponding solution u to (1.1) blows up at finite time 0 < T < +∞.

(5.1)

(5.2)

Then there exist h ∈ H, ϑ(t) ∈ R, µ(t) > 0 and y(t) ∈ R d such that e iϑ(t) µ 2s α (t)u(t, µ(t) • +y(t)) → h strongly in L αc ∩ Ḣs as t ↑ T.

Proof. We only prove the first item, the second one is treated similarly. We will show that for any (t n ) n≥1 satisfying t n ↑ T , there exist a subsequence still denoted by

Let (t n ) n≥1 be a sequence such that t n ↑ T . Set

where Q is as in Proposition 3.2. By the blowup alternative and (5.1), we see that λ n → 0 as n → ∞. Moreover, we have

and

and

This yields in particular that

The sequence (v n ) n≥1 satisfies the conditions of Theorem 3.5 with

Therefore, there exists a sequence (x n ) n≥1 in R d such that up to a subsequence,

V weakly in Ḣsc ∩ Ḣs as n → ∞, the semi-continuity of weak convergence and (5.4) imply

This together with the fact V Ḣsc ≥ S gs show that

(5.7)

Therefore,

On the other hand, the Gagliardo-Nirenberg inequality (3.14) shows that v n (• + x n ) → V strongly in L α+2 as n → ∞. Indeed, by (5.5),

as n → ∞. Moreover, using (5.6) and (5.7), the sharp Gagliardo-Nirenberg inequality (3.14) yields

or Q Ḣs ≤ V Ḣs . By the semi-continuity of weak convergence and (5.5),

Therefore,

(5.8)

Combining (5.7), (5.8) and using the fact v n (• + x n ) V weakly in Ḣsc ∩ Ḣs , we conclude that v n (• + x n ) → V strongly in Ḣsc ∩ Ḣs as n → ∞.

In particular, we have E(V ) = lim n→∞ E(v n ) = 0. This shows that there exists V ∈ Ḣsc ∩ Ḣs such that V Ḣsc = S gs , E(V ) = 0.