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Abstract

This study addresses the question of the quantitative reconstruction of heterogeneous dis-
tributions of isotropic elastic moduli from full strain field data. This parameter identification
problem exposes the need for a local reconstruction procedure that is investigated here in the
case of materials with small contrast. To begin with the integral formulation framework for
the periodic linear elasticity problem, first- and second-order asymptotics are retained for the
strain field solution and the effective elasticity tensor. Properties of the featured Green’s ten-
sor are investigated to characterize its decomposition into an isotropic term and an orthogonal
part. The former is then shown to define a local contribution to the volume integral equations
considered. Based on this property, then the combination of multiple strain field solutions cor-
responding to well-chosen applied macroscopic strains is shown to lead to a set of local and
uncoupled identities relating, respectively, the bulk and shear moduli to the spherical and devi-
atoric components of the strain fields. Valid at the first-order in the weak contrast limit, such
relations permit point-wise conversions of strain maps into elasticity maps. Furthermore, it is
also shown that for macroscopically isotropic material configurations a single strain field solu-
tion is actually sufficient to reconstruct either the bulk or the shear modulus distribution. Those
results are then revisited in the case of bounded media. Finally, some sets of analytical and
numerical examples are provided for comparison and to illustrate the relevance of the obtained
strain-modulus local equations for a parameter identification method based on full-field data.

1 Introduction

1.1 Context

Imaging the mechanical properties of a solid body is a problem with applications to material char-
acterization, non-destructive testing or medical diagnosis. In this context, displacement or strain
field measurements are generally assumed to be available within the domain or at its boundary and
the reconstruction of distributions of elastic moduli from such data constitutes an ill-posed inverse
problem. Over the last few decades a variety of identification methods have been developed for a
number of constitutive models associated with a range of measurement modalities, see [9].

The specific focus of the present study is the quantitative reconstruction of the elasticity maps
that characterize a heterogeneous and linear isotropic elastic medium, from full strain field maps
associated with a set of static mechanical excitations applied to the investigated body. This problem
is motivated by the flourishing development of kinematic full-field measurement techniques, see
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e.g. [12, 10, 24], of which digital image correlation is a representative example. In this context, the
starting point for the present study is the availability of full strain field measurements from which
we aim at inferring bulk and shear modulus distributions. To tackle this inverse problem a num-
ber of dedicated methods have been proposed and the reference [1] proposes a comparative study.
Overall, these approaches revolve around the interpretation of the momentum equation and of the
constitutive law as equations for the unknown material parameters and where the spatially vary-
ing coefficients are constituted by the strain field data. In this respect, reconstructing the targeted
physical parameters amounts to compute a solution to this partial differential equation owing to
an appropriate integration strategy. Recently, so-called adjoint-weighted and gradient-based vari-
ational methods, see [4, 5] and [3, 2], have been developed to deal with intrinsic stability issues
associated with this inverse problem and to improve the quality of reconstructions from noisy data.

Departing from these approaches, this article follows the alternate route of explicit reconstruc-
tion formulae. Their derivation is based on the integral formulation framework of the linear elastic-
ity problem which allows to express a given strain field as the solution of a volume integral equation
commonly referred to as the Lippmann-Schwinger equation. These formulations have been known
and used for a long time, see e.g. [30, 28], in particular due to their interest for computing the
behavior of composite materials and their relevance to homogenization theories. It is especially
noteworthy that such formulations are at the core of efficient fast-Fourier transform based numeri-
cal methods for simulating the behavior of complex microstructured materials [21, 22, 17] and they
can been adapted to solve the inverse problem as in [6]. These iterative approaches are based on the
method of successive approximations for computing solutions to the integral equations considered.
In this context, this study stems from evaluating strain field solutions at the first order with respect
to fluctuations of the material parameters with respect to their mean values, an approximation which
is also known in scattering theory as the Born approximation.

Therefore, this work aims at a direct reconstruction approach of bulk and shear modulus dis-
tributions from the knowledge of strain field solutions within the domain considered. Focusing
on materials with small contrast then the governing integral equations are expressed in terms of
the Green’s operator for the periodic medium, to begin with, and expanded at the first-order in the
material parameter perturbations. Upon characterizing the geometrical properties of the featured
Green’s tensor it is shown that specific experiments, associated with either purely hydrostatic or
deviatoric applied macroscopic strains, can be combined to yield point-wise identities relating the
sought moduli to the corresponding strain field solutions. In other words, explicit formulae are
obtained at the first-order for a set of well-chosen experiments so that it makes it possible to recon-
struct the unknown elastic moduli at a given point from strain field data at this point. This analysis
is achieved by taking full advantage of the Fourier-based formulation, that is relevant to the peri-
odic case, and of an orthogonal decomposition of the Green’s tensor. Proceeding on this basis, the
obtained results are extended to bounded domain configurations. Overall this local integration-free
approach is analytic and it is thus based on noise-free strain field data. Note that the proposed
method has a connection with works such as [7, 16] on the quantification of local field fluctuations
in heterogeneous materials. Lastly, the derivation of first-order inversion formulae is an objective
also pursued in [14] but in the different context of boundary measurements.

The outline of this article is as follows. The identification problem together with the governing
equations are presented in the next subsection. The integral formulation framework of the periodic
linear elasticity problem is investigated in Section 2 to shed light on key properties of the Green’s
operator. In this context, Section 3 focuses on the derivation of the sought strain-modulus iden-
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tities for a generic material configuration. Section 4 addressed the special case of materials with
macroscopic isotropy for which an alternate, but equivalent, energy-based approach is employed to
obtain the associated reconstruction formulae. With this analysis at hand, the obtained results are
then revisited in the case of bounded media in Section 5. Finally, a set of analytical and numerical
examples are discussed in sections 6 and 7 to support and illustrate the proposed reconstruction
method.

1.2 Statement of the problem

Consider a periodic elastic medium with representative volume element V ⊂ Rd, with d = 2 or 3,

and characterized by the elasticity tensor field L ∈ L∞per

(
V,

2

⊗s(
2

⊗sRd)
)
. The medium is considered

to be such that the characteristic length-scale of the inhomogeneities is small compared to that of
the domain V . The static governing equations read

∇× [∇× ε(x)]t = 0, σ(x) = L(x) : ε(x), ∇ · σ(x) = 0, (1)

with periodic strain field ε : V →
2

⊗s Rd and associated stress field σ : V →
2

⊗s Rd that satisfies
anti-periodic boundary conditions on ∂V . Furthermore, the mechanical loading is assumed to be

compatible with a uniform macroscopic strain ε̄ ∈
2

⊗s Rd such that

〈ε〉 =
1

|V|

∫
V
ε(x) dx = ε̄. (2)

The strain field solution can be decomposed in terms of a V-periodic displacement field u as

ε(x) = ε̄+ ∇su(x),

where ∇s denotes the symmetrized gradient operator. Correspondingly, one defines the effective

constitutive tensor L̃ ∈
2

⊗s

( 2

⊗s Rd
)

as the fourth-order tensor that satisfies

〈σ〉 = L̃ : 〈ε〉. (3)

Introducing a reference elasticity tensor L0 ∈
2

⊗s

( 2

⊗sRd
)

and noting δL = L−L0, then owing
to a perturbation approach the solution ε to the elasticity problem (1)–(2) is known to satisfy the
following Lippmann-Schwinger equation [30, 20]:

ε(x) = ε̄−
[
Γ0 (δL : ε)

]
(x) (4)

where Γ0 is the periodic Green operator associated with L0, such that ε′(x) =
[
Γ0τ

]
(x) is a

compatible strain field solution in V satisfying 〈ε′〉 = 0 and ∇ ·
(
L0 : ε′(x) + τ (x)

)
= 0.

By inverting Eqn. (4) and using (3), then one obtains the following two relations which consti-
tute the starting point for this work: ε(x) =

(
I + Γ0 δL

)−1
: ε̄,

L̃ = L0 +
〈
δL :

(
I + Γ0 δL

)−1〉
.

(5a)

(5b)
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Focusing on an isotropic elastic material, the elasticity tensor L is expressed in terms of the
bulk and shear modulus fields κ, µ ∈ L∞per(V,R∗+) as

L(x) = dκ(x)J + 2µ(x)K, (6)

according to the definitions of Appendix A. Moreover, we choose the reference tensor L0 to be
isotropic as L0 = dκ0J + 2µ0K where κ0 and µ0 are assumed to be known a priori and to define
a weak contrast configuration such that

L(x) = L0 + δL(x) with ‖δL‖ = o
(
‖L0‖

)
. (7)

Accordingly, let introduce the notations δκ(x) = κ(x) − κ0 and δµ(x) = µ(x) − µ0. Therefore,
expanding the fundamental integral equations (5a) and (5b) at first and second orders respectively
entails  ε(x) = ε̄−

[
Γ0 (δL : ε̄)

]
(x) + o

(
‖δL‖

)
,

L̃ = L0 +
〈
δL
〉
−
〈
δL : Γ0 δL

〉
+ o
(
‖δL‖2

)
.

(8a)

(8b)

In Eqns. (7) and (8), the asymptotics are relative to the norm ‖δL‖. In the ensuing developments
this term is to be interpreted as, see the analysis in [18]:

‖δL‖ = sup
x∈V

max
(
|d δκ(x)|, |2 δµ(x)|

)
.

In the article we focus on materials with small contrasts for which we aim at deriving local for-
mulae for expressing the elastic moduli in terms of strain field solutions. Such relations is intended
to permit a point-wise identification of the elastic moduli κ(x) and µ(x) from a set of local strain
field measurements ε(i)(x), with i = 1, . . . , N , where N to be determined denotes the number of
experiments to perform. The availability of this internal data set is not intended to be discussed
here but the reader is refered to the monographs [12, 10] for a review of state-of-the-art experi-
mental techniques constituting relevant non-invasive imaging modalities in solid mechanics. We
rather focus hereafter on (i) the derivation of explicit local equations relating, in the weak contrast
case, the elastic moduli to strain field data corresponding to full-field measurements, and (ii) the
characterization of the experiments to be performed.

2 Integral formulation

In this section, we investigate the integral equation (4) which features the periodic Green’s operator
Γ0. The ensuing developments exploit some well-known properties of this operator, see e.g. [23,
26], that we establish hereafter for the reader’s convenience.

2.1 Green’s operator

Given the reference elasticity tensor L0, the prescribed mean strain ε̄ and a polarization term defined
as τ (x) = δL(x) : ε(x), let consider the following auxiliary problem in V:{

σ(x) = L0 :∇su(x) + τ (x), ∇ · σ(x) = 0,

u is periodic, σ · n is anti-periodic,
(9)
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where n denotes the unit outward normal vector on ∂V . Using Appendix B, the equilibrium equa-
tion in (9) is recast in Fourier-space, as(

κ0 +
d− 2

d
µ0

)
(û · ξ)ξ + µ0|ξ|2û =

−1

2πi
τ̂ · ξ. (10)

Upon applying the inner product with ξ 6= 0, the above equation entails

û · ξ =
−1

2πi|ξ|2
d ξ · τ̂ · ξ

dκ0 + 2(d− 1)µ0
. (11)

Substitution of (11) in (10) yields for all ξ 6= 0

2πi û(ξ) =
−1

µ0

τ̂ · ξ
|ξ|2

+
1

µ0

[ dκ0 + (d− 2)µ0

dκ0 + 2(d− 1)µ0

]ξ · τ̂ · ξ
|ξ|4

ξ. (12)

Finally, the strain field ∇su solution to (9) is uniquely determined by

F
[
∇su

]
(0) = 0 and F

[
∇su

]
(ξ) = −Γ̂0(ξ) : τ̂ (ξ) (∀ξ 6= 0), (13)

where the Green’s tensor Γ̂0(ξ) ∈
2

⊗s

( 2

⊗s Rd
)

is a fourth-order tensor which is identified from Eqn.
(12) as

Γ̂0(0) = 0 and Γ̂0(ξ) =
α0

|ξ|2
ψi(ξ)⊗ψi(ξ) +

β0

|ξ|4
ψ(ξ)⊗ψ(ξ) (∀ξ 6= 0), (14)

using the summation convention over repeated indices and where

ψ(ξ) = ξ ⊗ ξ and ψi(ξ) = ξ ⊗ ei + ei ⊗ ξ for i = 1, . . . , d

α0 =
1

4µ0

β0 = − 1

µ0

[ dκ0 + (d− 2)µ0

dκ0 + 2(d− 1)µ0

]
.

(15)

given an orthonormal basis {ei} of Rd. Therefore, according to the convolution theorem (59), the
operator Γ0 is defined as [

Γ0τ
]
(x) =

∑
ξ∈L′
ξ 6=0

Γ̂0(ξ) : τ̂ (ξ)e2πix·ξ. (16)

Upon substituting the polarization term τ (x) = δL(x) : ε(x) in (13) one directly obtains the
Lippmann-Schwinger equation (4).

By construction, the Green’s tensor Γ̂0(ξ) is a fourth-order tensor with minor and major index
symmetries and which has transversely isotropic symmetry with axis ξ. Based on this observation,
the computation of its projections against the fourth-order isotropic tensors J and K is the focus
of the next section.
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2.2 Orthogonal decomposition of the Green’s tensor

Key properties of the Green’s operator Γ0 are now investigated.

Lemma 1. The isotropic component Γiso
0 of the Green’s tensor Γ̂0(ξ) is independent of ξ for all

ξ ∈ Rd. Therefore, one has the orthogonal decomposition

Γ̂0(ξ) = Γiso
0 + Γ̂

⊥
0 (ξ),

with these components satisfying the following properties:

Γiso
0 =

λJ
nJ

J +
λK
nK

K with


λJ = Γ̂0(ξ) ::J =

1

d
(4α0 + β0)

λK = Γ̂0(ξ) ::K =
1

d

[(
2d(d+ 1)− 4

)
α0 + (d− 1)β0

]
and Γ̂

⊥
0 (ξ) ::J = Γ̂

⊥
0 (ξ) ::K = 0.

Proof. For all ξ ∈ Rd, the isotropic component Γiso
0 of Γ̂0(ξ) is found by computing the projections

of the latter against the tensors J and K. First, using (54), one has

Γ̂0(ξ) ::J =
1

d

[ α0

|ξ|2
tr[ψi] tr[ψi] +

β0

|ξ|4
tr[ψ]2

]
.

From the definition (15), the traces featured in the above expression are given by

tr[ψi] = 2ξi for i = 1, . . . , d and tr[ψ] = |ξ|2,

so that, owing to the index summation convention, one obtains

λJ = Γ̂0(ξ) ::J =
1

d
(4α0 + β0).

This relation is remarkably independent of the Fourier variable ξ. Next, one has to compute the
quantity Γ̂0(ξ) ::K which according to (54) reads

Γ̂0(ξ) ::K =
α0

|ξ|2
[
ψi :ψi −

1

d
tr[ψi] tr[ψi]

]
+

β0

|ξ|4
[
ψ :ψ − 1

d
tr[ψ]2

]
.

On noting that

ψi :ψi = 2(|ξ|2 + ξ2
i ) for i = 1, . . . , d and ψ :ψ = |ξ|4,

one finally obtains after summation over index i

λK = Γ̂0(ξ) ::K =
1

d

[(
2d(d+ 1)− 4

)
α0 + (d− 1)β0

]
.

As for Γ̂0(ξ) ::J , the above quantity is constant in Fourier-space so that one can finally deduce that

1

nJ

(
Γ̂0(ξ) ::J

)
J +

1

nK

(
Γ̂0(ξ) ::K

)
K = Γiso

0 ∈
2

⊗s

( 2

⊗s Rd
)

According to its definition, the tensor Γ̂
⊥
0 (ξ) denotes the component of Γ̂0(ξ) that is orthogonal to

isotropic tensors, hence it satisfies Γ̂
⊥
0 (ξ) ::J = Γ̂

⊥
0 (ξ) ::K = 0.
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According to the orthogonal decomposition of Lemma 1, the Green’s operator Γ0 can be de-
composed into a local term that involves the tensor Γiso

0 and a non-local operator Γ
⊥
0 constructed

from Γ̂
⊥
0 as in (16), i.e. [

Γ0τ
]
(x) = Γiso

0 :τ (x) +
[
Γ
⊥
0 τ
]
(x). (17)

This decomposition is the cornerstone for the approach investigated in this article.

Remark 1. The identity (17) can be put into the broader perspective of determining what are the
local and non-local contributions to the integral equation formulation of a given elasticity problem.
On noting Γ the Green’s operator associated with a homogeneous elasticity tensor L0 for the
domain considered, then one would seek a decomposition such as[

Γτ
]
(x) = Λ0 :τ (x) +

[
Π0 τ

]
(x). (18)

where Λ0 and Π0 denotes some local and non-local operators. That is the integration of the singu-
lar kernel of the Green’s operator that leads to an identity such as (18). For example, considering
the case of an infinite medium, then the conventional integration approach, see [19, 8], yields

Λ0 = SB : L−1
0 and

[
Π0 τ

]
(x) = P.V.

∫
Rd

Γ∞0 (x− y) : τ (y) dy,

with SB being the Eshelby tensor for the ball that arises because of the exclusion of a spherical
domain associated with the definition of Cauchy’s principal value integral denotes as P.V.

∫
Rd and

where Γ∞0 is the Green’s function for the reference infinite medium considered.
The decompositions (17) and (18) actually coincide in the isotropic case, while Λ0 is no longer

isotropic when L0 is anisotropic. This implies that alternative orthogonal decompositions should
be investigated in this case to obtain local identities that are analogous to the ones derived hereafter.

3 Strain-based approach

In this section, we derive a set of local equations based on the strain field asymptotics (8a) and on
Lemma 1.

3.1 Preliminary results

Based on the definition (55) of the parallel and orthogonal components of the strain field relatively
to the macroscopic strain ε̄, taking the inner product of the first-order asymptotics (8a) with ε̄
immediately leads to the following result:

Lemma 2. The strain field ε(x) associated with the macroscopic strain ε̄ satisfies for all x ∈ Rd:

ε�(x) = ‖ε̄‖ − 1

‖ε̄‖
[
ε̄ : Γ0 (δL : ε̄)

]
(x) + o

(
‖δL‖

)
.

Therefore, the strain field ε(x) is locally collinear to ε̄ at the first order and according to (56)
one has also ε⊥(x) = O

(
‖δL‖

)
. However, in the ensuing analysis, only the parallel component ε�

of the strain field plays a central role in the procedure of deriving the sought local identities. This
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is indeed because of the quadratic involvement of the mean field ε̄ in the quantity ε̄ : Γ0 (δL : ε̄).

We now consider that the prescribed mean strain ε̄ is either purely spherical or purely deviatoric,
i.e. ε̄ satisfies P : ε̄ = ε̄ with either P = J or P = K. According to the equations (6) and (54),
the definition of the Green’s operator and the identity (59), one has[

ε̄ : Γ0 (δL : ε̄)
]
(x) = F−1

[
δ̂p(ξ) Γ̂0(ξ) ::

(
ε̄⊗ ε̄

) ]
(x), (19)

where δ̂p(ξ) = n−1
P

(
δ̂L(ξ) :: P

)
and nP = nJ or nK respectively, the term δ̂p being thus the

Fourier transform of the corresponding isotropic elasticity parameter d δκ or 2 δµ.
In Eqn. (19), the right-hand side scalar quantity Γ̂0(ξ) :: (ε̄ ⊗ ε̄) is likely to depend on the

variable ξ, which would in turn make this term non-local in the physical space. In other words,
for an arbitrarily chosen macroscopic strain ε̄, the corresponding strain field ε(x) depends on the
constitutive moduli in a non-local fashion. However, given the properties of the Green’s tensor in
Lemma 1, then multiple experiments can be combined in order to retain only the constant isotropic
component Γiso

0 of the Green’s tensor Γ̂0(ξ) so as to reduce (19) to a local equation relating strain
fields and elastic moduli. A simple way to achieve this is to consider macroscopic strains that

constitute an orthogonal eigentensor basis of the fourth-order projection tensor P , i.e. ε̄(i) ∈
2

⊗s Rd
with i = 1, . . . , nP such that

P =

nP∑
i=1

ε̄(i) ⊗ ε̄(i)

‖ε̄(i)‖2
and ε̄(i) : ε̄(j) = ‖ε̄(i)‖ ‖ε̄(j)‖ δij . (20)

Therefore, considering the strain field solutions ε(i) that satisfy 〈ε(i)〉 = ε̄(i), then using Eqns. (19),
(20) and Lemma 2 entails upon summation

nP∑
i=1

ε
(i)
� (x)

‖ε̄(i)‖
= nP −F−1

[
δ̂p(ξ) Γ̂0(ξ) ::P

]
(x) + o

(
‖δL‖

)
. (21)

Based on Lemma 1, i.e. Γ̂0(ξ) ::P = Γiso
0 ::P = λP with λP = λJ or λP = λK then Eqn. (21)

yield the following result.

Lemma 3. Consider a set of macroscopic strains ε̄(i) with i = 1, . . . , nP such that Eqn. (20) holds
for P = J or P = K. Considering the elastic modulus defined as δp(x) = n−1

P δL(x) ::P then
the associated strain field solutions ε(i)(x) satisfy the local equation

δp(x) = λ−1
P

nP∑
i=1

[
1−

ε
(i)
� (x)

‖ε̄(i)‖

]
+ o
(
‖δL‖

)
,

or equivalently

δp(x) = λ−1
P

nP∑
i=1

[
1−

(
P ::ε(x)⊗ ε(x)

P :: ε̄⊗ ε̄

)1/2 ]
+ o
(
‖δL‖

)
.
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In the above lemma the second identity is an immediate consequence of Lemma 2 and Eqns.
(56)–(58) according to which the strain field solution ε(x) satisfies at the first-order:

ε�(x) =
(
P ::ε(x)⊗ ε(x)

)1/2
. (22)

In the next two subsections, the identities of Lemma 3 are made explicit for the cases of purely
spherical and purely deviatoric macroscopic strains.

3.2 Spherical macroscopic strain

Since the tensor J is associated with a subspace of dimension nJ = 1, then only one strain field
measurement ε(x) corresponding to a purely spherical macroscopic strain ε̄ is sufficient to identify
the bulk modulus κ(x). Given that

ε�(x)

‖ε̄‖
=

(
J :ε(x)

)
:
(
J : ε̄

)
‖ε̄‖2

=
tr[ε(x)] tr[ε̄]

d‖ε̄‖2
,

and computing λ−1
J based on the definition (15) and Lemma 1, then Lemma 3 yields the following

result.

Proposition 1. Let ε̄ denote a purely spherical macroscopic strain with associated strain field
solution ε(x). The latter satisfies, at the first order, the following local equation:

κ(x) = κ0 +
λ−1
J

d

[
1− tr[ε(x)] tr[ε̄]

d‖ε̄‖2

]
+ o
(
‖δL‖

)
, (23)

where
λ−1
J = dκ0 + 2(d− 1)µ0.

The identity (23) can be recast in terms of the hydrostatic strain field as

κ(x) = κ0 +
λ−1
J

d

[
1− ε0(x)

ε̄0

]
+ o
(
‖δL‖

)
, (24)

while the equivalent strain is such that εeq(x) = O
(
‖δL‖

)
.

3.3 Deviatoric macroscopic strains

When considering the case P = K in Lemma 3 one has to deal with a larger subspace of dimension
nK = 2 or 5, for d = 2 or 3 respectively. Therefore, the derivation of a local identity for the shear
modulus µ(x) requires the use of a number nK of experiments with applied deviatoric macroscopic
strains.

Proposition 2. Consider a set of purely deviatoric strains ε̄(i), for i = 1, . . . , nK , such that

K =

nK∑
i=1

ε̄(i) ⊗ ε̄(i)

‖ε̄(i)‖2
with ε̄(i) : ε̄(j) = ‖ε̄(i)‖ ‖ε̄(j)‖ δij .
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Then, at the first order, the associated strain field solutions ε(i)(x) satisfy the local identity

µ(x) = µ0 +
λ−1
K

2

nK∑
i=1

[
1− dev[ε(i)(x)] :dev[ε̄(i)]

‖ε̄(i)‖2

]
+ o
(
‖δL‖

)
, (25)

with

λ−1
K =

2µ0

(
dκ0 + 2(d− 1)µ0

)
d(d− 1)(κ0 + 2µ0)

.

Equation (25) can be recast in terms of equivalent strains as

µ(x) = µ0 +
λ−1
K

2

nK∑
i=1

[
1− ε

(i)
eq (x)

ε̄
(i)
eq

]
+ o
(
‖δL‖

)
, (26)

while the hydrostatic strain fields satisfy ε(i)
0 (x) = O

(
‖δL‖

)
.

Remark 2. In the local reconstruction formulae of propositions 1 and 2 it is assumed that the mean
moduli κ0, µ0 are known a priori. However, it can be seen that the only knowledge of the ratio
r0 = κ0/µ0 is actually sufficient to determine the quantities δκ(x)/κ0 and δµ(x)/µ0 uniquely.

4 Macroscopic isotropy and energy-based approach

In this section we revisit the local equations (24) and (26) for the case of macroscopically isotropic
materials. For such configurations, we establish that only one strain field is actually sufficient to
reconstruct each elastic modulus locally. Although this result can be established using the strain-
based approach of Section 3, we propose here an alternative energy-based procedure. The overall
approach revolves around the quantification of local strain field fluctuations through the derivation
of second-order moments of the strain fields which are defined as mean values of strain-based
quadratic quantities, see [7, 16].

4.1 Macroscopically isotropic configurations

First, we state the definition of a macroscopically isotropic material as follows.

Definition 1. A given medium is said to be macroscopically isotropic if the corresponding effective
elasticity tensor L̃ defined by Eqn. (3) is isotropic.

Now, the aim is to characterize the quadratic quantity
〈
δL : Γ0 δL

〉
for such configurations.

According to the second-order asymptotics (8b), this term satisfies〈
δL : Γ0 δL

〉
= L0 − L̃ +

〈
δL
〉

+ o
(
‖δL‖2

)
.

As a consequence, if the medium considered is both microscopically and macroscopically isotropic
then the fourth-order tensor

〈
δL : Γ0 δL

〉
is itself isotropic and there exist a, b ∈ R such that〈

δL : Γ0 δL
〉

= aJ + bK.
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The coefficients a and b can be computed by projection against the tensors J and K. According to
the identity (60) and the definition of the Green’s operator then one has for P = J or P = K:〈

δL : Γ0 δL
〉

::P =
∑
ξ∈L′
ξ 6=0

[
δ̂L(ξ) : Γ̂0(ξ) : δ̂L(ξ)∗

]
::P

=
∑
ξ∈L′
ξ 6=0

(
δ̂L(ξ)

)
ijpq

(
Γ̂0(ξ)

)
pqrs

(
δ̂L(ξ)∗

)
rsk`
Pijk`

=
∑
ξ∈L′
ξ 6=0

|δ̂p(ξ)|2 Γ̂0(ξ) ::P

(27)

where δ̂p(ξ) = n−1
P

(
δ̂L(ξ) :: P

)
and the notation | · | denotes the complex modulus. Therefore,

according to Lemma 1, one obtains〈
δL : Γ0 δL

〉
=
∑
ξ∈L′
ξ 6=0

{
|d δ̂κ(ξ)|2λJ

nJ
J + |2 δ̂µ(ξ)|2λK

nK
K
}
. (28)

Based on the definition of the tensor Γiso
0 and by retracing the derivation of equations (27) and (28)

one finally arrives at the following result.

Lemma 4. If the material configuration considered is macroscopically isotropic in the sense of
Definition 1 then one has 〈

δL : Γ0 δL
〉

=
〈
δL : Γiso

0 : δL
〉
.

4.2 Local strain field fluctuations

In order to establish the sought local equations then the first step is to relate the local strain field
fluctuations to the homogenized elasticity parameters. This can be achieved by quantifying the
effective modulus sensitivities to a local parameter change. Owing to Hill’s lemma, the effective
elasticity tensor L̃ defined by Eqn. (3) is such that the macroscopic and the averaged microscopic
elastic energy densities are equal, i.e.〈

ε(x) :L(x) :ε(x)
〉

= ε̄ :L̃ : ε̄. (29)

Differentiating Eqn. (29) with respect to a scalar parameter t entails〈
ε :
∂L
∂t

:ε
〉

+ 2
〈
ε :L :

∂ε

∂t

〉
=

∂

∂t

(
ε̄ :L̃ : ε̄

)
.

In this equation the second left-hand side term vanishes owing to Hill’s lemma, see e.g. [25], so
that we finally obtain 〈

ε :
∂L
∂t

:ε
〉

= ε̄ :
∂L̃
∂t

: ε̄. (30)

Moreover, owing to the second-order asymptotics (8b) then one has

∂L̃
∂t

=
∂

∂t

[〈
δL
〉
−
〈
δL : Γ0 δL

〉
+ o
(
‖δL‖2

)]
. (31)
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Considering now that the medium is macroscopically isotropic, then substituting the identity of
Lemma 4 in the equations (31) and (30) entails〈

ε :
∂L
∂t

:ε
〉

= ε̄ :
[〈 ∂
∂t
δL
〉
− 2
〈
δL : Γiso

0 :
∂

∂t
δL
〉

+
∂

∂t
o
(
‖δL‖2

)]
: ε̄. (32)

For the sake of simplicity it can be assumed that the representative volume element V considered is
described by a piecewise-homogenous parameter distribution as:

L(x) =
Φ∑
φ=1

χφ(x)Lφ, (33)

where each phase φ is characterized by the indicator function χφ(x) and the homogeneous elasticity
tensor Lφ with constant moduli κφ, µφ. Moreover, we denote the corresponding elasticity contrast
as δLφ = Lφ − L0. Note that the total number Φ ∈ N of phases can be arbitrarily large in the
ensuing developments. Following Definition (2) of the spatial average over V , one introduces the
local average in a given phase φ occupying the domain Vφ ⊂ V , as

〈η〉φ =
1

|Vφ|

∫
Vφ

η(x) dx

while fφ = |Vφ|/|V | denotes the corresponding volume fraction.
For such configurations, upon choosing t = n−1

P δLφ :: P = δpφ for a given phase φ with
P = J or P = K then ∂

∂tδL = χφ(x)P so that Eqn. (32) leads to the following result.

Lemma 5. If the medium considered is macroscopically isotropic then for any given phase φ:

〈ε :P :ε〉φ =
(
1− 2λP n

−1
P δpφ

)
ε̄ :P : ε̄+ o

(
‖δL‖

)
.

This section is concluded by particularizing Lemma 5 for P = J and P = K.

Proposition 3. Consider a macroscopically isotropic medium in the sense of Definition 1 and let ε
denote the strain field solution for an applied macroscopic strain ε̄. Then for any given phase φ the
following properties hold:

– If ε̄ is purely spherical then 〈ε2
eq〉φ = o

(
‖δL‖

)
and ε is such that

κφ = κ0 +
nJ λ

−1
J

2d

[
1−
〈ε2

0〉φ
ε̄2

0

]
+ o
(
‖δL‖

)
. (34)

– If ε̄ is purely deviatoric then 〈ε2
0〉φ = o

(
‖δL‖

)
and ε satisfies

µφ = µ0 +
nKλ

−1
K

4

[
1−
〈ε2

eq〉φ
ε̄2

eq

]
+ o
(
‖δL‖

)
. (35)

The results of Proposition 3 have been established for a piecewise-homogeneous and macro-
scopically isotropic medium. It is straightforward to extent them to the case of continuous material
parameter distributions by reinterpreting Eqns. (30) and (31) in terms of the Fréchet derivative of
the energy functional, which corresponds to an infinitesimal material parameter perturbation at a
given point x. Therefore, the identities (34) and (35) hold also true with κφ, µφ and 〈ε2

0〉φ, 〈ε2
eq〉φ

respectively superseded by the local quantities κ(x), µ(x) and ε0(x)2, εeq(x)2.

12



Remark 3. On noting that Lemma 2 implies the following first-order identity

ε�(x)

‖ε̄‖
=

1

2

(
1 +

ε�(x)2

‖ε̄‖2

)
,

and using Eqns. (22) and (57), then Proposition 3 is consistent with propositions 1 and 2 given
the fact that the macroscopically isotropic nature of the material configuration considered makes it
redundant to use multiple strain field solutions. Indeed, if the assumption of macroscopic isotropy is
satisfied then the elastic response of the medium is identical for rotated directions of applied strain.
Whether this property holds or not for a given material sample can be assessed directly in practice.
As a consequence, for such geometries only one strain field solution is actually sufficient to identify
each one of the moduli κ(x) and µ(x).

5 Case of bounded domains

This section investigates the case of a macro-homogeneous and bounded elastic medium. Consis-
tently with the previous developments, it is assumed that the displacement field satisfiesu(x) = ε̄·x
on ∂V with given ε̄ ∈

2

⊗s Rd, so that the applied mechanical loading is compatible with a macro-
scopic strain satisfying the mean value property (2).

For such configurations, the integral formulation (4) holds with the periodic Green’s operator
Γ0 being superseded by the Green’s operator Γ for the bounded geometry V and the elasticity
tensor L0. Following [29, 30], the assumption that V is large compared to the length-scale of the
inhomogeneities, allows to make the following translation-invariant approximation for x distant
from ∂V: [

Γτ
]
(x) =

∫
V

Γ∞0 (x− y) :
[
τ (y)− 〈τ 〉

]
dy (36)

with Γ∞0 : V →
2

⊗s

( 2

⊗s Rd
)

being the infinite-body Green’s function associated with L0 and
vanishing displacements at infinity. Note that the kernel Γ∞0 being singular then evaluating the
above integral requires special treatment. This approximation relies on the decaying behavior of
the Green’s function and it amounts to neglect the contribution of boundary terms to the integral
operator Γ by assuming that they are significant only in a region close to ∂V . With equation (36)
at hand, then deriving the sought elasticity-based local identities can be achieved by characterizing
the local and non-local contributions to this integral operator as discussed in Remark 1.

Alternatively, the approach adopted hereafter is built on the Fourier-based analysis of Section 3
so as to take full advantage of the orthogonal decomposition of Lemma 1. The aim is to show what
partial differential equation (PDE) can be derived and solved for bounded domain configurations in
order to relate locally the elastic moduli to the strain field data. This is done using an approach that
is analogous to the one employed to solve the auxiliary problem (9). The procedure investigated
hereafter relies on a reinterpretation of the Fourier algebra in terms of partial differential operators.

5.1 Derivation of a PDE for the sought material parameters

Starting from the equilibrium equation in (1), then for all x ∈ V one has at the first order

∇ ·
(
δL(x) : ε̄

)
= −∇ ·

(
L0 : δε(x)

)
(37)
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where δL(x) = L(x) − L0 and δε(x) = ε(x) − ε̄. Moreover, let introduce a displacement field
u such that δε(x) = ∇su(x). Assuming that the macroscopic strain ε̄ is either purely spherical or
purely deviatoric, i.e. P : ε̄ = ε̄ with either P = J or P = K, then δL(x) : ε̄ = δp(x) ε̄ with
δp(x) = d δκ(x) or δp(x) = 2 δµ(x) respectively. With the terms in (37) reducing to

∇ ·
(
δL : ε̄

)
= ∇δp · ε̄,

∇ · (L0 : δε) = ω0∇∇ · u+ µ0 ∆u where ω0 =
d κ0 + (d− 2)µ0

d
.

one obtains
−∇δp · ε̄ = ω0∇∇ · u+ µ0 ∆u. (38)

Applying the divergence operator to (38) yields

−∇⊗2δp : ε̄ = (ω0 + µ0)∆∇ · u. (39)

since ∇ · (∇δp · ε̄) = ∇∇δp : ε̄, a term that can be rewritten in short using the tensor given in
components as (∇⊗2δp)ij = δp,ij in terms of partial derivatives with respect to coordinates i and j.
Now, by applying the Laplace operator to (38) and using the fact that it commutes with the gradient
operator we obtain

−∆(∇δp · ε̄) = ω0 ∇∆∇ · u+ µ0 ∆∆u.

Substituting the term ∆∇ · u from (39) in the above equation entails

∆∆u = − 1

µ0
∆(∇δp · ε̄) + τ0∇(∇⊗2δp : ε̄) with τ0 =

ω0

µ0(ω0 + µ0)
.

Finally, taking the gradient of the previous identity yields

∆∆∇u = − 1

µ0
∆∇⊗2δp · ε̄+ τ0∇⊗4δp : ε̄, (40)

where the fourth-order tensor ∇⊗4δp is defined in components by (∇⊗4δp)ijk` = δp,ijk`.

We now consider a set of strain field solutions ε(i) satisfying 〈ε(i)〉 = ε̄(i) for i = 1, . . . , nP
and we write ∇su

(i) = δε(i) = ε(i)− ε̄(i). By symmetry we have that ∇u(i) : ε̄(i) = δε(i) : ε̄(i) so
that applying the inner product with ε̄(i)/‖ε̄(i)‖2 in (40) and summing for i = 1, . . . , nP leads to

∆∆

nP∑
i=1

δε(i) : ε̄(i)

‖ε̄(i)‖2
=

nP∑
i=1

{
− 1

µ0
∆(∇⊗2δp · ε̄(i)) : ε̄(i) + τ0∇⊗4δp :: ε̄(i) ⊗ ε̄(i)

} 1

‖ε̄(i)‖2
.

As in Section 3, if the tensors ε̄(i) ∈
2

⊗s Rd satisfy Eqn. (20), i.e. they constitute an orthogonal
basis for the fourth-order tensor projector P with P = J or K, then the previous equation can
finally be recast as follows

∆∆

nP∑
i=1

δε(i) : ε̄(i)

‖ε̄(i)‖2
= − 1

µ0
∆∇⊗2δp : tr23[P ] + τ0∇⊗4δp :: P , (41)

where tr23[P ] is the second-order tensor with components
(
tr23[P ]

)
ij

=
(
P
)
ikkj

where index k
is summed. The identity (41) constitutes the sought PDE for the unknown material parameter δp. It
is now particularized for spherical and deviatoric macroscopic strains in the next two subsections.
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5.2 Spherical macroscopic strain

Considering the case P = J with nJ = 1 and δp(x) = d δκ(x), then in Eqn. (41) we have

∇⊗2δp : tr23[J ] =
1

d
∆δp and ∇⊗4δp :: J =

1

d
∆∆δp

so that

∆∆
δε : ε̄

‖ε̄‖2
=

(
τ0µ0 − 1

dµ0

)
∆∆δp.

After integration and substituting the definitions of τ0 and ω0, this equation yields for all x ∈ V:

δκ(x) = −
(
dκ0 + 2(d− 1)µ0

d

)
δε(x) : ε̄

‖ε̄‖2
+ k(x), (42)

where the field k is an arbitrary function that is biharmonic in V , i.e. ∆∆k = 0. This shows that the
analytical solution obtained in Proposition 1 for periodic configurations is only a particular solution
in a bounded domain. In such a case, to determine the elastic modulus uniquely one has to take into
account additional boundary conditions, which can be derived by assessing the behaviors of δκ and
δε and of their derivatives on ∂V . In particular, boundary conditions that are suitable to a unique
reconstruction could be obtained when the investigated sample is embedded in a homogenous and
isotropic elastic matrix.

5.3 Deviatoric macroscopic strains

We now investigate the case P = K with nK = d(d+1)
2 − 1 and δp(x) = 2 δµ(x). In Eqn. (41) we

have

∇⊗2δp : tr23[K] =
(d− 1)(d+ 2)

2d
∆δp and ∇⊗4δp :: K =

(d− 1)

d
∆∆δp

so that

∆∆

nK∑
i=1

δε(i) : ε̄(i)

‖ε̄(i)‖2
=

(d− 1)

2dµ0

(
2τ0µ0 − d− 2

)
∆∆δp.

Integrating the bi-Laplace operator and based on the definitions of τ0 and ω0, then the left and right
hand sides in the above equation turn out to be equal up to an additional and arbitrary function
m(x) that is biharmonic in V , i.e. for all x ∈ V:

δµ(x) = −
µ0

(
dκ0 + 2(d− 1)µ0

)
d(d− 1)(κ0 + 2µ0)

nK∑
i=1

δε(i)(x) : ε̄(i)

‖ε̄(i)‖2
+m(x). (43)

This shows again that the reconstruction formula of Proposition 2 yields a particular solution in a
bounded domain while a unique reconstruction can be achieved when appropriate boundary condi-
tions are met.

6 Analytical examples

In this section, two analytical examples are investigated to illustrate the results of propositions 1–3.
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6.1 Spherical inclusion

The simplest analytical example is provided by the case of an unbounded elastic matrix with moduli
κ0, µ0, containing a spherical homogeneous inclusion SR with radius R, moduli κ1 = κ0 + δκ and
µ1 = µ0 + δµ, and subjected to an applied strain ε̄ at infinity. It is well known, see [11, 27], that
the strain field solution ε(x) is uniform within the inclusion, i.e. ε(x) = ε for |x| < R with

ε =
[
(1− κs)J + (1− µs)K

]
: ε̄, (44)

where

κs =
δκ

κ1 + 2(d−1)
d µ0

, µs =
δµ

µ1 + θ0
, θ0 = µ0

d2κ0 + 2(d+ 1)(d− 2)µ0

2d(κ0 + 2µ0)
. (45)

Upon prescribing a purely spherical macroscopic strain ε̄ that satisfies J : ε̄ = ε̄ and K : ε̄ = 0,
then one obtains that dev[ε] = 0 within SR. Moreover expanding Eqn. (44) at the first order entails

κ1 = κ0 +
dκ0 + 2(d− 1)µ0

d

[
1− tr[ε] tr[ε̄]

d‖ε̄‖2

]
+ o(|δκ|). (46)

Likewise, when the applied strain is purely deviatoric, i.e. K : ε̄ = ε̄ and J : ε̄ = 0, then the strain
field satisfies tr[ε] = 0 in SR and one has

µ1 = µ0 +
(d+ 2)µ0

(
dκ0 + 2(d− 1)µ0

)
2d(κ0 + 2µ0)

[
1− dev[ε] :dev[ε̄]

‖ε̄‖2

]
+ o(|δµ|) (47)

Therefore, owing to the definitions of nJ , nK in (53) and of λ−1
J , λ−1

K in Section 3, one can conclude
that the identities (46) and (47) coincides with the results of propositions 1 and 2 given that only one
strain field is sufficient in each case to derive the sought strain-modulus identities. Consistently with
the developments of Section 4, this result relies on the Proposition 3 which applies to the isotropic
geometry of the spherical inclusion problem.

Finally, note that these results can be extended to the case of a suspension of spherical elastic
inclusions provided that mutual interactions can be neglected, i.e. as long as the strain field can be
considered to be homogeneous within each spheres and given by Eqn. (44).

6.2 Macroscopic isotropy and Hashin-Shtrikman bounds

A second analytical example illustrating the results of Proposition 3 is obtained by considering a
two-phase macroscopically isotropic microstructure, that is not intended to be described here, but
for which one of the Hashin-Shtrikman bounds is attained [13, 20]. Let consider weak-contrast
phases φ = 1, 2 such that for ηφ = κφ or ηφ = µφ one has

η2 = η0 + f1δη and η1 = η0 − f2δη (48)

with δη = o(η0). Since f1 + f2 = 1, this definition ensures that 〈η〉 = f1η1 + f2η2 = η0 and
η2 − η1 = δη so that the corresponding elasticity tensor of the form (33) satisfies (7). According
to the expressions of the Hashin-Shtrikman bounds then one further assumes that the isotropic
effective elasticity tensor L̃ = dκ̃J + 2µ̃K is given by

κ̃ = 〈κ〉 − f1f2(κ1 − κ2)2

〈κ〉∗ + 2 (d−1)
d µ1

and µ̃ = 〈µ〉 − f1f2(µ1 − µ2)2

〈µ〉∗ + θ1
(49)
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where 〈η〉∗ = f2η1 + f1η2 and θ1 defined as in Eqn. (45) with the reference moduli κ0, µ0 replaced
by these of phase 1. Based on Equation (30) and choosing either t = κ1 or t = µ1 one obtains

f1〈ε2
0〉1 = ε̄2

0

∂κ̃

∂κ1
+

2

d(d− 1)
ε̄2

eq

∂µ̃

∂κ1

f1〈ε2
eq〉1 =

d(d− 1)

2
ε̄2

0

∂κ̃

∂µ1
+ ε̄2

eq

∂µ̃

∂µ1
.

(50)

Using Eqns. (48) and (49), the material derivatives entering (50) is expanded at the first order as

∂κ̃

∂κ1
= f1 +

2f1f2 δκ

κ0 + 2 (d−1)
d µ0

+ o(‖δL‖), ∂κ̃

∂µ1
= o(‖δL‖).

and
∂µ̃

∂κ1
= o(‖δL‖), ∂µ̃

∂µ1
= f1 +

2f1f2 δµ

µ0 + θ0
+ o(‖δL‖).

where θ0 is defined as in Eqn. (45).
Therefore, when the macroscopic strain is purely spherical, i.e. ε̄eq = 0, then according to (50)

one obtains 〈ε2
eq〉1 = o(‖δL‖) and

〈ε2
0〉1
ε̄2

0

= 1 +
2f2 δκ

κ0 + 2 (d−1)
d µ0

+ o(‖δL‖),

which, using (48), finally yields

κ1 = κ0 +
dκ0 + 2(d− 1)µ0

2d

[
1− 〈ε

2
0〉1
ε̄2

0

]
+ o(‖δL‖). (51)

Conversely, if the macroscopic strain satisfies ε̄0 = 0, then Eqns. (50) yields 〈ε2
0〉1 = o(‖δL‖) and

µ1 = µ0 +
(d+ 2)µ0

(
dκ0 + 2(d− 1)µ0

)
4d(κ0 + 2µ0)

[
1−
〈ε2

eq〉1
ε̄2

eq

]
+ o(‖δL‖). (52)

According to the definitions of nJ , nK in (53) as well as of λ−1
J , λ−1

K in propositions 1 and 2, then
one can conclude that the identities (51) and (52) coincides with the results of Proposition 3.

7 Numerical examples

In this section we present a set of numerical results for 2D material configurations relative to the
bounded domain V = [0, 1] × [0, 1]. The domain is meshed based on a regular grid of 500 × 500
nodes which defines a structured mesh of triangular elements. In particular, the mesh considered
is independent of the elasticity parameter distributions that are discussed subsequently. Reference
material parameter maps κref(x), µref(x) are then generated as uniform random distributions with
mean values κ0 = µ0 = 1 and amplitude parametrized by the contrast value c. Configuration 1 in
Fig. 1 corresponds to a smooth and geometrically anisotropic material distribution. Configuration
2 shown in Figure 2 is defined as an arrangement of piecewise homogenous phases obtained by
Voronoi tesselation.
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(a) κref(x)− κ0 (b) µref(x)− µ0

Figure 1: Configuration 1: Reference elasticity parameter distributions with c = 10−2.

(a) κref(x)− κ0 (b) µref(x)− µ0

Figure 2: Configuration 2: Reference elasticity parameter distributions with c = 10−2.

According to the previous developments then in 2D the knowledge of three strain field solutions
is required to be able to reconstruct the reference elasticity parameter fields κref(x), µref(x). These
solutions denoted as ε(i)(x) for i ∈ {1, 2, 3} are defined by prescribing linear displacements on
the domain boundary ∂V as u(i)(x) = ε̄(i) · x with

ε̄(1) = e1 ⊗ e1 + e2 ⊗ e2, ε̄(2) = e1 ⊗ e2 + e2 ⊗ e1, ε̄(3) = e1 ⊗ e1 − e2 ⊗ e2.

These macroscopic strains are chosen so as to satisfy K : ε̄(1) = 0 and J : ε̄(2) = J : ε̄(3) = 0.
Displacement solutions u(i) and associated strain fields ε(i) are computed for the chosen ref-

erence configurations using standard linear finite elements. Then the fields κref(x), µref(x) are
considered to be unknown and the strain field values ε(i)(x) computed at each node constitute in
turn the full-field data set for the inverse problem. The objective elastic moduli are reconstructed
by converting the strain maps that are associated with these synthetic measurements based on the
formulae derived in propositions 1–3. Therefore, the elasticity maps are computed using only the
information available from the finite element procedure that is performed on a structured mesh. We
denote as κ(j)(x), µ(j)(x) the reconstructed elasticity maps, with the superscript (j) indicating the
strain field data that is used for the computation. Color scales are adjusted to enable comparison
between figures.
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7.1 Reconstruction examples

(a) κ(1)(x)− κ0 (b) µ(2)(x)− µ0 (c) µ(2,3)(x)− µ0

Figure 3: Configuration 1: Reconstructed elasticity maps in the case where c = 10−2.

(a) 1

c
|κref(x)− κ(1)(x)| (b) 1

c
|µref(x)− µ(2)(x)| (c) 1

c
|µref(x)− µ(2,3)(x)|

Figure 4: Configuration 1: Normalized maps of error on the reconstruction relatively to the contrast param-
eter c with c = 10−2.

For the first set of examples, the contrast value is chosen as c = 10−2. The reconstructed elas-
ticity maps of figures 3a, 3c and 5a, 5c are in good agreements with the reference parameter maps
of Fig. 1 and 2 respectively. The corresponding relative errors (Fig. 4a 4c and 6a, 6c) are consistent
with the first-order identities of propositions 1 and 2. Moreover, as expected from the translation-
invariant approximation discussed at Eqn. (36), errors tend to localize at the domain boundary, so
that the reconstructions are optimal within the vicinity of the center of the images. Included here
for comparison, the reconstruction µ(2) of the shear modulus in Figs. 3b and 5b, and that is incor-
rectly based on only one deviatoric strain field measurement, yields larger discrepancies with the
reference compared to µ(2,3). The latter is indeed computed using two strain field measurements as
required from Proposition 2.
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(a) κ(1)(x)− κ0 (b) µ(2)(x)− µ0 (c) µ(2,3)(x)− µ0

Figure 5: Configuration 2: Reconstructed elasticity maps in the case where c = 10−2.

(a) 1

c
|κref(x)− κ(1)(x)| (b) 1

c
|µref(x)− µ(2)(x)| (c) 1

c
|µref(x)− µ(2,3)(x)|

Figure 6: Configuration 2: Normalized maps of error on the reconstruction relatively to the contrast param-
eter c with c = 10−2.

7.2 Influence of contrast amplitude

Here, we discuss the quality of the reconstructions that are obtained for larger moduli fluctuations.
Considering configuration 2, then the relative reconstruction errors on the bulk and shear moduli are
depicted on the figures 7 and 8 for contrast parameter values c = 10−1, 5 ·10−1 and 1. As expected,
the accuracy of the first-order based reconstructions degrades as c increases with significant errors
observed within the domain when c = 1. Indeed, neglecting second-order terms in O

(
‖δL‖2

)
yields larger truncation errors. Nevertheless, the reconstruction formulae perform reasonably well
for contrast values c = 10−1 and c = 5 · 10−1. This makes the proposed approach appealing in
practical applications where measurement sensitivity is critical.

8 Conclusions

For materials with small contrasts, the closed form identities derived in this article allow to con-
vert locally strain field maps into elasticity maps. Based on the integral formulation framework of
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(a) c = 10−1 (b) c = 5 · 10−1 (c) c = 1

Figure 7: Configuration 2: Normalized maps
1

c
|κref(x)− κ(1)(x)| of error on the reconstruction depending

on the contrast value c.

(a) c = 10−1 (b) c = 5 · 10−1 (c) c = 1

Figure 8: Configuration 2: Normalized maps
1

c
|µref(x)−µ(2,3)(x)| of error on the reconstruction depending

on the contrast value c.

the periodic elasticity problem which features the periodic Green’s operator, then first-order expan-
sions are employed to characterized the behaviors of strain field solutions and of the homogenized
elasticity tensor. Then it is shown that the isotropic projection of the Green’s tensor is associated
with a local contribution to the integral equations considered. This key result then allows to derive
local and explicit equations between the bulk or shear modulus and strain field solutions that are
respectively associated with purely hydrostatic or deviatoric prescribed macroscopic strains. For a
generic material configuration in 2D or 3D then only one strain map is sufficient to reconstruct the
bulk modulus while the computation of the shear modulus requires the combination of either 2 or 5
strain field measurements respectively. Furthermore, if the material considered satisfies a property
of macroscopic isotropy then it is shown that only one measurement is enough to reconstruct each
one of the parameters. The analysis is performed in the periodic case by taking full advantage of a
Fourier-based formulation. It is then revisited in the case of bounded media by using a differential
operator-based approach. A set of analytical and numerical examples are presented to illustrate the
obtained results. In particular the discussed numerical examples suggest that the proposed approach
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performs reasonably well for moderately small contrast values for which it is less sensitive to data
pollution and thus relevant in practical applications. The proposed reconstruction formulae can be
readily used, in first approximation, to identify elasticity parameters from full strain field data.
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A Tensor identities

The identity tensors on
2

⊗Rd and
2

⊗s

( 2

⊗s Rd
)

are respectively denoted as I with Iij = δij and I
with components Iijk` = 1

2(δikδj` + δi`δjk). Moreover, in dimension d, one defines the tensors

J =
1

d
I ⊗ I and K = I −J ,

which satisfy J :J = J , K :K = K and J :K = K :J = 0 while one introduces the notation

nI = I ::I =
d(d+ 1)

2
, nJ = J ::J = 1, nK = K ::K =

d(d+ 1)

2
− 1. (53)

On noting that for any second-order tensor τ ∈
2

⊗s Rd one has

J :τ =
1

d
(I :τ )I =

1

d
tr[τ ]I and K :τ = τ − 1

d
tr[τ ]I = dev[τ ],

then the tensors J and K are identified as the orthogonal projectors on the space of spherical
and deviatoric second-order tensors respectively. Moreover they constitute a basis of symmetric

and isotropic forth-order tensors [15]: any tensor A ∈
2

⊗s

( 2

⊗s Rd
)

isotropic can be written as
A = aJ + bK where the components a, b read

a =
1

nJ
A ::J =

1

nJ d
Aiijj , b =

1

nK
A ::K =

1

nK

(
Aijij −

1

d
Aiijj

)
. (54)

Considering a macroscopic strain ε̄, then the associated strain field solution ε satisfies the or-
thogonal decomposition

ε(x) = ε�(x)
ε̄

‖ε̄‖
+ ε⊥(x) with ε�(x) =

ε(x) : ε̄

‖ε̄‖
and ε⊥ = ‖ε⊥‖ (55)

where ‖τ‖2 = τ : τ . Therefore ε�(x), ε⊥(x) ∈ R denote the norms of the components of the
strain field that are respectively parallel and orthogonal to ε̄. Moreover one has

‖ε(x)‖2 = ε�(x)2 + ε⊥(x)2. (56)
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Finally, the so-called hydrostatic strain ε0 and Von Mises equivalent strain εeq are defined as
the scalar quantities

ε0 =
1

d
tr[ε] and εeq =

(
d− 1

d
dev[ε] :dev[ε]

)1/2

.

Note that the results obtained in this article are independent of the coefficients featured in the defi-
nitions of ε0 and εeq. Using the above tensor projectors, these terms can be rewritten as

ε2
0 =

1

d
J :: (ε⊗ ε) and ε2

eq =
d− 1

d
K :: (ε⊗ ε), (57)

and they satisfy the identity

‖ε(x)‖2 = d ε0(x)2 +
d

d− 1
εeq(x)2. (58)

B Fourier transform

For f ∈ L2
per(V,R), the Fourier transform and its inverse are defined by

f̂(ξ) = F
[
f
]
(ξ) =

1

|V|

∫
V
f(x)e−2πix·ξ dx, f(x) = F−1

[
f̂
]
(x) =

∑
ξ∈L′

f̂(ξ)e2πix·ξ,

where L′ denotes the reciprocal lattice associated with the lattice L defined by V . Given V-periodic
functions f , g the convolution theorem reads

[f ∗ g](x) =
1

|V|

∫
V
f(y) g(x− y) dy = F−1

[
f̂ ĝ
]
(x),

[f̂ ∗ ĝ](ξ) =
∑
η∈L′

f̂(η) ĝ(ξ − η) = F
[
fg
]
(ξ).

(59)

Moreover, the combination of space convolution and double inner product will be denoted by f ∗ g,
the operation ∗ being thus defined by replacing the featured product by the tensor inner product “:”
in the above definition. Lastly, one defines for all f , g in L2

per(V,Rd) an inner product as

〈f · g〉 =
1

|V|

∫
V
f(x) · g(x) dx =

∑
ξ∈L′

f̂(ξ) · ĝ(ξ)∗, (60)

with ĝ(ξ)∗ = ĝ(−ξ) being the complex conjugate of the real-valued function g and the second
equality in (60) being due to Plancherel’s theorem. This inner product is extended to the spaces

L2
per(V,R) and L2

per(V,
2

⊗s Rd) by replacing the simply contracted product in (60) by a product or
a doubly contracted product respectively.
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