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The present study deals with the role of the mathematical memory in problem solving. To examine that, two problem-solving activities of high achieving students from secondary school were observed one year apart -the proposed tasks were non-routine for the students, but could be solved with similar methods. The study shows that even if not recalling the previously solved task, the participants' individual ways of approaching both tasks were identical. Moreover, the study displays that the participants used their mathematical memory mainly at the initial phase and during a small fragment of the problem-solving process, and indicates that students who apply algebraic methods are more successful than those who use numerical approaches.

Introduction and background

Despite a growing emphasis on the identification and teaching of mathematically able pupils, much remains unknown about the abilities they display when solving mathematical problems. For reasons of social justice and equality, research has typically focused on low achieving pupils [START_REF] Swanson | Math disabilities: A selective meta-analysis of the literature[END_REF] while relatively few studies have observed the abilities of the gifted and highachievers (e.g. [START_REF] Vilkomir | Using components of mathematical ability for initial development and identification of mathematically promising students[END_REF] or addressed those pupils' memory functions during mathematical activities [START_REF] Leikin | Memory abilities in generally gifted and excellingin-mathematics adolescents[END_REF][START_REF] Raghubar | Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches[END_REF]. In particular, just a few studies (e.g. [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF][START_REF] Szabo | Examining the interaction of mathematical abilities and mathematical memory: A study of problem-solving activity of high-achieving Swedish upper secondary students[END_REF] examined the role of the mathematical memory in gifted and talented students' problem-solving activities.

Mathematical abilities

Our innate ability to estimate quantities, known as the approximate number system, is extremely limited [START_REF] Dehaene | The number sense[END_REF], but an active contact with the subject may, under favourable conditions, generate mathematical abilities that are both complex and structured [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF]. The nature of mathematical abilities has engaged researchers for more than 120 years; already at the end of the 19th century, [START_REF] Calkins | A study of the mathematical consciousness[END_REF] presented, based on observations of Harvard students, significant information about the way mathematicians approached the subject. However, the research on mathematical abilitiesmainly because of the dominance of psychometric approaches, and thereby considering abilities as innate and statichas not delivered widely accepted results during the first half of the 20th century [START_REF] Vilkomir | Using components of mathematical ability for initial development and identification of mathematically promising students[END_REF]. Therefore, of importance for the present paper is the research of [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF], whose longitudinal observational study analysed the problem-solving activities of around 200 pupils. He concluded that able pupils' mathematical ability, while complex and dynamic, typically comprises four broad abilities. These are  the ability to obtain and formalise mathematical information (e.g. formalised perception of mathematic material),

 the ability to process mathematical information (e.g. logical thought, flexible mental processes, clear and simple solutions, generalized mathematical relations),  the ability to retain mathematical information, that is, mathematical memory (a generalized memory for mathematical relationships) and  a general synthetic component (mathematical cast of mind) (Krutetskii, 1976, pp. 350-351). However, while these abilities have frequently been associated with mathematical giftedness, Krutetskii (1976, pp. 67-70) argues they can also be displayed properly by high-achievers.

Mathematical memory

It is largely agreed that memory plays an essential role both in the learning of mathematics and in mathematical problem solving (e.g. [START_REF] Leikin | Memory abilities in generally gifted and excellingin-mathematics adolescents[END_REF][START_REF] Raghubar | Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches[END_REF]. Thus, what seems to be crucial "is not whether memory plays a role in understanding mathematics but what it is that is remembered and how it is remembered by those who understand it" (Byers & Erlwanger, 1985, p. 261). Calkins' (1894) early study showed that the memories of mathematicians are more concrete than verbal, that mathematics students do not memorise facts more easily than other students and that, when performing mathematics, there is no difference between men and women. Some decades later, [START_REF] Katona | Organizing and memorizing: Studies in the psychology of learning and teaching[END_REF] found that rational methods are easier to memorise that random digits, while [START_REF] Bruner | The process of education[END_REF] showed that simple interrelated representations are effective when recalling detailed knowledge. However, [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF] distinguished mathematical memory from the mechanical recalling of numbers or algorithms, by stressing that it is a memory consisting of generalized methods for problem solving. Hence, the mathematical memory does not retain "all of the mathematical information that enters it, but primarily that which is 'refined' of concrete data and which represents generalized and curtailed structures" (Krutetskii, 1976, p. 300). Moreover, he found that able students usually retain the contextual facts of a problem only during problemsolving and forgot it instantly afterwards, but remember several months later the methods they applied. Conversely, low-achievers often remember contextual facts but rarely the problem-solving methods [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF]. Cognitive psychology studies (e.g. [START_REF] Sternberg | Cognitive Psychology[END_REF] indicate important distinctions between different memory systems; that is, long term memory can be divided into implicit and explicit memory, based on the type of the stored information. In a mathematical context, the implicit memory contains automatized procedures and algorithms, while explicit memory retains information about experiences and facts which can be consciously recalled and explained, such as schemas for problem-solving. Thus, according to the cognitive model, we may assume that mathematical memory, as defined by Krutetskii, is explicit. Besides, it is a memory formed at later stages (e.g. [START_REF] Davis | A memory-based model for aspects of mathematics teaching[END_REF] based on the ability to generalize mathematical material, because at young able pupils "the relevant and the irrelevant, the necessary and the unnecessary are retained side by side in their memories" (Krutetskii, 1976, p. 339).

The study

The present study had two aims, both based on [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF] definitions of mathematical ability. The first was to identify the structure of mathematical abilities when high-achieving students solve non-routine but structurally similar problems. The second was to examine the role of mathematical memory during problem-solving activity.

Participants

Because young children and low-achievers rarely exhibit mathematical memory [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF], participants were 16-17 years old volunteers from an advanced mathematics programme in Swedish upper secondary school who had achieved the highest grade in the Swedish national test. Prior to data collection study, to familiarize students with the study, I spent 30 hours, over a period of four months, as a participant observer in their mathematics classroom. During this period, they came to trust me as an observer of their problem-solving activities. At the end of this process, after consulting their teacher, 6 students, 3 boys and 3 girls, were invited to participate.

Tasks

The theoretical background indicates that an appropriate way to identify the distinct structure of the mathematical ability is to analyse the problem-solving activities of the individuals (e.g. [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF]. Moreover, the structure of a mathematical problem reveals the mathematical thinking which is required to solve it, because problem solving "is an activity requiring the individual to engage in a variety of cognitive actions, each of which requires some knowledge and skill, and some of which are not routine" (Cai & Lester, 2005, p. 221). However, able students typically forget the context of a problem shortly after solving it, but, as an impact of their mathematical memory, they are several months later able to recall the methods applied to solve it. Thus, in order to complete the aims of the study, the participants solved two problems approximately one year apart. At the first observation, in order to avoid as far as possible the influence of previous experiences, the main criterion was to select a challenging non-routine task, Task 1 (T1). When selecting Task 2 (T2)in order to emphasize the role of the mathematical memorythe main criterion was to propose a task which was non-routine, but could be solved by methods similar to those used previously. Both tasks underwent substantial a-priori testing with corresponding groups of high-achievers, confirming that they were well-suited for the study and for the mathematical knowledge of the participants. This test confirmed that the students solved the proposed tasks with similar methods, that is, by applying the formulae for perimeters of circles and squares.

Observations and interviews

To avoid confounding factors during classroom interaction, which may affect pupils' thought process [START_REF] Norris | The implication of visual research for discourse analysis: transcription[END_REF], every participant was observed individually and, to avoid stress, given unlimited time to solve each task. T1 was solved and approximately one year later T2 was solved. In order to avoid participants' memories being activated mostly because of recalling the circumstances for the first observation as an unusual element in their daily activitiesthat is, not because of recalling the previously solved task -I continued to interact with them during their mathematics classes between the two observations. The students were invited to solve the tasks in a think-aloud manner and encouraged to describe every step in the process. To minimise participants' influence on each other, the tasks were solved during single days. The observations took place in a private room at their school and, when needed, supplementary questions were posed in order to facilitate the process. If a student neither wrote nor spoke for a while, the following questions were posed: What is bothering you? Why do you do that? What do you want to do and why? What are you thinking about? Pupils generally are not used to verbalise their problem-solving process [START_REF] Ginsburg | The clinical interview in psychological research on mathematical thinking: aims, rationales, techniques[END_REF], thus, in order to avoid the risk that essential parts of their cognitive activities would not be communicated, every observation was followed by a reflective interview. The purpose of the interviews was to display the hidden cognitive processes at problem-solving and to evaluate the levels of competence in those processes [START_REF] Ginsburg | The clinical interview in psychological research on mathematical thinking: aims, rationales, techniques[END_REF]. Each observation was recorded using a technology that digitises both speech and handwritten notes; the audio recordings were transcribed verbatim. Although they were given unlimited time, no participant needed more than 14 minutes to complete a single task.

Data analysis

The piloting of the tasks on corresponding groups of high-achievers indicated that the general synthetic componenta typical ability of gifted students (Krutetskii, 1976, p. 351)was unlikely to be observed during problem-solving; consequently, this ability was excluded from the analysis. The analytical framework for this study contained the following abilities from Krutetskii's framework: obtaining and formalizing mathematical information (O), processing mathematical information (P), generalizing mathematical relations and operations (G), and mathematical memory (M).

The digital recordings resulted in an exact linear reproduction of the students' actions, which was especially beneficial when performing qualitative content analysis of the material, inspired by van [START_REF] Van Leeuwen | Introducing social semiotics[END_REF]. The participants´ actions were analysed by identifying, coding and categorising the basic patterns in the empirical content. This method highlighted the abilities that were directly expressed in the empirical material; each episode lasting at least one second in written solutions and verbal utterances was scrutinised for the presence of the focused abilities. Next, the data from observations were combined with data from the interviews. I exemplify this with data from Linda, who, when solving T2, didn't say or wrote anything during the initial 62 seconds, before stating: Linda:

I would like to write down, start with writing a… some nice little estimations… After this episode she drew three squares with sides a, b and c, and wrote "a + b = c". Thus, based on the observation, the presence of O was certain, but it was not possible to decide if other abilities were also present in the actual episode. Yet, the following sentences from the reflective interview proved that she recalled another task which could be solved with similar methods:

Linda: I got blocked until I remember similar tasks, because it's a lot more difficult to solve this kind of tasks if one doesn't have a determined way to approach it… I believe I will bring up the same task as last time, with triangles and squares.

The utterances "a determined way to approach it" and "the same task as last time" indicate that Linda recalled a different task and its methods, thereby validating the presence of both O and M in the actual episode. In this way, the analysis revealed both the structure and the sequential order of the focused abilities, that is, every ability which occurred during the 12 problem-solving activities was displayed in a matrix. However, as exemplified above, some abilities (e.g. O and M) occurred closely interrelated during certain episodes and were extremely hard to differentiate.

Results

When asked, each participant confirmed that both tasks were non-routine, this being a prerequisite for the study. The analysis concluded in a matrix, with every episode of the process related to the focused abilities. As mentioned, certain abilities were closely interrelated during some episodes. As displayed (Table 1), M is presentsolitary or interrelatedat 16% during the first and at 10.5% during the second observation. The most manifested ability is P, which increased from 53% to 67% a year later, while O, the second most exposed ability, decreased from 47% to 31.5%. According to the a-priori testing of the tasks, G could be revealed when numerical resultsthat is, solutions for particular caseswere developed into general, algebraic solutions. Thus, every student who offered purely numerical resultsnamely Erin, Sebastian and Larrywas encouraged to consider general solutions. Yet, when solving T1 and asked if their numerical results apply also for arbitrary semicircles, none of them could generalize (G) their findings:

Erin: I don't know how I should prove this … if I have to do some general method.

Sebastian: I don't know if I shall demonstrate that it should be the same thing there, for every measure. But now in my head it sounds like that it should be so.

Larry: Yes, I suppose, but I don't know how to confirm it, it only feels that way.

Thus, the increase of G from 0% to 2% (Table 1) occurred because during the reflective interview connected to T2, when offered additional opportunities to reflect over the patterns in her numerical results, Erin performed a successful generalization of the obtained solutions, and stated:

Erin: I've never made a general solution like this ... But it was fun ... Especially when it concluded in something.

When concerning the efficiency of the applied methods, the analysis shows that Earl, Linda and Heather solved both tasks properly by applying general, algebraic methods. Conversely, purely numerical approaches didn't lead to fully acceptable results. The most efficient solutions were offered by Linda, who applied the same algebraic model (and its identical steps) at both tasks.

The role of mathematical memory

The recalling of the applied methods several months after solving a problem is a typical display of mathematical memory [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF]. Thus, another main criterion for the study was that both tasks could be solved with similar methods. However, only Earl and Larry associated T2 to T1:

Earl:

We got a very similar task last year, when we had the circle and that semicircle.

Larry:

We did a pretty similar task last time, when it was something like this, something with the radius or diameter on them.

Earl and Larry applied identical methods at the individual level when approaching both tasks. That is, Earl solved both tasks by using the same algebraic method, while Larry approached both tasks with the same numerical method. However, Earl's algebraic method gave accurate solutions while Larry couldn't solve any task properly. The other four students said that they didn't associate T2 to T1. But even though not recalling T1, they approached both tasks in identical ways at the individual level. For example, when Linda solved T2, despite stating that she didn't think at all of T1, she applied the same general method as a year before:

Linda: I will bring up the same task as last time, with triangles and squares. It is a bit the same thing ... I connect very often geometrical tasks to that. I have written that solution many times and I can see every step in the process in front of me.

As seen above, Linda refers to a generalized method which she associates to a geometrical taskabout finding the side of a square drawn in a right trianglewhich differs considerably from the proposed tasks. Yet, influenced by her mathematical memory (Krutetskii, 1976, p. 300) she states that "It is a bit the same thing" and applies the same method when solving both T1 and T2.

Heather as well used identical algebraic approaches for both tasks a year apart:

Heather (T1): I needed a common variable. Otherwise it will be difficult to calculate.

Heather (T2): I needed some relation among these sides in that and the large square's sides. Otherwise it will be difficult.

Also the individual approaches of Erin and Sebastian were respectively identical; Erin approached both tasks by reasoning, testing numerical values and applying particular solutions, while Sebastian reasoned carefully before requesting the use of numerical values at both occasions. Thus, every participant approached both tasks identically at the individual level. The analysis also shows that M is displayed mainly at the beginning of the process, for recalling mathematical relations and problem-solving methods; moreover, none of participants modified the initially selected methods.

Discussion

One of the aims of this study was to display the role of the mathematical memory (M) when highachieving students solve non-routine tasks, which can be solved with similar methods. Despite its small proportion, M seems to play a pivotal role in problem-solving because the participants selected their methods at the early stages of the process and the methods were not changed later. Thus, by confirming earlier results (e.g. [START_REF] Szabo | Examining the interaction of mathematical abilities and mathematical memory: A study of problem-solving activity of high-achieving Swedish upper secondary students[END_REF], it seems that the choice of methods is directly influenced by M and it is critical for the success of the problem-solving.

However, unexpectedly, only two of the six participants recalled the solution process to the earlier task, contradicting [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF] finding that able students recall the process but not the context of earlier problems. But even when not recalling T1, every participant approached both tasks in the same individual way. For example, Linda's method, connected to a square in a triangle and apparently very different from what is predicted, is a general approach that she uses for nonroutine geometrical tasks. And even though the individual approaches of Erin, Larry and Sebastian were not successful when solving T1, they were repeated a year later. Thus, it seems that the participants rely on methods which appear to be inflexible and applied regardless of their success.

The general structure of the participants' mathematical abilities indicates that O and M decrease while P increases at the second observation. Hence, it is not unreasonable to assume that the displayed stability of the individual approaches made O and M more efficient at T2, and therefore students had a larger focus on P. And even if none of the students could generalize numerical results at the first observation, Erin generalized her results during the interview after T2. Thus, when additional opportunities were offered, by evolving the patterns in her numerical results, which may be interpreted as a form of convergent thinking [START_REF] Tan | Convergence in creativity development for mathematical capacity[END_REF], Erin could improve the quality of her problem solving. These findings may suggest that some participants are unlikely to have experienced teaching focused on methods of generalization, because the individual structure of the mathematical ability depends on received instructions [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF]. However, by confirming earlier studies (e.g. [START_REF] Krutetskii | The psychology of mathematical abilities in schoolchildren[END_REF], the methods of this study were not able to differentiate M from O during episodes when students did not say or write anything; thus, a better investigation of the mathematical memory requires further studies. In addition, the study shows that mathematical memory has a key role during the early stages of problem-solving (e.g. [START_REF] Szabo | Examining the interaction of mathematical abilities and mathematical memory: A study of problem-solving activity of high-achieving Swedish upper secondary students[END_REF] and that individual problem-solving methods seem to be very stable and apparently independent of their efficiency when high-achievers solve non-routine tasks. Finally, the study indicates that, if given additionally opportunities to reflect over their numerical solutions, some students might be able to display their ability to generalize mathematical relations and operations.

Task 1 :

 1 In a semicircle we draw two additional semicircles, according to the figure. Is the length of the large semicircle longer, shorter or equal to the sum of the lengths of the two smaller semicircles? Justify your answer. Task 2: In a square we draw two arbitrary contiguous squares, according to the figure. Is the perimeter of the large square longer, shorter or equal to the sum of the perimeters of the two smaller squares? Answer the question without measuring the figure. Justify your answer.

Table 1 : Average time for the focused mathematical abilities in the problem-solving process

 1 

		O	O & P	O & M	P	G	M
	Task 1	31%	4%	12%	49%	0%	4%
	Task 2	20%	1.5%	10%	65.5%	2%	0.5%
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