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Résumé — Paramétrage et analyse d’observabilité de clusters de batteries de taille variable
pour une gestion thermique embarquée — Bien que la température de surface d’une batterie soit
généralement mesurée, la température interne d’une cellule peut être beaucoup plus élevée donc plus
critique que la température de surface. La température interne d’une batterie, pourtant normalement
non mesurée dans les applications commerciales, peut être évaluée par un observateur, sur la base
d’un modèle thermique de batterie à constantes localisées et à partir de la mesure du courant et de la
température de surface. Même avec un observateur en boucle fermée basé sur la température de surface
mesurée, la précision de l’estimation de la température interne dépend des constantes du modèle. Dans
cette optique, une méthodologie de paramétrage en ligne et un observateur adaptatif sont conçus pour
une batterie cylindrique. Le modèle thermique à une seule cellule est ensuite agrandi afin de créer
un modèle de cluster de batteries dans le but d’étudier le schéma de température du cluster. Les
interconnexions thermiques modélisées entre les cellules incluent la conduction de chaleur de cellule à
cellule et la convection au flux du liquide de refroidissement environnant. Une analyse d’observabilité
est effectuée sur le cluster avant la conception, pour le pack, d’un observateur en boucle fermée. Sur
la base de l’analyse, les lignes directrices permettant la détermination du nombre minimal de sondes
requises et leurs positionnements exacts sont déduites permettant d’assurer l’observabilité de tous les
états thermiques.

Abstract — Parameterization and Observability Analysis of Scalable Battery Clusters for Onboard
Thermal Management — Although the battery surface temperature is commonly measured, the core
temperature of a cell may be much higher hence more critical than the surface temperature. The core
temperature of a battery, though usually unmeasured in commercial applications, can be estimated
by an observer, based on a lumped-parameter battery thermal model and the measurement of the
current and the surface temperature. Even with a closed loop observer based on the measured surface
temperature, the accuracy of the core temperature estimation depends on the model parameters. For
such purpose, an online parameterization methodology and an adaptive observer are designed for a
cylindrical battery. The single cell thermal model is then scaled up to create a battery cluster model to
investigate the temperature pattern of the cluster. The modeled thermal interconnections between cells
include cell to cell heat conduction and convection to the surrounding coolant flow. An observability
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analysis is performed on the cluster before designing a closed loop observer for the pack. Based on the
analysis, guidelines for determining the minimum number of required sensors and their exact locations
are derived that guarantee the observability of all temperature states.

INTRODUCTION

Lithium-Ion (Li-ion) batteries are attractive energy storage
devices for many portable systems and Hybrid Electric Vehi-
cles (HEV) due to their high specific power and energy den-
sity compared with other batteries such as NiMH and lead
acid. However, they typically have a constrained window of
operating temperatures, around –10 to 50◦C. This constraint
poses a unique cooling challenge for vehicles that operate
in a very wide temperature range of –46 to 72◦C or have
cooling limitations due to volume or weight constraints,
such as robots and armored vehicles.

When batteries are operated outside their nominal tem-
perature range, e.g. during overheating or operating in ele-
vated temperatures, their lifespan and storage capacity are
reduced and performance degrades [1]. An accurate pre-
diction of battery thermal dynamics is the key to effective
thermal management, and hence safety, performance and
longevity of these Li-ion batteries [2].

Thermal modeling and management of batteries have
received considerable attention in the past [3-9]. Some
of those works model detailed temperature distribution
throughout the cell [4, 5, 7, 9] but they are generally com-
putationally intensive and thus not suitable for onboard bat-
tery thermal management. Some of them use one single
temperature to capture the lumped thermal behavior of the
cell [3, 4, 6, 8] under certain conditions. However, the tem-
perature in the core of the cell can be much higher than in
the surface [10], especially when the battery is operating
under high C-rate. Since direct measurement of the tem-
perature can only be performed on the surface of the cell,
a battery thermal model is needed for estimating the bat-
tery core temperature Tc based on the measurement of the
surface temperature Ts.

A second order lumped thermal model for cylindrical
lithium ion batteries have been proposed in [11]. Such
simplified model captures both the surface and core tem-
peratures of the cell, and is efficient enough for onboard
application. In order for the observer to work well, the
model parameters should be as accurate as possible. Since
all these parameters are lumped parameters, textbook values
found by correlating to the geometry of the battery and phys-
ical properties of all its components [11] may not be accu-
rate. The parameters can also be determined based on data
obtained from designed experiments with extra measure-
ments in a offline fashion [10, 11]. However, there could be
two major disadvantages with this technique. First, since the
parameters are usually geometry and chemistry dependent,

every time the model is applied to a new type of battery,
new experiments will have to be designed and conducted
for parameterization. Second, some of the critical parame-
ters, such as the internal resistance, may change over battery
lifetime due to degradation, and thus should be identified
continuously.

In order to address such problems, an online parame-
ter identification scheme is designed in this paper. It can
automatically identify the thermal model parameters with-
out human intervention, based on the current and surface
temperature of the battery, which are the commonly mea-
sured signals in a vehicle battery management system. It is
shown here that the current of real drive cycles is sufficient
for the identification. An adaptive observer is then designed
using the identified parameters for temperature estimation.
The online identification scheme is capable of tracking the
varying parameters, either by resetting itself periodically
over the battery lifetime or by using forgetting factors [12].
Consequently, the scheme can not only ensure that the tem-
perature estimation will not be affected by parameter drift
but also detect the degradation by identifying the growth in
internal resistance.

Applications such as HEV’s usually have hundreds, or
even thousands, of battery cells in series and in parallel to
meet their high power and voltage requirements. The cells
are usually clustered in modules with specific electric and
thermal connections. The temperatures for cells in a pack
can vary significantly [2, 6], due to pack geometry, cooling
conditions among other factors. As a result, it is desirable to
monitor the temperatures of all the cells in the pack but this
is not economically feasible. Therefore, a thermal model for
the battery cluster is developed in this paper by scaling up
the single cell model considering the effect of thermal inter-
connections between cells. Based on the thermal model, an
observer is designed to estimate all the core and surface tem-
peratures with the knowledge of the measured input current,
coolant flow rate, coolant inlet temperature, and strategically
placed surface temperature measurements. Finally a sensor
deployment strategy based on the observability conditions
of the pack model is developed and the minimum number of
required sensors can be investigated.

1 LUMPED THERMAL MODEL OF A CYLINDRICAL
LITHIUM-ION BATTERY

A cylindrical battery is modeled with two states, one for the
surface temperature Ts and the other for the core tempera-
ture Tc, as shown in Figure 1 (adopted from [11]).
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Figure 1

Single cell lumped resistance thermal model.

The governing equations for the single cell thermal model
are defined as in [11]:

Cc
dTc

dt
= I2Re +

Ts − Tc

Rc

Cs
dTs

dt
=

T f − Ts

Ru
− Ts − Tc

Rc

(1)

In this model, heat generation is approximated as a concen-
trated Joule loss in the battery core based on the simplified
structure, computed as the product of the current, I, squared
and the internal resistance, Re. In general, Re is both tem-
perature and State of Charge (SOC) dependent and different
for charging and discharging. For simplicity, it is here con-
sidered as a constant. The more complicated varying Re is
addressed in another publication [12].

Heat exchange between the core and the surface is mod-
eled by heat conduction over a thermal resistance, Rc, which
is a lumped parameter including both the conduction and
contact thermal resistance. A convection resistance Ru is
modeled between the surface and the surrounding coolant
to account for convective cooling. The coolant temperature
is denoted as T f . The convection resistance Ru is actually
a nonlinear function of the flow rate of the surrounding
coolant. In some vehicle battery systems, the coolant flow
rate is adjusted to control the battery temperature. Here, it
is considered as a constant for simplicity. A model with
the more complicated varying Ru has also been investigated
in [12]. The rates of temperature change of the surface
and the core depend on their respective lumped heat capac-
ities Cs and Cc, where Cc is the heat capacity of the jelly
roll inside the cell and Cs is the heat capacity of the battery
casing.

The complete parameter set for the model in Equation (1)
includes Cc, Cs, Re, Rc and Ru. Model identification tech-
niques are developed in the following section to obtain
parameter values based on measurable inputs and outputs.

2 PARAMETERIZATION METHODOLOGY

For linear model identification, a parametric model:

z = θTφ (2)

should be derived first by applying Laplace transformation
to the model, where z is the observation, θ is the parameter
vector and φ is the regressor [13]. Both z and φ should be
measured signals.

With a parametric model available, various algorithms
can be chosen for parameter identification, such as the gra-
dient and the least squares methods. The least squares algo-
rithm is preferred here due to its advantages in noise reduc-
tion [13], which can be applied in either a recursive or a
non-recursive form.

The non-recursive least squares is performed offline using
all of the experimental data over a time period t1, t2, ..., t.
The parameters can be calculated by [13]:

θ(t) = (φT (t)φ(t))−1 φ(t)Z(t) (3)

where:

Z(t) =

[
z(t1)
m(t1)

z(t2)
m(t2)

...
z(t)
m(t)

]T

φ(t) =

[
φT (t1)
m(t1)

φT (t2)
m(t2)

...
φT (t)
m(t)

]T

m(t) =
√

1 + φT (t)φ(t)

(4)

The normalization factor m(t) is used to enhance the robust-
ness of parameter identification.

The recursive least squares algorithm is applied in an
online fashion [13], as parameters are updated at each time
step by:

θ̇(t) = P(t)
ε(t)φ(t)
m2(t)

Ṗ(t) = −P(t)
φ(t)φT (t)

m2(t)
P(t)

ε(t) = z(t) − θT (t)φ(t)

m2(t) = 1 + φT (t)φ(t)

(5)

where P is the covariance matrix and ε is the error in obser-
vation.

If the observation z and the regressors φ in Equation (2)
are not proper or causal, i.e., the order of the denominator
is lower than that of the numerator, a filter 1/Λ(s) will have
to be designed and applied to each signal to make it proper.
The parametric model will then become:

1
Λ

(s)z =
1
Λ

(s)θTφ (6)
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3 PARAMETERIZATION OF THE CYLINDRICAL BATTERY
THERMAL MODEL

In this section, the parameterization scheme described pre-
viously is applied to the cylindrical battery thermal model.
According to Equation (1), the inputs of the model are the
current I and the coolant temperature T f , and the measurable
output is the battery surface temperature Ts. A parametric
model for identification can be derived from Equation (1)
by performing Laplace transformation and substituting the
unmeasured Tc by measurable I, T f and Ts:

s2Ts−sTs,0 =
Re

CcCsRc
I2+

1
CcCsRcRu

(T f −Ts)

−
(
Cc+Cs

CcCsRc

)
(sTs−Ts,0)+

1
CsRu

s(T f −Ts)
(7)

where Ts,0 is the initial surface temperature.
It is assumed here that T f is regulated as a steady output

of the air-conditioning unit and thus sT f = 0, giving:

s2Ts − sTs,0 =
Re

CcCsRc
I2 +

1
CcCsRcRu

(T f − Ts)

−
(

Cc+Cs

CcCsRc
+

1
CsRu

)
(sTs − Ts,0)

(8)

A filter will be designed and applied later to make the para-
metric model proper. If, in some cases, T f is fluctuating
significantly, sT f should not be dropped and can be used as
an extra varying input in the parametric model.

The parametric model in Equation (7) can be written in
the form of Equation (6), where:

• the observation z = s2Ts − sTs,0,

• the independent regressors φ = [I2, T f − Ts, sTs − Ts,0]T ,

• and the parameter vector θ = [α β γ]T , with:

α =
Re

CcCsRc
, β =

1
CcCsRcRu

and γ = −
(
Cc +Cs

CcCsRc
+

1
CsRu

) (9)

By using parametric model Equation (7), only the three
lumped parameters, α, β and γ, can be identified under the
condition of persistent input excitation [13]. Prior knowl-
edge of two of the physical parameters must be assumed so
as to determine a set of unique solution for the original five
physical parameters, Cc, Cs, Re, Rc and Ru from α, β and γ.

Of the five physical parameters, the internal resistance Re

may vary due to aging and needs to be identified. The
thermal resistance Rc is difficult to estimate, because it is
a lumped parameter including both conduction and contact
resistance. The convection resistance Ru is influenced by the
coolant flow conditions around the cell. Therefore, it is not
easy to obtain prior knowledge of those three parameters.
The heat capacities Cc and Cs, which depend on the ther-
mal properties and the mass of the jelly roll and the casing,

are relatively constant over lifetime. In addition, the heat
capacities will only affect the speed of transient response
of the model without having any impact on the steady state
temperatures. Consequently, the heat capacities Cc and Cs

are selected to be the presumed parameters.
With Cc and Cs presumed and α, β and γ identified, Re,

Rc and Ru can be obtained by:

β(Cc + Cs)CsRu
2 + γCsRu + 1 = 0

Rc =
1

βCsCcRu

Re = αCcCsRc

(10)

The quadratic equation for Ru in Equation (10) can lead to
two solutions, but the right one can be decided by a rough
estimation on the coolant flow conditions based on [14].

A second order filter should be applied to the observation
and the regressors in Equation (7) to make them proper. The
filter takes the form:

1
Λ(s)

=
1

(s + λ1)(s + λ2)
(11)

where λ1 and λ2 are designed based on the input and system
dynamics.

The least squares algorithm in Equations (3, 5) can then
be applied to implement model identification.

4 ADAPTIVE OBSERVER DESIGN

In this section, an adaptive observer which can perform
online parameter and state estimation simultaneously is
designed based on the recursive least squares model iden-
tification scheme and a model observer.

It is a common practice to design a closed loop observer,
such as a Luenberger observer or a Kalman filter, to esti-
mate the unmeasured states of a system based on measured
signals and a model. The closed loop observer for a linear
system:

ẋ = Ax + Bu (12)

takes the form [15]:

˙̂x = Ax̂ + Bu + L(y − ŷ)
ŷ = Cx̂ + Du (13)

where x and y are the actual system states and output, x̂ and ŷ
are estimated states and output, L is the observer gain, and A,
B, C and D are model parameters. The difference between
the measured and the estimated output is used as a feedback
to correct the estimated states. The closed loop observer
has certain advantages over the open loop observer (observer
without output feedback). It can guarantee fast convergence
of the estimated states to those of the real plant under uncer-
tain initial conditions, e.g. a Luenberger observer [15], or
optimize the estimation by balancing the effect of process
and measurement noises, e.g. a Kalman filter [16].
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Figure 2

Online identification scheme and adaptive observer structure.

The cylindrical battery thermal model described by
Equation (1) can be written in state space form as:

x = [Tc Ts]T , y = Ts, u = [I2 T f ]T

A =

⎡⎢⎢⎢⎢⎢⎣−
1

RcCc

1
RcCc

1
RcCs

− 1
Cs

( 1
Rc
+ 1

Ru
)

⎤⎥⎥⎥⎥⎥⎦
B =

[ReRc
Cc

0
0 1

RuCs

]

C = [0 1]

D = 0

(14)

where the C matrix clearly indicates that only the cell sur-
face temperature can be measured. An adaptive observer
is designed based on certainty equivalence principle [13],
where the estimated parameters from online identification
in Equation (5) are adopted for the observer. The struc-
ture of the whole online identification scheme and adaptive
observer is shown in Figure 2.

As shown in Figure 2, the input current I, coolant tem-
perature T f and measured surface cell temperature Ts are
fed into the parameter identifier to estimate model param-
eters Ru, Re and Rc. The adaptive observer, on one hand,
adopts the estimated parameters for temperature estimation.
On the other hand, it takes the errors between the measured
and the estimated Ts as a feedback to correct its core and sur-
face temperature estimation. Estimations of both parameters
and temperatures are updated at each time step.

5 SIMULATION FOR PARAMETERIZATION AND
ADAPTIVE OBSERVER FOR A CYLINDRICAL BATTERY
THERMAL MODEL

Simulation is used to verify the parameterization scheme
and adaptive observer. A cylindrical battery thermal model
in Equation (1) with parameters of an A123 32157
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Figure 3

Simulated drive cycle and surface temperature output for ver-
ification. a) Vehicle velocity profile, b) corresponding battery
current, c) simulated battery surface temperature.

LiFePO4/graphite battery is used to generate data for
methodology verification. These parameters are either taken
from [17] and [10], by scaling the values to account for
different cell geometries, or calculated based on [18]. The
values of the model parameters are listed in Table 1.

TABLE 1

Nominal model parameters

Cc (JK−1) Cs (JK−1) Re (mΩ) Rc (KW−1) Ru (KW−1)

268 18.8 3.5 1.266 0.79

The coolant considered here is air, with Ru = 0.79 KW−1

corresponding to an air flow rate of 9.5 × 10−3 m3/s−1. The
air flow temperature is fixed at 25◦C.

The Urban Assault Cycle (UAC) [19] is used to generate
the current excitation. This drive cycle characterizes the typ-
ical high power excursion needed for military application.
The vehicle velocity profile of UAC is plotted in Figure 3.
The current load for the battery system is calculated for a
13.4 ton armored military vehicle in [19] and also plotted
in Figure 3. As one can see that the UAC involves up to
20 C battery discharging and 12 C charging, including the
current during regenerative braking. The UAC is repeated to
generate a longer data set which is used as the model input
to calculate the surface temperature Ts. The simulated core
temperature is recorded for verification. The urban assault
cycle current profile I and the simulated Ts are shown in Fig-
ure 3. The three parameters to be identified, Ru, Rc and Re,
are initialized to be:

R0
e = 10 mΩ R0

c = 2 KW−1 R0
u = 1.5 KW−1 (15)

which are different from the nominal values in Table 1.
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Online parameter identification results.
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Adaptive observer response.

Under the drive cycle, the regressors φ in Equation (7)
need to satisfy the persistent excitation condition in order
for the parameterization algorithm to work [13]. The persis-
tent excitation condition is satisfied if two positive numbers,
α0 and α1, can be found such that [13]:

α1IM ≥ U(t) =
1
T0

∫ t+T0

t
φ(τ)φT (τ)dτ ≥ α0IM ∀t ≥ 0

(16)
where T0 is a certain time interval and IM is the identity
matrix. Here, T0 is chosen as the period of one UAC cycle,
which is 1 332 seconds, to calculate the U(t) matrix. Once
the battery reaches the thermal quasi steady state, after about
30 minutes, the surface temperature varies periodically with
period T0. Consequently, the calculated U(t) is constant
over time. The U matrix is a symmetric matrix, whose max-
imum and minimum eigenvalues are 0.3 and 0.005 respec-
tively. These two numbers can be used as the α0 and α1 in
Equation (16) to satisfy the persistent excitation condition.

The online identification results are plotted in Figure 4.
It can be seen that all the three parameters converge to the
nominal values in Table 1, despite starting at some random
initial values. Both the identified Re and Rc converge within
10 minutes whereas Ru takes longer. The response of the
adaptive observer is plotted in Figure 5. In this figure, the
temperatures Tc and Ts simulated by the model (emulating
the real battery) are presented and the estimated Tc and
Ts are plotted to evaluate the performance of the adaptive
observer. The simulated core temperature Tc and surface
temperature Ts are initialized to be 25◦C and the adap-
tive observer starts from 10◦C for both temperatures. It
is noted that the estimated surface temperature converges

to the real values within 20 minutes, because the Ts is
directly measured and fed back into the observer to force
the observer to match the measurement. The estimation of
the core temperature, Tc, instead, converges much slower (in
about 60 minutes). This slower adaption occurs because Tc

is not directly measured and thus the estimation of Tc will
heavily depend on the precision of the observer parameters.
It can be seen in Figure 4 that the parameters estimated by
the identifier fluctuate for a while before finally converging
to the correct values. The convergence of Tc estimation hap-
pens after the parameter identification converges.

Experimental validation (with core temperature measure-
ment) of the parameter identification algorithm has been
performed on an A123 26650 battery and documented on
a separate article [20].

6 SCALABLE BATTERY CLUSTER THERMAL MODEL
AND SENSOR DEPLOYMENT ANALYSIS

In vehicle application, batteries are usually packed in mod-
ules to satisfy the energy and power demand. This section is
devoted to constructing a thermal model for a battery cluster
based on the previously discussed single cell model. The
cluster model can then be used to design an thermal observer
for the cluster. The parameters identified by the online
identifier discussed above can be updated in real time to
the cluster model for adaptation. To optimize temperature
estimation, a closed loop observer with surface temperature
feedback is desirable, which will require observability. The
observability analysis will then be conducted to the cluster
thermal model to guide the sensor deployment.
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Figure 6

A possible battery pack configuration, with 5 strings
of 12 cells along the coolant path.
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Figure 7

Simulated battery pack temperature profile subject to UAC
cycle (for Tc, Ts and T f , from cooler to hotter: Cell1, Cell2,
Cell3, Cell4 and Cell5).

6.1 Scalable Battery Cluster Thermal Model

The single cell cylindrical battery thermal model in Equa-
tion (1) can be scaled up to a battery cluster model by con-
sidering cell to cell heat conduction [21] and heat balance of
the flowing coolant [6, 11], as shown in Figure 6.

As shown in Figure 6, the cluster can be simplified by
considering cells that are connected in series with tabs and
are geometrically arranged in a row configuration along the
coolant flow path. The coolant flows through the space
between cells from the inlet to the outlet and picks up the
heat dissipated from the cell surface through convection.

The temperature evolution of the kth cell in a cluster can
be modeled as:

Cc
dT c,k

dt
= I2Re +

Ts,k − Tc,k

Rc

Cs
dT s,k

dt
=

T f ,k − Ts,k

Ru
− Ts,k − Tc,k

Rc
+

Ts,k−1+Ts,k+1 − 2Ts,k

Rcc

T f ,k = T f ,k−1 +
Ts,k−1 − T f ,k−1

RuC f
(17)

where k is the index of the cell along the coolant flow
direction.

In Equation (17), the heat conduction between cells is
modeled as heat flow over a conduction resistance Rcc,
driven by the temperature difference between the adjacent
cell surfaces. It is noted here that Rcc is a lumped parame-
ter, which may include heat conduction through the tab and
other possible connections between cells depending on the

cluster structure. The coolant flow temperature of the kth
cell, T f ,k, is determined by heat balance of the flow around
the previous cell, which is calculated by dividing the heat
removed (Ts,k−1 − T f ,k−1)/Ru from the (k − 1)th cell by the
coolant flow capacity C f . It is assumed that all the cells have
the same parameters and the current is also the same for all
the cells since the cluster is in series connection.

The temperature profile for a cluster with 5 cells subject
to Urban Assault Cycle (UAC) is shown in Figure 7. Cell1
is close to the coolant inlet while Cell5 is close to the outlet.
The inlet air temperature for this simulation is set at 25◦C
and the flow rate is 9.5 × 10−3 m3s−1, corresponding to a
flow velocity of 1.515 m.s−1.

In Figure 7, the coolant air temperature T f for Cell1 stays
constant at 25◦C since the inlet air temperature is controlled.
As the coolant air flows from Cell1 to Cell5, its temper-
ature T f increases as it picks up the heat from the cells.
Consequently, the surface and the core temperatures of the
cells will also increase down the string towards the coolant
outlet due to the coolant temperature rise.

Here, it is assumed that every single cell in the string has
the same Ru. As can be seen in Figure 7, the hottest cell
will be the last one because the difference in cooling among
cells is only affected by the coolant temperature and thus
the heat rejection capacity for each cell is the same. For
some pack geometries, it might be possible that different
cells are subject to different flow conditions, e.g. the cells
at the two ends of the string may have higher heat rejection
capacity due to the larger space around them. Therefore,
the cells in the middle of the string may have the highest
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temperatures. For those cases, different Ru numbers can be
applied to different cells to capture these variations.

6.2 Model based Prediction of the Cluster
Temperatures

In a commercial battery module for automotive application,
there are usually hundreds or even thousands of cells in total,
and it is not possible to measure the surface temperature for
every single cell. One common practice is to test the pack
before installation and identify those cells with the highest
temperature under experiment conditions and place thermo-
couples on those cells to monitor the critical temperatures as
a reference for cooling control and power management. One
potential issue with such method is that it cannot provide
the temperatures of every single cell and hence capture the
thermal non-uniformity across the pack during transients.
Consequently, model based temperature monitoring might
be highly desirable sin ce it can estimate the core tempera-
ture Tc and the surface temperature Ts of every cell in the
pack.

The cluster thermal model developed in this paper can be
used for cluster thermal monitoring. A model based state
estimator can be categorized as either an open loop observer
or a closed loop observer. An open loop observer estimates
the states with the model solely based on the inputs. For
example, considering a battery string with 2 cells, an open
loop observer takes the form in Equation (12), with:

x = [Tc,1 Ts,1 Tc,2 Ts,2]T , u = [I2 T f ]T

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re
Cc

0
0 1

RuCs
Re
Cc

0

0
RuC f −1

R2
uCsC f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

and the A matrix specified in Equation (19).
The open loop observer will give accurate state estima-

tion if the initial conditions of all the temperature states are
known, which naturally occurs when all the cells in the pack
relax to the coolant temperature.

When the initial conditions are not known, the estimated
temperatures will still converge to the real temperatures
gradually since the thermal system is stable but the con-
vergence will be slow due to the slow thermal dynamics of

the battery. Unknown initial conditions (temperatures) will
often occur in a battery pack. Since the temperature sensors
can only be installed on some cell surfaces, only the ini-
tial surface temperatures of those cells can be obtained pre-
cisely at startup while the initial core temperatures remain
unknown. If the vehicle is started from steady states, e.g.
after overnight rest, the unmeasured initial core tempera-
tures of the cells can be assumed to be the same as the
measured initial surface temperatures. But such an assump-
tion may not be valid for short shutdown. Figure 8 shows
the simulated temperature evolution during shutdown of a
battery pack with 5 cells in series. The temperature profile
of the precedent operation cycle is shown in Figure 7. The
current is cut off at the beginning of the simulation in Fig-
ure 8 as the shutdown is initiated, and the cooling system is
kept on during the shutdown process.

It can be observed in Figure 8 that it takes the battery
pack more than 40 minutes for all the cells to cool down to
the ambient temperature when the surface temperatures Ts

and the core temperatures Tc are equal. In real application,
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Simulated battery pack temperature profile during shutdown
(for Tc, Ts and T f , from bottom to top: Cell1, Cell2, Cell3,
Cell4 and Cell5).

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
RcCc

1
RcCc

0 0

1
RcCs

−
(

1
RcCs

+
1

RuCs
+

1
RccCs

)
0

1
RccCs

0 0 − 1
RcCc

1
RcCc

0

⎛⎜⎜⎜⎜⎝ 1

Ru
2C f Cs

+
1

RccCs

⎞⎟⎟⎟⎟⎠ 1
RcCs

−
(

1
RuCs

+
1

RcCs
+

1
RccCs

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)
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it may not be feasible to keep the cooling system on for
40 minutes after key-off. Consequently, the actual time for
the pack to cool down will be longer since the convection
will be weakened in absence of forced coolant flow. If
the driver tries to turn the vehicle back on before the pack
gets to thermal equilibrium, the initial reading of the sur-
face temperature at startup will not be a good approxima-
tion for the initial core temperatures. The shorter the shut-
down is, the larger the errors of such approximation will
be. For example, if the next startup occurs at about 10 min-
utes after the previous shutdown, according to Figure 8, the
difference between the surface and the core temperatures
will be roughly 7◦C.

A simulation has been conducted to investigate how fast
the open loop estimation of the temperatures will converge
under such errors in initial conditions. In simulation, the
real initial surface and core temperatures of all the cells are
set to be 30◦C and 37◦C respectively. For the open loop
observer, the initial core temperatures are assumed to be the
same as the measured surface temperatures, which are 30◦C.
The results are shown in Figure 9. For clarity, only the
temperatures of Cell1 and Cell5 are plotted.

It can be observed in Figure 9 that the settling time for
open loop estimation of the surface and core temperatures
for both Cell1 and Cell5 is more than 30 minutes. Such a
big delay is due to the slow thermal dynamics of the batteries
and may lead to ineffective battery management during the
startup period. It is noted that in onboard BMS, not every
cell surface temperature is measured. As a result, in addi-
tion to the unknown core temperatures considered here, the
surface temperatures of those unmeasured cells will also be
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Figure 9

Convergence of open loop and closed loop observer.

unknown at startup. Such uncertainty may further increase
the delay of convergence.

In order to minimize delay in estimation due to unknown
initial temperatures, a closed loop observer can be designed
to achieve fast estimator convergence. For a closed loop
observer, some of the states (cell surface temperatures) are
measured and the errors between the measurement and the
estimation are fed back to the model-based observer to
correct the estimation [15]. Taking a cell string with 2
cells as an example, the closed loop observer takes the
form in Equation (13), where the A matrix is specified in
Equation (19), and x, u and B in Equation (18). If a ther-
mocouple is used to measure the surface temperature of the
second cell, we will have:

C = [0 0 0 1], D = 0 (20)

When the model is completely observable, by tuning the
observer gains, the dynamics of the closed loop observer can
be designed to be fast and the estimated temperatures will
converge to the real plant temperatures much more quickly
than the open loop estimation when starting from unknown
initial temperatures.

Simulation for a closed loop temperature observer is
shown in Figure 9 to compare with the performance of the
open loop observer. It can be seen that the closed loop
estimation converges to the real temperatures much faster
than the open loop estimation. Both temperatures estimated
by the closed loop observer converge to the real tempera-
tures within 5 minutes, as compared to the 30 minutes taken
by the open loop observer. It is noted that simulation in
Figure 9 assumes known parameters for all the cells, which
are identified by the previous single cell identifier. That
is why the estimated temperatures can converge fast to the
correct values.

Under the current strategy, thermal parameters are identi-
fied for cells with thermocouples in the battery pack. The
identified parameters are then used for pack temperature
estimation as batteries without thermocouples are assumed
to have the same parameter values. It is shown next that
the pack closed loop observer will have smaller estimation
errors than the open loop observer, even if the assump-
tion that all cells have identical thermal characteristics is
false. Simulation has been conducted with a battery string
with 5 cells in series to evaluate the effect of nonidentical
cell thermal properties on temperature estimation. The sur-
face temperatures of Cell1 and Cell5 are accessible by the
observer and their internal resistances are set to be 3.5 mΩ.
The other cells, Cell2 to Cell4, whose surface tempera-
tures are not accessible, are set with internal resistance
of 4.3 mΩ. The observer will have the correct internal resis-
tance value, 3.5 mΩ, for the 1st and 5th cell since their sur-
face temperatures are available for identification, and it will
assume the same value for Cell2 to Cell4, whose internal
resistances are actually 4.3 mΩ. In Figure 10, temperature
estimations of Cell1 and Cell4 by the open loop observer
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Figure 10

Convergence of the temperature estimation by open loop and closed loop observer. a) Ts1, b) Ts4, c) Tc1, d) Tc4.

are plotted and compared with the simulated real temper-
atures. Errors can be observed in the open loop estimation
(T ol

si , T ol
ci ), especially for the fourth cell, whose internal resis-

tance is assumed with an erroneous value in the observer.
Similar errors exist in the temperature estimations of Cell2
and Cell3, which are not plotted. For the 1st cell, although
the model parameters in the observer are correct, the tem-
perature estimation is still erroneous as the errors propagate
from the biased estimation of other cells through cell to cell
conduction. The closed loop observer can greatly reduce
the estimation error under such circumstance, as plotted in
Figure 10, especially for Cell4. The two and infinity norms
of the temperature estimation errors for all 5 cells by both
open and closed loop observers are shown in Figure 11 indi-
cating that the overall errors in temperature estimation are
also smaller for the closed loop observer. It is noted that the
closed loop observer cannot eliminate the estimation errors
due to erroneous model parameters of unidentified cells.
The ultimate solution will be to identify the parameters of
multiple cells based on surface temperature measurement of
one or several batteries in a cell string.
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Norms of the estimation errors for open loop and closed loop
observer.
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6.3 Investigation on Sensor Deployment based
on Cluster Model Observability Analysis

An effective closed loop observer is based on the observ-
ability of the battery pack model. In this section, the
observability conditions are analyzed to guide the sensor
placement in specific cells in the battery pack so as to enable
an effective error correction.

The observability of a model can be examined by its
observability matrix:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C

CA
· · ·

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

where A is the system matrix, C is the output matrix in
Equation (12) and n is the order of the system. The model
will be completely observable if and only if the rank of Q is
equal to n.

First, a battery string with 2 cells, whose A matrix is
specified in Equation (19), is investigated for simplicity. In
Equation (19), the 1/RccCs terms in the 2nd and the 4th
rows of the A matrix reflect the thermal interaction between
the 2 cells through cell to cell conduction. The 1/(Ru

2C f Cs)
term in the 4th row represents the impact of the first cell
on the second one through coolant flow convection. The
absence of this term in the 2nd row indicates that such
impact is unidirectional and the second cell cannot influence
the first cell via coolant convection.

The C matrix will be determined by the location of the
sensor. If the surface temperature of Cell1 is measured,
then C1 =

[
0 1 0 0

]
, and if the surface temperature of Cell2

is measured, C2 =
[
0 0 0 1

]
.

If all the elements in A are assigned with the values
assumed in this paper and applied to Equation (21) to cal-
culate Q, it can be found that the rank of Q will be 4 when
either C1 or C2 is applied. This means that for a cell string
with 2 cells, either measuring the first or the second cell will
give full observability.

For a cell string with 3 cells in series, the A matrix can
be established as Equation (22). Similar to the A matrix

for the 2 cell string in Equation (19), the 1/(RccCs) terms
in the 2nd, 4th and 6th rows reflect the interaction between
the adjacent cells via cell to cell heat conduction, and the
1/(Ru

2C f Cs) term in the 4th row accounts for the impact
of the first cell on the second cell by coolant flow con-
vection. More details about the cell interconnection via
coolant convection can be revealed by exploring the 6th
row of the A matrix. In the 6th row, the 1/(Ru

2C f Cs)
term in the 4th column represents the impact of the second
cell on the third cell through coolant convection and the
1/(Ru

2c f cs)−1/(Ru
3c f

2cs) term in the 2nd column describes
such impact of the first cell on the third cell. It can be seen
that all the previous cells in the string will affect the subse-
quent cells through coolant flow convection and the further
apart the two cells are, the weaker such effect will be. Such
feature of the coolant convection is different from that of the
cell to cell conduction, which only exists between adjacent
cells and the strength is always the same.

For cell strings with any number of cells, after
establishing the A matrix similar to Equation (19) and Equa-
tion (22), observability analysis can be conducted to find the
minimum number of sensors that gives full observability.
The results are summarized in Table 2.

TABLE 2

Minimum number of sensors for a battery string

No. of cells Min. no. of sensors

1, 2, 3 1

4, 5, 6 2

7, 8, 9 3

10, 11, 12 4

It is noted that for cell strings with more than 5 cells, the
sensor location will also have an effect on the observability.
For example, for a string with 5 cells, although the minimum
number of sensors for full observability is 2, different sensor
locations may lead to different results on observability, as
shown in Figure 12. It can be seen that if the 2 sensors are
placed at the first 2 cells, the rank of the Q matrix will be
less than 10, hence the full observability cannot be satisfied.

A_3cell =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Rccc

1
Rccc

0 0 0 0

1
Rccs

−
(

1
Rccs

+
1

Rucs
+

1
Rcccs

)
0

1
Rcccs

0 0

0 0 − 1
Rccc

1
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0 0

0
1

Ru
2c f cs

+
1

Rcccs

1
Rccs

−
(

1
Rucs

+
1

Rccs
+

2
Rcccs

)
0

1
Rcccs

0 0 0 0 − 1
Rccc

1
Rccc

0
1

R2
uc f cs

(
1 − 1

Ruc f

)
0

1

Ru
2c f cs

+
1

Rcccs

1
Rccs

−
(

1
Rccs

+
1

Rucs
+

1
Rcccs

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)
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Figure 12

Sensor location determines full observality.
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Figure 13

Observability of the same sensor locations under differ-
ent conditions.

But when the 2 sensors are placed at the first cell and the
last cell, the Q matrix will be of full rank and thus gives
full observability. This can be explained by the essence of
the observability. Observability actually indicates the pos-
sibility of determining all the states based on the available
measurements and the model. The model defines the rela-
tions between different states and thus in order to achieve
full observability, the measurements should be able to pro-
vide enough constraints to restrict the states to a single set of
solution based on the model. When the sensors are placed
at the first 2 cells, the constraints provided by the sensors
are redundant at the beginning section of the string, since
the surface temperature of the second cell can be calculated
based on the measured surface temperature of the first cell
and the model. Since there is no measurement in the latter
section of the string, the temperatures of the cells in that sec-
tion cannot be constrained to unique values. Consequently,
the condition of full observability is not satisfied. When the
sensors are deployed at the first and the last cells, constraints
are imposed on the string evenly, and thus all the states can
be determined by the measurements and the model.

In some cases, the thermal interconnections between the
cells may be weaker if either cell to cell heat conduction
or coolant convection is missing or negligible. For one
thing, cell to cell conduction can be very small in some
pack designs due to the shape or the material of the tab. For
another, when the coolant flow is not circulated through the
pack, e.g. during cooling system breakdown, the cells will
be cooled via natural convection and the previous cells will
not affect the subsequent cells through coolant convection.

Under these circumstances, the observability conditions will
be different. Take a cell string with 5 cells as an exam-
ple. As shown in Figure 13, when the coolant circulation
is disabled and the cells are cooled by natural convection,
placing the sensors at the first and the last cell can still
satisfy observability condition. But when the cell to cell
conduction is missing, the same sensor locations cannot give
full observability.

Such discussion can be generalized to strings with more
cells. A string with 12 cells is analyzed and the results
are summarized in Table 3. The minimum number of sen-
sors that gives full observability is 4. As shown in Table 3,
among all the 495 combinations of 4 sensor locations in
a cell string of 12, if there are both circulated coolant
convection and cell to cell conduction, referred to as full
interconnection in Table 3, 106 combinations will give full
observability. Under natural convection, where the coolant
is not flowing between cells, only 52 combinations can
satisfy full observability condition. When the cell to cell
conduction is missing, only 1 combination yields full

TABLE 3

Number of sensor position combinations giving full observability for a
string with 12 cells and 4 sensors

Conditions No. of combinations

giving full observability

Full interconnection 106/495

Natural convection 52/495

No cell to cell conduction 1
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observability. That combination would be evenly distribut-
ing the sensors at the 3th, 6th, 9th and 12th cells, which quite
agrees with intuition.

Of the two modeled thermal interconnections between
cells, namely the cell to cell heat conduction and the heat
convection through the coolant flow, the former tends to
have larger impact on the observability of the pack model.
This may be related to the fact that the cell to cell heat con-
duction is a two-way interaction, whereas the heat convec-
tion through the coolant flow is single directional.

Consequently, greater cell to cell heat conduction is
favored by the observability of the pack model. It is noted
that great cell to cell heat conduction can also reduce the
temperature gradient between cells in the pack and thus help
contain the imbalance between cells induced by temperature
non-uniformity. However, on the negative side, in case of a
single cell thermal failure, e.g. local overheating, the great
cell to cell heat conduction will facilitate the spread of such
failure to other cells in the pack, which is not desirable from
a safety perspective.

CONCLUSION
In this paper, an online parameterization methodology for a
lumped thermal model of a cylindrical lithium ion battery
cell has been proposed, designed and verified by simula-
tion. By using the online parameterization algorithm, the
lumped parameters of the thermal model, which cannot be
easily measured or calculated otherwise, can be automati-
cally identified based on the current excitation of a real drive
cycle and the resultant battery surface temperatures. The
identified parameters and the measured cell surface temper-
ature are adopted by an adaptive observer to estimate the
unmeasured core temperature of the cell. The estimated
core temperature is a more effective reference for the on-
board thermal management and the vehicle power manage-
ment system. The next step will be to validate the model
and the methodology with experiments. Over the battery
lifetime, such online identification scheme can be reset on a
monthly or yearly basis to track varying parameters due to
degradation. This can also be achieved by using forgetting
factors, which has been explored in another publication [12].

The single cell model is then scaled up to a one-
dimensional cluster model after being augmented with cell
to cell heat conduction and coolant flow thermal dynamics
due to convection. The cluster model can be further scaled to
multi-dimensional models with more complicated thermal
connections between cells. Different cooling strategies and
configurations for the pack can be accommodated by tuning
the values of the parameters. The observability of the cluster
model is investigated to enlighten pack sensor deployment.
The system matrix of the cluster model has been explored
and minimum numbers of required sensors have been deter-
mined for clusters with various lengths. The sensor loca-
tions will affect the observability of the cluster, and such

impacts are different under various cluster constructions and
cooling conditions.

At this point, the adaptation of the cluster thermal mon-
itoring is achieved by propagating the parameters identi-
fied online from a single cell to the whole cluster. The
underlying assumption is that all the cells are behaving and
degrading at the same pace. To achieve full adaptation of
the cluster, where degradation profile can be established for
the cluster, the sensor deployment will be investigated based
on the identifiability analysis of the cluster model.
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