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Joint Law of an Ornstein-Uhlenbeck Process and its Supremum
Christophette Blanchet-Scalliet∗ Diana Dorobantu† Laura Gay‡

Abstract
Let (Xt)t>0 be an Ornstein-Uhlenbeck process driven by a Brownian motion. We propose an expression

for the joint density / distribution function P
(

Xt ∈ dx, sup
06u6t

Xu 6 m

)
where m, x ∈ R, x 6 m. This law

is expressed as an expansion involving parabolic cylinder functions. We obtain this law faster than with a
Monte Carol’s method. Numerical applications illustrate the interest of this result.

Keywords. Ornstein-Uhlenbeck process, joint law, supremum, endpoint, Fokker-Planck equation.

1 Introduction
The main purpose of this paper is to give an expression for the joint law of the endpoint and supremum of
an Ornstein-Uhlenbeck process. The problem of finding such a joint law has attracted research since the late
nineteenth century (see [Som94]). For a Brownian motion, the result is well known (see for example [KS91]).
More recently, the authors of [EH14] give a method which allows to find this joint density / distribution function
for the minimum and endpoints for a n-dimensional drifted Brownian motion. The explicit solution in the bi-
dimensional case (n = 2) is given in [HKR98]. For n > 2, the method in [EH14] works in only some particular
cases. [CPN18] and [Ngo16] study the case of a Lévy process, sum of a Brownian motion with drift and a
compound Poisson process. [CP17] are interested in the joint law of a d-dimensional diffusion process ans the
running supremum of the first component. They find a PDE satisfied by the joint density (but an Ornstein-
Uhlenbeck process does not verify their assumptions). [DK06] study the general case of a Lévy process.
Let (Xt)t>0 be an Ornstein-Uhlenbeck process driven by a Brownian motion. Many results on the first passage
time of an Ornstein-Uhlenbeck process have been obtained. In [APP05], the density function of the first
hitting time to a fixed level by an Ornstein-Uhlenbeck process is given. Since hitting time and suprema are
related, the cumulative distribution function of the supremum is obtained. Regarding the pair (process, its
running maximum), [BS96] gives P(Xτ ∈ dx, sup

06u6τ
Xu > m) where τ is a Exp(λ) r.v. independent of X. He

also gives P(Xt ∈ dx, sup
06u6t

Xu 6 0), x 6 0. In this paper, we look for a more general case and we study

the joint density / distribution function for an Ornstein-Uhlenbeck process driven by a Brownian motion, i.e.
P(Xt ∈ dx, sup

06u6t
Xu 6 m) where m,x ∈ R, x 6 m. This law is solution of a Fokker-Planck equation. To

solve this equation, a spectrum method is used and makes Weber’s parabolic cylinder functions appear (directly
linked with the Hermite functions). Even if the joint law is an infinite expansion of special functions, it is
easy to evaluate numerically and it is faster than the Monte Carlo’s method. We then check that our result is
consistent with those in [BS96] and [APP05].
The paper is organized as follows. In the next section, some results including the main theorem with the
expression of the joint density / distribution are presented. Section 3 is devoted to the proof of this theorem.
Finally, Section 4 is concerned with the law of the supremum and its joint density with the process.

2 Results
2.1 Context and notations
Let (Bt)t>0 be a standard Brownian motion defined on a probability space (Ω,F ,P). We consider an Ornstein-
Uhlenbeck (OU in the following) process (Xt)t>0 solution of the following SDE :

dXt = −kXt dt+ dBt, X0 ∼ µ
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where k ∈ R∗+ and µ is a probability measure. Suppose that X0 and (Bt)t>0 are independent.
Let Px0 be the law of the process (Xt)t>0 when X0 = x0.

2.2 Main theorem
Our aim is to compute the joint law of the process and its supremum. However, as it is not easy to compute
the joint density, we are first interested in the joint density / distribution

P
(
Xt ∈ dx, sup

06u6t
Xu 6 m

)
where t ∈ R∗+, (m,x) ∈ R2, x 6 m.

The following theorem gives an expression for the joint density / distribution.

Theorem 2.1. We assume that µ is a probability measure on ] − ∞,m], m ∈ R and set p0 such that
µ(dx) = p0(x) dx.

(i) For all x 6 m and t ∈ R+, the probability P
(
Xt ∈ dx, sup

06u6t
Xu 6 m

)
admits a density p :

P
(
Xt ∈ dx, sup

06u6t
Xu 6 m

)
= p(m,x, t) dx.

(ii) The density p solves the following Fokker-Planck equation

∀m ∈ R,


∂tp(m,x, t) = k∂x(xp(m,x, t)) + 1

2∂
2
x2p(m,x, t), (x, t) ∈]−∞,m]× R∗+

p(m,m, t) = 0, t ∈ R∗+
p(m,x, 0) = p0(x), x ∈]−∞,m].

(1)

(iii) For (m,x) ∈ {(z, y) ∈ R2 | z > y}, t ∈ R∗+, the density p can be expressed as :

p(m,x, t) = −
√

2k e− kx
2

2

∞∑
n=1

e−kνn,mt
Dνn,m

(
−x
√

2k
) ∫m
−∞ e kz

2
2 p0(z)Dνn,m

(
−z
√

2k
)

dz

νn,mDνn,m−1(−m
√

2k)∂νDνn,m(−m
√

2k)
, (2)

where Dν is the parabolic cylinder function and (νj,m)j>1 is the ordered sequence of positive zeros of
ν 7→ Dν(−m

√
2k) (details are given in Appendix).

The proof of the theorem is postponed to Section 3. We start to study some particular cases and consequences.

Remark 2.2. For (m,x) ∈ {(z, y) ∈ R2 | z > y}, t ∈ R∗+, when X0 = x0 6 m,

p(m,x, t) = −
√

2k e
k(x2

0−x2)
2

∞∑
n=1

e−kνn,mt
Dνn,m

(
−x0
√

2k
)
Dνn,m

(
−x
√

2k
)

νn,mDνn,m−1(−m
√

2k)∂νDνn,m(−m
√

2k)
. (3)

The expression of the joint density / distribution can be easily extended to an OU process depending on 3
parameters.

Corollary 2.3. Suppose the OU process (Xt)t>0 solution of the following SDE :

dXt = (φ− kXt) dt+
√
β dBt, X0 ∼ µ

where β, k ∈ R∗+ and φ ∈ R.
For (m,x) ∈ {(z, y) ∈ R2 | z > y}, t ∈ R∗+, the density p can be expressed as :

p(m,x, t) = −

√
2k
β

e−
k(x−φ

k )2

2β

∞∑
n=1

(∫ m−φk

−∞
e
kz2
2β p0(z)Dν

n,m−φ
k

(
−z

√
2k
β

)
dz
)

e
−kν

n,m−φ
k

t

×
Dν

n,m−φ
k

(
−
(
x− φ

k

)√
2 kβ
)

νn,m−φk
Dν

n,m−φ
k

−1

(
−
(
m− φ

k

)√
2k
β

)
∂νDν

n,m−φ
k

(
−
(
m− φ

k

)√
2k
β

) .
where Dν is the parabolic cylinder function and

(
νj,m−φk

)
j>1

is the ordered sequence of positive zeros of

ν 7→ Dν

(
−
(
m− φ

k

)√
2k
β

)
.
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Proof : Let set Ut = X t
β
− φ

k
and Wt =

√
βB t

β
(which is thus a standard Brownian motion). Then the

dynamic of (Ut)t>0 is

dUt = −k
β
Ut dt+ dWt, U0 = X0 −

φ

k
∈ R.

We conclude with Theorem 2.1. �

2.3 Numerical results
Even though Formula (2) is an infinite sum of special functions, it is easy to evaluate numerically.
The function x 7→ p(m,x, t) is evaluated with expression (2) (or (3)) and is compared with a Monte Carlo’s

method using 5 × 105 simulations. Figures 1 and 2 plot P
(
Xt ∈ dx, sup

06u6t
Xu 6 m

)
for different parameters

and initial laws with t = 1.

Figure 1: Comparison of expression (2) and
the Monte Carlo’s method when m = 1,
X0 ∼ U([−10, 0]) and k = 2.

Figure 2: Comparison of expression (3) and the
Monte Carlo’s method when m = −1, X0 = −2
and k = 1.

Last but not least, our formula is faster than the Monte Carlo’s method. Indeed, with a simple core, obtaining
the whole function x 7→ p(m,x, t) lasts around 23 sec whereas a Monte Carlo’s method with 105 simulations
lasts around 18 sec, 2.105 simulations 34 sec and 106 simulations 176 sec.

2.4 Particular case m = 0
When m = 0, the expression of the joint density / distribution can be simplified. Indeed, the zeros (νn,0)n>0 of
ν 7→ Dν(0) are the positive odd integers (see Appendix for more details). In this particular case, Formula (3)
can be simplified.

Proposition 2.4. We assume X0 = x0 6 0. For all x 6 0 and t ∈ R∗+,

Px0

(
Xt ∈ dx, sup

06s6t
Xs 6 0

)
=

√
k

π(1− e−2kt)

[
e−k

(x−x0 e−kt)2

1−e−2kt − e−k
(x+x0 e−kt)2

1−e−2kt

]
dx.

Proof : Without loss of generality, k = 1 is taken in the proof. We use the results given in Appendix.
With (29) and Proposition 6.2, we have :

p(0, x, t) = 2 e
x2

0−x2

2
√
π

∞∑
n=0

e−(2n+1)t D2n+1
(
−x0
√

2
)
D2n+1

(
−x
√

2
)

(2n+ 1)! .

We use (28) and then, with a Fubini theorem (everything is clearly integrable),

p(0, x, t) = −2 ex2
0

π
√
π

∞∑
n=0

22n+1 e−(2n+1)t

(2n+ 1)!

∫ ∞
0

∫ ∞
0

(uv)2n+1 e−(u2+v2) (e2ivx0 − e−2ivx0
) (

e2iux− e−2iux) dudv.
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We can invert integral and sum :

p(0, x, t) = −2 ex2
0

π
√
π

∫ ∞
0

∫ ∞
0

e−(u2+v2) (e2ivx0 − e−2ivx0
) (

e2iux− e−2iux) sh(2uv e−t) dudv

= − ex2
0

π
√
π

[∫ ∞
−∞

e−v
2+2ivx0

∫ ∞
−∞

e−u
2+2iux+2uv e−t

dudv −
∫ ∞
−∞

e−v
2+2ivx0

∫ ∞
−∞

e−u
2+2iux−2uv e−t

dudv
]
.

Finally, formula (4.11.6) in [LS72] gives :

p(0, x, t) = −ex2
0

π

[∫ ∞
−∞

e−v
2+2ivx0 e(ix+v e−t)2

dv −
∫ ∞
−∞

e−v
2+2ivx0 e(ix−v e−t)2

dv
]

= − ex2
0−x

2√
π(1− e−2t)

[
e−

(x0+x e−t)2

1−e−2t − e−
(x0−x e−t)2

1−e−2t

]
= 1√

π(1− e−2t)

[
e−

(x−x0 e−t)2

1−e−2t − e−
(x+x0 e−t)2

1−e−2t

]
.

�

Remark 2.5. This is formula (1.1.8) of Chapter 7 in [BS96]. Note that there is a typography in the book.

3 Proof of the main theorem
This section is devoted to the proof of Theorem 2.1. The proof is divided into two parts. First, we prove the
existence of the density and the fact that it is solution of the Fokker Planck Equation. The proof of the theorem
relies on the second part namely resolution of this Fokker Planck equation. Without loss of generality, we take
here k = 1.

Existence of the density and the Fokker-Planck equation
(i) The existence of the density is given by Lemma 2.1 in [DIRT13].

(ii) It is just Proposition 5.4.3.1 in [JYC09] with h : t 7→ m.

Resolution of the Fokker-Planck equation
(iii) Now, we want to solve the Fokker-Planck equation. We use a spectrum method inspired by [BD08],

[Gar04] and [RH89]. In that purpose, we introduce two operators.

Let us note D(LFP) :=
{
f ∈ H1(]−∞,m]) |

[
x 7→ ∂

∂x
(xf(x)) + 1

2f
′′(x)

]
∈ L2(]−∞,m]), f(m) = 0

}
.

The Fokker Planck operator LFP is defined by :

LFP : D(LFP) −→ L2(]−∞,m])

f 7−→
[
LFPf : x 7→ ∂

∂x
(xf(x)) + 1

2f
′′(x)

]
.

The goal is to find a basis (ϕ̃n)n of eigenvectors of LFP in order to write

p(m,x, t) =
∞∑
n=1

cn(t)ϕ̃n(x).

The Fokker-Planck operator LFP is not hermitian. Then, to build this basis, we introduce the following
operator O, related to LFP, defined by :

O : D(LFP) −→ L2 (]−∞,m])

f 7−→
[
Of : x 7→ −1

2x
2f(x) + 1

2f
′′(x)

]
.

As O is hermitian, we can use classical results on hermitian operators decomposition.
Moreover, we have a correspondence for the spectrum. The function φ is an eigenfunction of O with
eigenvalue µ if and only if x 7→ e− x

2
2 φ is an eigenfunction of LFP with eigenvalue µ+ 1

2.
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Hilbertian basis of L2 (]−∞,m])

We prove that any function of L2 (]−∞,m]) can be decomposed on an hilbertian basis of eigenvectors
of O. Since it is not easy to prove this directly with the operator O, it is classic (see proof of Theorem
VIII.20 in [Bré83] for instance) to introduce the operator T defined as :

T : L2 (]−∞,m]) −→ L2 (]−∞,m])
g 7−→ fg,

where fg is solution of 
1
2f
′′
g −

1
2x

2fg = g

fg(m) = 0
fg ∈ H1(]−∞,m]).

(4)

To prove that T is well defined, we need to introduce the following space V and we give some properties
on this space. Let us note

V := {v ∈ L2 (]−∞,m]) | v′ ∈ L2 (]−∞,m]), v(m) = 0, x 7→ xv ∈ L2 (]−∞,m])}

endowed with the scalar product 〈u, v〉V = 〈u′, v′〉L2(]−∞,m]) + 〈xu, xv〉L2(]−∞,m]). The space V is a
weighted Sobolev space. With its scalar product, the space V is then an Hilbert space on R.
The following lemma generalizes in our context a classical inequality for Sobolev spaces.

Lemma 3.1. If f ∈ V , there exists a constant C ∈ R such that

‖f‖L2(]−∞,m]) 6 C ‖f‖V . (5)

Proof : If m > −1, we have

‖f‖2
L2(]−∞,m]) 6

∫ −1

−∞
f2x2 × 1

x2︸︷︷︸
61

dx+ C̃ ‖f ′‖2
L2([−1,m])︸ ︷︷ ︸

Poincaré’s inequality because f(m) = 0

6 C ‖f‖2
V .

If m < −1, it is easy to adapt the previous proof . �

We prove that the operator T is well defined thanks to the Lax-Milgram theorem. For a fixed function
g ∈ L2 (]−∞,m]), the weak formulation of (4) is, for ϕ ∈ H1

0 (]−∞,m]),
a(f, ϕ) = l(ϕ)
f(m) = 0
f ∈ H1(]−∞,m])

(6)

with a(f, ϕ) = −1
2

(∫ m

−∞
f ′ϕ′ +

∫ m

−∞
x2fϕ

)
et l(ϕ) =

∫ m

−∞
gϕ.

We check the hypothesis of the Lax-Milgram’s theorem. The application a is clearly bilinear and coercive.
It is continuous thanks to the Cauchy-Schwarz inequality. Finally, (5) gives that l is a linear continuous
form on V .
The Lax-Milgram’s theorem allows to conclude that there exists an unique solution f ∈ V to a(f, ϕ) = l(ϕ)
and then the operator T is well defined.

Proposition 3.2. The space L2 (]−∞,m]) admits an hilbertian basis of eigenvectors of O for the scalar
product associated to the L2-norm.

Proof : First, we prove that L2 (]−∞,m]) admits an hilbertian basis of eigenvectors of T. We prove
that the operator T is self-adjoint and compact so that we have an hilbertian basis.

The operator T is self-adjoint. It is just an integration by parts.

5



The operator T is compact. To prove that the operator T is linear, we use the uniqueness of the
solution implied by Lax-Milgram’s theorem. Then, T(g) = fg ∈ V and with (5)

‖T(g)‖L2(]−∞,m]) = ‖fg‖L2(]−∞,m]) 6 C ‖fg‖V .

However, multiplying (4) by fg and integrating, we have

a(fg, fg) = l(fg)⇒
1
2 ‖fg‖

2
V 6 C ‖fg‖V ⇒ ‖fg‖V 6 2C.

Then, T is continuous. The compacity of T follows from the compact injection of V in L2 (]−∞,m])
(this can be proved using Corollary IV.26 in [Bré83]).

Conclusion T is a self-adjoint compact operator. Then, by Theorem VI.11. in [Bré83], as L2 (]−∞,m])
is a separable space, L2 (]−∞,m]) admits an hilbertian basis of eigenvectors of T for the scalar
product of L2 (]−∞,m]).

However, the eigenvectors of T are the eigenvectors of O with inverse eigenvalues and we can conclude
the proof. �

Eigenvectors of O

Let φ be an eigenvector of O with eigenvalue µ. We have

1
2φ
′′(x)− 1

2x
2φ(x) = µφ(x).

We then apply the variable change z = x
√

2 and h : z 7→ φ

(
z√
2

)
= φ(x). The equation for h is

h′′(z) +
(
−1

4z
2 − µ

)
h(z) = 0.

As indicated in Appendix (see Section 6.1), the solutions for this equation can be written as h = αh1 +βh2
where h1(z) = D−µ− 1

2
(z) and h2(z) = D−µ− 1

2
(−z) and D is the parabolic cylinder function defined in

(26). Unlike h1, h2 is integrable on −∞.

Then, we take φ : x 7→ D−µ− 1
2

(
−x
√

2
)
.

As φ ∈ D(LFP), we must have φ(m) = 0, i.e.

D−µ− 1
2

(
−m
√

2
)

= 0. (7)

Eigenvalues of O

Thanks to the previous paragraph, we have Sp(O) =
{
−ν − 1

2 | Dν(−m
√

2) = 0
}
. We prove that the

spectrum of O is included in
]
−∞,−1

2

]
.

We recall that
〈Of, f〉L2(]−∞,m]) = −1

2

(∫ m

−∞
x2f2(x) dx+

∫ m

−∞
f ′2(x) dx

)
.

Let us study Sp(O) for the different values of m.

• if m 6 −1 : We easily obtain 〈Of, f〉L2(]−∞,m]) < −
1
2 〈f, f〉 and so Sp(O) ⊂

]
−∞,−1

2

[
.
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• if −1 < m 6 0 : We have∫ m

−∞
f2 =

∫ −1

−∞
f2 +

∫ m

−1
f2

6
∫ −1

−∞
f2x2 dx+

∫ m

−1

(∫ m

x

f ′(t) dt
)2

dx

C.S.
6
∫ −1

−∞
f2x2 dx+ ‖f ′‖2

L2(]−∞,m])

∫ m

−1
(m− x)2 dx

=
∫ −1

−∞
f2x2 dx+ ‖f ′‖2

L2(]−∞,m])
(m+ 1)3

3 ,

〈f, f〉 < −2〈Of, f〉L2(]−∞,m]).

Then, if −1 < m 6 0 , 〈Of, f〉L2(]−∞,m]) < −
1
2 〈f, f〉 and so Sp(O) ⊂

]
−∞,−1

2

[
.

• if m > 0 : Let µ be an eigenvalue of O. Using a proof by contradiction, let us assume that µ > −1
2 .

Then, by (7) and formula (19) in Appendix, as H−µ− 1
2
(−m) = 0, we would have

+∞∑
i=0

Γ
(
i+µ+ 1

2
2

)
i! (2m)i = 0.

This is absurd because all the terms are non-negative. Then, we have necessarily µ < −1
2 when

m > 0.

Finally, for all m ∈ R, Sp(O) ⊂
]
−∞,−1

2

[
and hence

{
ν | Dν(−m

√
2) = 0

}
⊂ R∗+.

Expression of p

We have found the eigenvectors of O namely the functions x 7→ Dνn,m

(
−x
√

2
)

with (νn,m)n∈N∗ the

ordered positive roots of ν 7→ Dν

(
−m
√

2
)
.

With a normalisation, we finally have an hilbertian basis (ẽn)n∈N∗ of L2 (]−∞,m]) with the scalar product
of L2 (]−∞,m]). It is defined by

ẽn : x 7→
Dνn,m

(
−x
√

2
)√∫m

−∞D2
νn,m

(
−y
√

2
)

dy
.

Now, it remains to go back to LFP to find the form of p.

Let us note ϕ̃n(x) := e− x
2

2 ẽn(x). We recall that ϕ̃n is an eigenfunction of LFP with eigenvalue −νn,m.

It is easy to prove that (ϕ̃n)n∈N∗ is an hilbertian basis of L2(]−∞,m], ex
2/2) with the scalar product

〈f, g〉0 =
∫ m

−∞
ex

2
f(x)g(x) dx.

We look for a solution p in L2(] −∞,m], ex
2/2). We can then decompose x 7→ p(m,x, t) on the basis of

(ϕ̃n)n∈N∗ :

p(m,x, t) =
∞∑
n=1

cn(t)ϕ̃n(x).

However,

p(m,x, 0) =
∞∑
n=1

cn(0)ϕ̃n(x).

7



Then,

cn(0) = 〈p(m, ·, 0), ϕ̃n〉0

=
∫ m

−∞
ez

2
p(m, z, 0)ϕ̃n(z) dz

= 1√∫m
−∞D2

νn,m

(
−y
√

2
)

dy

∫ m

−∞
e z

2
2 p(m, z, 0)Dνn,m

(
−z
√

2
)

dz.

It remains to determinate cn(t).

On one hand, ∂p
∂t

(x, t) =
∞∑
n=1

c′n(t)ϕ̃n(x).

On the other hand, ∂p
∂t

(x, t) = LFPp(m,x, t) =
∞∑
n=1

cn(t)LFPϕ̃n(x) = −
∞∑
n=1

cn(t)νn,mϕ̃n(x).

By uniqueness of the decomposition, we have

c′n(t) = −νn,mcn(t).

So
cn(t) = cn(0) e−νn,mt .

Finally,

p(m,x, t) =
∞∑
n=1

 1√∫m
−∞D2

νn,m

(
−y
√

2
)

dy

∫ m

−∞
e z

2
2 p(m, z, 0)Dνn,m

(
−z
√

2
)

dz


× e−νn,mt e− x

2
2

Dνn,m

(
−x
√

2
)√∫m

−∞D2
νn,m

(
−y
√

2
)

dy

= e− x
2

2

∞∑
n=1

(∫ m

−∞
e z

2
2 p(m, z, 0)Dνn,m

(
−z
√

2
)

dz
)

e−νn,mt
Dνn,m

(
−x
√

2
)∫m

−∞D2
νn,m

(
−y
√

2
)

dy
.

We can conclude with Proposition 6.3.

4 Law of the supremum and its joint density with the process
Natural extensions of this work is to check or extend the known results. First, we express the cumulative
distribution function of the supremum. Then, we find PDE for the joint density of the process and its supremum.

4.1 Cumulative distribution function of the supremum
From Equation (3), it is easy to obtain the law of the supremum. The result is consistent with the law obtained
using the link between the supremum of a process X and the hitting time and the expression in [APP05].

Proposition 4.1 (Supremum law). For m ∈ R and t ∈ R∗+, the law of the supremum when X0 = x0 is given
by

Px0

(
sup

06s6t
Xs < m

)
= − e

k(x2
0−m2)

2

∞∑
n=1

e−kνn,mt
Dνn,m

(
−x0
√

2k
)

νn,m∂νDνn,m(−m
√

2k)
, (8)

where (νn,m)n∈N∗ is defined as in Theorem 2.1.

Proof : It is just integration and the application of Proposition 6.2. �

Remark 4.2. Using the hitting time density named p(k)
x0→m in [APP05] (Eq. 31) and the link between hitting

time and supremum, we can also find the expression (8). Indeed,

Px0

(
sup
s6t

Xs < m

)
= Px0(Tm > t) =

∫ +∞

t

p(k)
x0→m(s) ds.

8



4.2 Results on the joint density
With the expression of the joint density / distribution, we can find a system of PDEs satisfied by the joint
density ∂mp of the process and its supremum. We take here k = 1.

Proposition 4.3. In the deterministic case where X0 = x0, the density p satisfies the following PDEs :

∀m ∈ R,∀t ∈ R∗+,



−∂t∂mp(m,x, t)− ∂x(x∂mp(m,x, t)) + 1
2∂

2
xx∂mp(m,x, t) = 0, x < m,

−m∂mp(m,m, t)−
1
2∂

2
mp(m,m, t)− ∂x∂mp(m,m, t) = 0,

−m∂mp(m,m, t) + ∂t∂mPx0

(
sup

06s6t
Xs 6 m

)
− 1

2∂x∂mp(m,m, t) = 0.

(9)

(10)

(11)

Proof : For this proof, it is more convenient to use the Hermite function H instead of the parabolic cylinder
function D.
With the regularity of H (see Appendix) and the regularity of m 7→ νn,m (see Proposition 6.4), we can prove
that the function p is regular with respect to x, m and t. Moreover, the order of the further partial derivatives
does not matter.
Hence, from (1), we have the equation (9).
For the other equations, let us write the partial derivatives of p.
We denote

hn(m, t) :=
e−νn,mtHνn,m(−x0)

νn,mHνn,m−1(−m)∂νHνn,m(−m) .

Then, we have :

p(m,x, t) = − em
2−x2

∞∑
n=1

hn(m, t)Hνn,m(−x),

and

Px0

(
sup

06s6t
Xs 6 m

)
= −1

2

∞∑
n=1

hn(m, t)
νn,m

∂xHνn,m(−m).

We denote in the following ν′n,m = ∂mνn,m (see Proposition 6.4). We have

∂mp(m,x, t) = − em
2−x2

[ ∞∑
n=1

hn(m, t)
(
2mHνn,m(−x) + ∂m

(
Hνn,m(−x)

))
+
∞∑
n=1

∂mhn(m, t)Hνn,m(−x)
]
.

(12)
Then, with Proposition 6.6, we have

∂mp(m,m, t) = −
∞∑
n=1

hn(m, t)∂xHνn,m(−m) (13)

and

∂m∂xp(m,m, t) =
∞∑
n=1

hn(m, t)
(

4m∂xHνn,m(−m) + ν′n,m (∂ν∂xH)νn,m (−m)
)

+
∞∑
n=1

∂mhn(m, t)∂xHνn,m(−m).

(14)
With (22), we have

∂m∂t (P (supXs 6 m)) =1
2

∞∑
n=1

hn(m, t)
[
2m∂xHνn,m(−m) + ν′n,m (∂ν∂xH)νn,m (−m)

]
(15)

+ 1
2

∞∑
n=1

∂mhn(m, t)∂xHνn,m(−m). (16)

Equation (12) and Proposition 6.7 imply that

∂2
m2p(m,m, t) =

∞∑
n=1

hn(m, t)
[
−6m∂xHνn,m(−m)− 2ν′n,m (∂ν∂xH)νn,m (−m)

]
(17)

− 2
∞∑
n=1

∂mhn(m, t)∂xHνn,m(−m). (18)

9



Combining (13), (14) and (17), we obtain (10).
Combining (13), (15) and (14), we obtain (11). �

Remark 4.4. It is Theorem 3.1 in [CP17]. This theorem is given for processes written as Xt = A(Xt) + Bt,
where A is a bounded function of class C1. Even if we are not under this hypothesis (for an OU process,
A(x) = −kx), the theorem is verified.

5 Acknowledgements
We thank Grégory Vial for his comments on this paper.

10



6 Appendix
6.1 Definitions and well-known properties on Hermite functions and Parabolic

cylinder functions
We recall here the definitions and some known results about parabolic cylinder functions and Hermite functions.
These results can be found in chapters 4 and 10 of [LS72] and in Section 7 of [APP05].

Hermite functions For ν ∈ R, the Hermite function Hν is defined, for all x ∈ R as

Hν(x) = 1
2Γ(−ν)

+∞∑
i=0

(−1)i

i! Γ
(
i− ν

2

)
(2x)i. (19)

The Hermite function satisfies the following relations:

∂xHν(x) = 2νHν−1(x), (20)

Hν+1(x)− 2xHν(x) + 2νHν−1(x) = 0. (21)

Combining (20) and (21), we have :

∂2
x2Hν(x) = −2νHν(x) + 2x∂xHν(x). (22)

When Re(ν) > −1,

Hν(x) = 2 ex2

√
π

∫ ∞
0

e−t
2
(2t)ν cos

(
2xt− νπ

2

)
dt. (23)

In particular, we have :

Hν(0) =
2νΓ

( 1
2
)

Γ
( 1−ν

2
) . (24)

Then, for n ∈ N,
H2n(0) = (−1)n (2n)!

n! , H2n+1(0) = 0. (25)

Remark 6.1 (Zeros of the function ν 7→ Hν(0)). The zeros (νn,0)n of the function ν 7→ Hν(0) are known.
They are the positive odd integers. Indeed, (24) indicates that Hν(0) 6= 0 when ν /∈ N. Therefore, the
zeros are among N. Equation (25) allows to conclude.

Parabolic cylinder function The equation

y′′(x) +
(
−x

2

4 + 1
2 + ν

)
y(x) = 0 (26)

admits two real solutions. The parabolic cylinder function Dν is defined as the solution of (26) with the
property that y(x) ∼

x→+∞
xν e−x

2/4. The other independent solution of (26) is x 7→ Dν(−x).

We have the following relation
∂xDν(x) = νDν−1(x)− x

2Dν(x). (27)

When Re(ν) > −1,

Dν(x
√

2) = 2 ν2 +1 e x
2

2
√
π

∫ ∞
0

e−t
2
tν cos

(
2xt− νπ

2

)
dt. (28)

We have, for n ∈ N, ∫ 0

−∞
D2
n

(
−x
√

2
)

dx = n!
√
π

2 . (29)

The parabolic cylinder function and the Hermite function are linked by the following relation :

Dν(x
√

2) = 2− ν2 e− x
2

2 Hν (x) .
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6.2 Useful results
In this part, we note να a zero of ν 7→ Dν(−α

√
2). This is equivalent to a zero of ν 7→ Hν(−α).

Thanks to (23), we have, for x ∈ R and when Re(ν) > −1,

∂xHν(x) = 2xHν(x)− 2 ex2

√
π

∫ ∞
0

e−t
2
(2t)ν+1 sin

(
2xt− νπ

2

)
dt, (30)

∂νHν(x) = 2 ex2

√
π

∫ ∞
0

e−t
2
(2t)ν

[
ln(2t) cos

(
2xt− νπ

2

)
+ π

2 sin
(

2xt− νπ

2

)]
dt, (31)

∂x∂νHν(x) = 2x∂νHν(x)− 2 ex2

√
π

∫ ∞
0

e−t
2
(2t)ν+1

[
ln(2t) sin

(
2xt− νπ

2

)
− π

2 cos
(

2xt− νπ

2

)]
dt. (32)

Thanks to (26), we can prove by direct induction that x 7→ Dν(x) is a C∞(R) function. Then, so is x 7→ Hν(x).
With the previous expressions, we can prove that all the derivatives with respect to ν exist and are continuous
if ν ∈ R+. Then, ν 7→ Hν(x) is a C∞(R+) function. The cross partial derivatives with respect to ν and x also
exist and are continuous. Then, we have the symmetry of second derivatives (Schwarz’s theorem).
We give here several results useful in the proofs.

Proposition 6.2. For all ν, α ∈ R, we have :∫ α

−∞
e− x

2
2 Dν(−x

√
2) dx = e−α

2
2

√
2
Dν−1(−α

√
2).

Proof : We prove the relation on H. Let us take ν, α ∈ R. We have with (21) et (20) :∫ α

−∞
e−x

2
Hν(−x) dx = −

∫ α

−∞
e−x

2
(2xHν−1(−x) + 2(ν − 1)Hν−2(−x)) dx

=
∫ α

−∞
∂x

(
e−x

2
Hν−1(−x)

)
dx.

Finally, ∫ α

−∞
e−x

2
Hν(−x) dx = e−α

2
Hν−1(−α).

�

Proposition 6.3. For all α ∈ R,∫ α

−∞
D2
να(−x

√
2) dx = − να√

2
Dνα−1(−α

√
2)∂νDνα(−α

√
2).

Proof : We apply the method given in [Sle68].
Let set

f : R2 −→ R
(ν, x) 7−→ Dν(−x

√
2) .

Then, thanks to (26), the function f is solution of the following equation, for all ν, x ∈ R :

∂2
x2f(ν, x) +

(
−x2 + 1 + 2ν

)
f(ν, x) = 0.

We derive this equation with respect to ν and using the regularity of H :

∂2
x2∂νf(ν, x) + 2f(ν, x) +

(
−x2 + 1 + 2ν

)
∂νf(ν, x) = 0.

We multiply by f

f(ν, x)∂2
x2∂νf(ν, x) + 2f2(ν, x) +

(
−x2 + 1 + 2ν

)
f(ν, x)∂νf(ν, x) = 0.

12



We integrate with respect to x :∫ α

−∞
f2(ν, x) dx = −1

2

[∫ α

−∞
f(ν, x)∂2

x2∂νf(ν, x) dx+
∫ α

−∞

(
−x2 + 1 + 2ν

)
f(ν, x)∂νf(ν, x) dx

]
= −1

2

[
[f(ν, x)∂x∂νf(ν, x)]α−∞ −

∫ α

−∞
∂xf(ν, x)∂x∂νf(ν, x) dx−

∫ α

−∞
∂2
x2f(ν, x)∂νf(ν, x) dx

]
= −1

2

[
f(ν, α)∂x∂νf(ν, α)−

∫ α

−∞
∂x {∂xf(ν, x)∂νf(ν, x)}dx

]
= −1

2
[
f(ν, α)∂x∂νf(ν, α)− [∂xf(ν, x)∂νf(ν, x)]α−∞

]
= −1

2 [f(ν, α)∂x∂νf(ν, α)− ∂xf(ν, α)∂νf(ν, α)] .

Then, writing using the function D,∫ α

−∞
D2
να(−x

√
2) dx = −

√
2

2 ∂xDνα(−α
√

2)∂νDνα(−α
√

2).

The conclusion follows with (27). �

Proposition 6.4. For all α ∈ R, there exists g : α 7→ να , continuously differentiable on a neighbourhood of α.
We note ν′α = g′(α). Then

ν′α = ∂xHνα(−α)
∂νHνα(−α) .

Proof : Let set
f : R2 −→ R

(ν, x) 7−→ Dν(−x
√

2) .

The function f is a continuously differentiable function. We have f(να, α) = 0. We also have ∂νf(να, α) 6= 0

because of Proposition 6.3 and the fact that
∫ α

−∞
D2
ν(−x

√
2) dx 6= 0.

Then, thanks to the implicit function theorem, there exists an open set U of R containing α such that there exists
an unique continuously differentiable function g : U 7→ R such that g(α) = να and for all x ∈ U , f(g(x), x) = 0.
Moreover, the partial derivative of g in U is given by

g′(x) = −∂xf(g(x), x)
∂νf(g(x), x) .

�

Proposition 6.5. We have

∂m(Hνm(x)) = ex
2−m2

∂xHνm(−m)− 4ν′m ex2

√
π

∫ ∞
0

e−t
2
(2t)νm sin((m+ x)t)×[

ln(2t) sin
(

(x−m)t− νmπ

2

)
− π

2 cos
(

(x−m)t− νmπ

2

)]
dt.

Proof : Using Proposition 6.4 twice and (30) and (31), we have :

∂m(Hνm(x)) = ν′m∂νHνm(x)

= ν′m∂νHνm(x) + ex
2−m2

∂xHνm(−m)− ex
2−m2

∂xHνm(−m)

= ν′m∂νHνm(x) + ex
2−m2

∂xHνm(−m)− ex
2−m2

ν′m(∂νH)νm(−m)

= ex
2−m2

∂xHνm(−m)− 4ν′m ex2

√
π

∫ ∞
0

e−t
2
(2t)νm sin((m+ x)t)×[

ln(2t) sin
(

(x−m)t− νmπ

2

)
− π

2 cos
(

(x−m)t− νmπ

2

)]
dt.

�

In particular, with x = −m, we have the following proposition :
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Proposition 6.6. For all m ∈ R,

∂m(Hνm(x))|x=−m = ∂xHνm(−m).

We also have the following proposition :

Proposition 6.7. We have

∂2
m2(Hνm(x))|x=−m = 2ν′m∂ν∂xHνm(−m) + 2m∂xHνm(−m).

Proof : It is the same kind of calculus as in the proof of Proposition 6.5. We use the formula (32) and the
fact that

∂2
m2(Hνm(x))|x=−m = −2m∂xHνm + ∂m (∂xHνm(−m))

− 2ν′m em2

√
π

∫ ∞
0

e−t
2
(2t)νm+1

[
ln(2t) sin

(
−2mt− νmπ

2

)
− π

2 cos
(
−2mt− νmπ

2

)]
dt.

�
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