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Technical Notes and Correspondence1

On the Use of Supervised Clustering in Stochastic NMPC Design2

Mazen Alamir3

Abstract—In this article, a supervised clustering-based heuristic4
is proposed for the real-time implementation of approximate solu-5
tions to stochastic nonlinear model predictive control frameworks.6
The key idea is to update online a low cardinality set of uncertainty7
vectors to be used in the expression of the stochastic cost and8
constraints. These vectors are the centers of uncertainty clusters9
that are built using the optimal control sequences, cost, and con-10
straints indicators as supervision labels. The use of a moving clus-11
tering data buffer which accumulates recent past computations12
enables to reduce the computational burden per sampling period13
while making available at each period a relevant amount of samples14
for the clustering task. A relevant example is given to illustrate the15
contribution and the associated algorithms.16

Index Terms—.
Q1

17

I. INTRODUCTION18

Stochastic nonlinear model predictive control (SNMPC) is without19

doubt one of the major challenges facing the NMPC community20

for the years to come. This can be viewed as the third key step to21

achieve. Indeed, after the 90s where the provable stability was the main22

paradigm [9], the last ten years or so were dedicated to making available23

reliable, and easy to use NMPC solvers for nominal deterministic set-24

tings [4]. The success of these two steps helped propelling MPC-based25

solutions out-of-labs toward the real-life paradigm where the keywords26

are risk, uncertainties, and probability.27

After some early attempts involving robust NMPC [8] which rapidly28

appeared to be over stringent, it quickly becomes obvious that the29

natural way to address the new paradigm is to replace all the MPC30

ingredients (cost, constraints) by their expected counterparts in the31

formulation of the open-loop optimization problem. Stochastic NMPC32

was born for which excellent recent unifying reviews can be found33

in [10], [12], and [13].34

Unfortunately, the apparently intuitive and simple shift in paradigm35

consisting in doing the business as usual on the expected quantities,36

comes with heavy consequences in terms of computational burden.37

Indeed, computing the expectation of a nonlinear function of several38

variables for each candidate control sequence is obviously an impossi-39

ble task. Only approximations can be attempted, each coming with its40

own merits and drawbacks.41

The first idealistic option is to use the stochastic dynamic program-42

ming (SDP) framework which is based on the well known Bellman’s43
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principle of optimality in which the conditional probability plays the 44

role of extended state [13]. Unfortunately, solving the SDP leads 45

to algorithms that scale exponentially in the dimension of the state. 46

Nevertheless, for small sized problems, nice and elegant solutions can 47

be derived [16] that might even address realistic real-life problems. 48

A second option is to derive online a structured approximation 49

(Gaussian processes or chaos polynomials for instance) of the prob- 50

ability density function at the current state and then to use the resulting 51

approximation in evaluating the expectation of relevant quantities [6] 52

and [14]. Note however that this has to be done for all possible candidate 53

control sequences in each iteration of the NLP solver. This obviously Q454

restricts the field of application of this approach to small-sized and 55

rather slow systems if any. 56

The third and probably more pragmatic option is to use scenarios- 57

based averaging in order to approximate the expectations (or optionally 58

higher order moments) involved in the problem formulation [17]. In 59

this case, a high number (say K) of samples of the random quantities is 60

drawn and the resulting constraints and state equations are concatenated 61

while sharing the same control. A common optimal control sequence 62

is then searched for using standard nominal solvers. 63

This last approach may lead to a very high dimensional problem 64

that is not intuitively prone to a parallel computing or distribution 65

over the system life-time. This is especially true when the underly- Q566

ing (deterministic) problem is solved using efficient multiple-shooting 67

algorithms [5] since the dimension of the extended state is proportional 68

to the number of samplesK being involved. The latter can be quite high 69

in order to get a decent level of certification [3]. Moreover, the need to 70

introduce variance-related terms in the formulation to better address the 71

chance constraint certification [11] makes things even worse as double 72

summation on the set of scenarios has to be performed leading to a 73

K2-rated complexity. 74

It is worth underlstanding that even when putting aside the compu- 75

tational challenges associated to SNMPC, one has to keep in mind 76

that all these methods assume that the statistical description of the 77

uncertainty vector is available (to draw relevant samples) and that 78

the problem lies in the way to propagate it depending on the control 79

actions. This knowledge is never available and can only be presumed. Q680

This should achieve convincing us that we need to accept a painful Q781

transition from a proof-related certain paradigm to a realm of heuristics 82

which can only be evaluated once implemented and its results diagnosed 83

on real-life problems. Consequently, the implementability/scalability 84

issues become crucial and key properties of any solution framework to 85

SNMPC. 86

The present article addresses the scenario-based SNMPC framework 87

under this last point of view, namely, that of implementable and scalable 88

heuristics. 89

An overview of the framework proposed in the present contribution is 90

sketched in Fig. 1. In this figure, x, u, w, J , and g refer to state, control, 91

uncertainty, cost function, and constraint, respectively. The basic block 92

(at the bottom of Fig. 1) where SNMPC is performed is the grayed box 93
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Fig. 1. Schematic view of the proposed SNMPC framework.

that delivers the action to be applied to the controlled system, namely,94

the first action in the scenario-based optimal sequence.95

The key difference with the standard implementation is that the96

SNMPC is formulated using only a few number (ncl) of regularly97

updated disturbance samples. More precisely, ncl is the number of98

clusters used in a clustering step. This clustering box delivers to the99

SNMPC box a regularly updated set containing the centers of clusters100

together with their population weights (p(i)) and dispersion indicators101

(σ
(i)
J , σ

(i)
g ) in the data set Db used to achieve the clustering task. This102

data setDb is accumulated in a first in first out (FIFO) buffer. The latter103

receives at each updating step a new block of dataDn which is delivered104

by the top block. This data block Dn contains a set of Nn nominalQ8 105

solutions u
[j]
∗ of a standard NMPC with presumably known newly106

sampled disturbance vectors w[j] together with the corresponding107

optimal costs and constraints indicators J [j]
∗ , g[j]∗ , j = 1, . . . , Nn. As108

the Nn optimization problems are totally decoupled, the computation109

performed in this top block can be done in fully parallel way.110

The rational behind this framework lies in the intuition that very111

often, while the space of possible uncertainty realizations might be112

very rich (including uniform distributions in high dimensional hyper-113

cubes), the set of corresponding optimal ingredients (control sequences,114

optimal cost, constraints indicators) might accept a low cardinality set115

of meaningfully distinct clusters. Moreover, the loss of information that116

results from using only the centers of clusters in the formulation can117

be partially mitigated by using the statistical information (σ
(i)
J , σ

(i)
g ),118

i = 1, . . . , ncl regarding the dispersion of cost and constraints indicator119

within each cluster. This information is transmitted from the clustering120

layer as indicated in Fig. 1. Sections III-B and III-C give more detailed121

description of the above two steps.122

The aim of this article is to give a rigorous presentation of this123

framework and to propose a complete implementation on a relevant124

example in order to assess the performance and implementability of125

the framework.126

This article is organized as follows. Section II gives some definitions127

and notation used in the sequel. The proposed framework is explained128

in Section III by successively explaining the different boxes depicted in 129

Fig. 1. An illustrative example is given in Section IV. Finally, Section V 130

concludes the article and gives some hints for further investigation. 131

II. DEFINITIONS AND NOTATION 132

We consider nonlinear dynamic systems given by 133

x+ = f(x, u,w) (1)

where x ∈ R
n, u ∈ U ⊂ R

m, and w ∈ R
r stand, respectively, for the 134

vectors of state, control, and uncertainty. It is assumed here for simplic- 135

ity that the whole state vector is measured while the uncertainty is not. 136

Moreover, it is also assumed that the size of the uncertainty vector and 137

the level of excitation are such that the uncertainty estimation through 138

dedicated observer is not a reasonable option. 139

Consider that a couple of cost/constraints functions can be defined 140

at any current state x by1 J(x)(u,w) ∈ R+ and g(x)(u,w) ≤ 0 ∈ R 141

that express, respectively, a cost function to be minimized (in some 142

sense) and a constraints violation indicator to be limited (in some sense) 143

over some finite prediction horizon of length N and starting from the 144

initial state x. When the state is implicitly known (or fixed during some 145

argumentation), the short notation J(u,w) and g(u,w) can be used. 146

Remark 2.1: Note that g is a scalar map that might encompass 147

a set of constraints to be enforced through dedicated maps (such 148

as max{0, ·}2 for instance). The treatment of this function can be 149

vectorized for computational efficiency (including by using of a vector 150

of slack variables in softening the constraints rather than the scalar used 151

in the sequel). We keep nevertheless this scalar notation for the sake of 152

simplicity of exposition of the main ideas. In the simulation however, 153

vectorized implementation is used. 154

The ideal stochastic NMPC formulation that is approximated in the 155

present article takes the following form: 156

min
(u,µ)

E(J (x)(u, ·)) +
[
1− εJ
εJ

]
S(J(x)(u, ·)) + ρμ (2)

under E(g(x)(u, ·)) +
[
1− εg
εg

]
S(g(x)(u, ·)) ≤ μ ≥ 0 (3)

which can be understood by means of the following comments: 157

� E and S denote, respectively, the expectation and the standard 158

deviation of their arguments over the presumably known statistics on 159

the uncertainty vector w. 160

�According to [11], under some technical conditions,2 when μ = 0 161

the satisfaction of (3) implies that the probability of satisfaction of 162

the original constraint g(x)(u,w) ≤ 0 is greater than 1− εg and this, 163

regardless of the specific statistics of the uncertain variables. Using μ 164

with a high penalty ρ implements a soft version of this formulation. 165

� Similarly, under the same conditions, the cost function that is 166

minimized in (2) when using ρ = 0, is precisely the bound below 167

which it can be certified, with a probability greater than 1− εJ , that 168

the expectation of the cost lies. 169

The difficulty in implementing a solution to the formulation (2)–(3) 170

lies in the cost of approximating the expectation and standard deviation 171

involved. The commonly used approaches replace the expectation by 172

an averaging sum over a high number of uncertainties samples which 173

can be quite heavy to compute as mentioned in the introduction. 174

In the following section, the proposed approximating method to the 175

formulation (2)–(3) is described. 176

1Boldfaced notation x, u, and w are used to denote variables profiles over
some prediction horizon.

2Although these conditions might not be satisfied, the idea is used here to
support the proposed heuristic



IEE
E P

ro
of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 00, NO. 00, 2020 3

III. PROPOSED FRAMEWORK177

In this section, the different tasks involved in the framework depicted178

in Fig. 1 are successively detailed.179

A. Solving a Set of Deterministic Problems: Construction of a180

New Data Set Dn181

This task consists in drawing a new set of Nn values w[j] of the un-182

certainty profile and to solve, knowing these values, the corresponding183

individual deterministic constrained optimization problem given by184

u[j]
∗ ← min

u,µ
J(x)(u,w[j]) + ρμ | g(x)(u,w[j]) ≤ μ (4)

the resulting individual optimal cost and constraints are denoted by J [j]
∗185

and g
[j]
∗ , respectively. This enables the following data set to be defined:186

Dn := {(w[j],u[j]
∗ , J [j]

∗ , g[j]∗ )}Nn
j=1. (5)

Note that solving these individual problems while knowing the values187

of the disturbance profiles enables to reveal a population of control188

sequences that would be optimal should the disturbance profiles that189

originates them occurs. The relevance of this computation is to use the190

resulting data in a disturbance-profiles clustering step. This is because191

192

Because the clustering is based on the labels constituted by the triplet193

(u
[j]
∗ , J

[j]
∗ , g

[j]
∗ ), the clustering is qualified hereafter as a supervised194

clustering.195

Note that this step is totally parallelizable as the individual deter-196

ministic problems are totally decoupled. Nevertheless, the number Nn197

of samples can be moderate since a buffer is created and updated by198

such data at each sampling period as explained and justified in the next199

section.200

Since the dataset Dn is related to a current state xk at instant k, it201

is denoted by Dn(k) when the reference to the sampling instant k is202

needed.203

B. Updating the Clustering Buffer: Creating and Updating the204

Dataset Db205

This is a simple FIFO data storage task in which the successive206

datasets Dn of the form (5) are stacked for use in the clustering task.207

As the new datasetsDn(k) are added at each sampling period k, the208

size nb := qNn of the clustering buffer (q is the number of successive209

datasetsDn(k) to be included) depends on the bandwidth of the system.210

This is because integrating all the datasetsDn(k) in a single clustering211

dataset (called Db in Fig. 1) ignores the fact that each of these datasets212

is related to a different state that defines the underlying optimization213

problem (4). The underlying assumption is that the evolution of the state214

during the q successive sampling periods can be viewed as sufficiently215

small for the clustering dataset Db to remain relevant.216

To summarize, at each sampling period k > q, the clustering data217

set is given by218

Db(k) := {Dn(k − 1), . . . ,Dn(k − q)} (6)

where Dn(k − j) is the dataset containing the solutions of the Nn219

nominal problems defined by (4) with the state xk−j . For smaller220

initial values of k, the buffer contains only the available k − 1 datasets 221

Dn(k − 1), . . . ,D(0). 222

Remark 3.1: The choice of the size q of the clustering set Db 223

is obviously the object of a recurrent type of dilemmas commonly 224

encountered in real-time MPC. This dilemma holds between the quality 225

of the solution of a problem (better if the size of the cluster is large) 226

and the very relevance of the problem itself (weak if the buffer contains 227

data that correspond to too old states). In nominal deterministic MPC, 228

the parameter to be tuned is the number of iterations of the underlying 229

optimization algorithm [2]. 230

Having the clustering data Db, the next section explains the super- 231

vised clustering task that leads to the selection of the ncl clusters whose 232

centers form the database D feeding the SNMPC formulation (Fig. 1). 233

C. Clustering the Uncertainty Set: Creating and Updating the 234

Low Cardinality Dataset D 235

Clustering is a key branch of Data Mining whose objective is to split 236

a set of data into subsets such that inside each subset, the data are similar 237

in some sense (according to some distance). Obviously, the clustering 238

topic is vast and it is outside the scope of the present contribution to give 239

a survey of available clustering techniques. Readers can consult [18] 240

for a comprehensive and recent survey. 241

Fortunately enough, when it comes to use clustering (or more gen- 242

erally many machine learning) algorithms as parts of a wider solution 243

framework (as it is the case in the present contribution), free publicly 244

available implementations of clustering task can be used such as the 245

well-known scikit-learn library [15]. 246

A clustering map C takes as arguments as follows 247

1) a disctere set V := {v(i)}nb
i=1 to be split into clusters; 248

2) an integerncl representing the number of clusters which one wishes 249

V to be split into 250

and delivers as output a nb-dimensional vector of labels I ∈ 251

{1, . . . , ncl}nb that associates to each member v(i) of V its associated 252

cluster. This is shortly written as follows: 253

I = C(V, ncl) ∈ {1, . . . , ncl}nb . (7)

Recall that our objective is to perform a clustering of the set of 254

disturbance vectorsW := {w(s)
b }nb

s=1 contained in the dataset Db (see 255

Fig. 1). 256

Clustering algorithms (K-Means, Mean-shift, DBSCAN, to cite but 257

few algorithms in the scikit-learn library) generally perform an unsuper- 258

vised learning in the sense that they consider only internal relationships 259

and distances between the elements of the set V to split and this is 260

regardless of any exogenous information3 about these elements. 261

Following the discussion of Section III, we seek a clustering that 262

considers as similar those disturbance vectors that correspond to similar 263

triplets of control profiles, cost, and constraint indicators. This is the 264

reason why the set V that is used hereafter is given by 265

V = {(u(s)
∗ , J(s)

∗ , g(s)∗ )}nb
s=1. (8)

That is why we refer to the proposed clustering approach as a supervised Q9266

clustering as the set of class labels I that will be used to split the 267

uncertainty vectors set is derived using the exogenous information 268

contained in the set V given by (8), namely 269

I := C
(
{(u(s)

∗ , J(s)
∗ , g(s)∗ )}nb

s=1, ncl

)
. (9)

3Called labels in the machine learning language.
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Once this clustering is achieved, the centers of the ncl resulting clusters270

are given as a by-side product of the clustering task271

w(i) := Mean
(
w

(s)
b , s ∈ {1, . . . , nb} | Is = i

)
. (10)

Beside these centers, the weights of the different clusters can be272

associated to the relative size of their populations, namely273

p(i) :=
1

nb

card {s ∈ {1, . . . , nb} | Is = i} . (11)

Finally, evaluations of the dispersions of the cost function and the274

constraints inside each cluster can also be cheaply obtained using the275

two variances defined by276

σ
(i)
J := Var

(
J(s)
∗ , s ∈ {1, . . . , nb} | Is = i

)
(12)

σ(i)
g := Var

(
g(s)∗ , s ∈ {1, . . . , nb} | Is = i

)
. (13)

This ends the definition of the dataset D (see Fig. 1) that is used in277

the formulation of the SNMPC which is described in the following278

section.279

D. Formulation of the Stochastic NMPC280

In this section, approximate expressions for (2) and (3) are given281

using the ingredients contained in the dataset D which is updated at282

each sampling period using the steps explained in the previous sections.283

This is done by averaging over the set of centers w(i), i = 1, . . . , ncl284

of the clusters created above while accommodating for the dispersion285

inside the clusters. More precisely, the following optimization problem286

is considered:287

min
u,µ

[
Ê
(x)

(u) +
1− εJ
εJ

Ŝ
(x)

(u) + ρμ
]

(14)

under the following constraints:288

g(x)(u, w(i)) +
1− εg
εg

√
σ
(i)
g ≤ μ ≥ 0 ∀i ∈ {1, . . . , ncl} (15)

in which:289

Ê
(x)

(u) :=

ncl∑
i=1

p(i)
[
J(x)(u, w(i)) +

1− εJ
εJ

√
σ
(i)
J

]
(16)

Ŝ
(x)

(u) :=

(
ncl∑
i=1

p(i)
[
J(x)(u, w(i)) +

1− εJ
εJ

√
σ
(i)
J − Ê

(x)
(u)

]2
)1

2
(17)

where an estimation Ê
(x)

(u) of the expectation of the cost function290

(corresponding to the term E(J(x)(u, ·)) in (2)) is computed using a291

p(i)-based weighted sums in which the predicted values at the center of292

the clusters are augmented by the terms that depend on the estimated293

variances σ(i)
J included in the dataset D as described above. Similarly,294

the term Ŝ
(x)

(u) is used as an approximation of the standard deviation295

term S(J(x)(u, ·)) in (2).296

As for the expression (15) of the constraints, note that thanks to the297

low number of clusters ncl, one can afford to enforce the personalized298

approximated expression of (3) on each cluster individually rather than299

taking the global statistics over all the clusters. That is the reason why300

the constraints are enforced on each individual cluster by tightening301

the bounds by an amount that is proportional to the standard deviation302

within each cluster as estimated from the precomputed parameters σ(i)
g303

for i = 1, . . . , ncl. This leads to a harder tightening of the constraints304

over those clusters showing higher dispersions.305

E. Discussion Regarding the Parameters Choice 306

The choice of the parameters q, Nn, ncl is guided by the following 307

issues. 308

1) As already underlined in Remark 3.1, the choice of q is determined 309

by the need to keep the buffer Db relevant. This is because this 310

buffer contains data that correspond to q past sampling instants 311

τ . Therefore, denoting by τmax the maximum time during which 312

one can reasonably consider the state as almost unchanged, the 313

following constraint needs to be satisfied: 314

q ≤ 	τmax

τ

.

315

2) On the other hand, assuming that the computation of the Nn 316

optimization problems in Dn is done in parallel and denoted by 317

the following. Q10318

a) τ c
clustering(qNn): the time needed to perform the clustering 319

task (which depends on the number of elements qNn). 320

b) τ c
MPC(ncl) : the time needed to solve the scenario-based 321

MPC involving the ncl centers of the clusters. Note that 322

this time increases mainly because of the concatenation of 323

the constraints over each cluster. 324

c) τu = Nuτ : the control updating period, namely the time 325

between two successive resolutions of the scenario-based 326

MPC problem. 327

Then the following constraint should be satisfied for the scheme to 328

be feasible: 329

τ c
clustering(qNn) + τ c

MPC(ncl) + τ c
MPC(1) ≤ τu. (18)

3) Obviously, depending on the problem, the system cannot be left 330

in open-loop more than some time duration τmax
u , therefore, the 331

following constraint holds on the r.h.s of (18): 332

τu ≤ τmax
u . (19)

4) In addition to (18), the scalability of the kernel stochastic MPC 333

problem can be evaluated by keeping in mind that the use of ncl 334

clusters multiplies the number of constraints by ncl while keep- 335

ing the same number of decision variables when single shooting 336

method is used while it multiply both the constraints and the number 337

of decision variables by ncl in a multiple shooting framework. 338

IV. ILLUSTRATIVE EXAMPLE: COMBINED THERAPY OF CANCER 339

A. System Equations, Objective, and Constraints 340

As an illustrative example, let us consider the problem of drug dosing 341

during a combined chemotherapy/immunotherapy of cancer [1] and [7]. 342

The dynamic model involves 4 states, 2 control inputs, and 13 uncertain 343

parameters. More precisely, the state components are defined as follows: 344

x1 tumor cell population; 345

x2 circulating lymphocytes population; 346

x3 chemotherapy drug concentration; 347

x4 effector immune cell population; 348

u1 rate of introduction of immunotherapy drug; 349

u2 rate of introduction of chemotherapy drug. 350

and the dynamics is given by 351

ẋ1 = ax1(1− bx1)− c1x4x1 − k3x3x1 (20)

ẋ2 = −δx2 − k2x3x2 + s2 (21)

ẋ3 = −γ0x3 + u2 (22)

ẋ4 = g
x1

h+ x1

x4 − rx4 − p0x4x1 − k1x4x3 + s1u1. (23)
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TABLE I
NOMINAL VALUES OF THE PARAMETERS

The description of the relevance of all the terms and coefficients can352

be examined in [1] although one can easily guess from the definition353

of the state components.354

In order to understand the necessary tradeoff and timing issues, note355

that the immunotherapy drug (u1) enables to increase the effector im-356

mune population size x4 [see (23)] which enhances the tumor decrease357

through the second term (−c1x4x1) in (20). On the other hand the358

chemotherapy drug (u2) does not only attack the tumor cells through359

the term (−k3x3x1) in (20) but also the effector immune population x4360

as well as the circulating lymphocytes x2 through the terms −k1x4x3361

and −k3x3x1 respectively present in (23) and (20). These coupled362

effects render mandatory the computation of a rationale timing and363

tradeoff that is made fragile in the presence of high uncertainties on all364

the parameters.365

Using the notation above, the uncertainty vector w gathers all the366

uncertain parameters involved in the model (20)–(23), namely367

w :=
[
a, b, c1, k3, δ, k2, s2, γ0, g, r, p0, k1, s1

]
∈ R

13
+ (24)

that are supposed here to be constant but unknown. Note also that a368

reconstruction of all these parameters from patient measurement during369

the treatment is obviously out of question. Table I gives the nominal370

values of the parameters involved in the dynamics. Note that because of371

the excursion of these parameters and the related states, a normalized372

version of the dynamics (20)–(23) is derived by using the following373

vector of normalization values of the state components:374

x̄ :=
[
109, 109, 1, 109

]
. (25)

As it is typically the case in cancer treatment, the control objective is375

to reduce the tumor cells population x1 at the end of the treatment while376

ensuring that the health of the patient (represented in the above model377

by the circulating lymphocytes population sizex2) remains greater than378

some a priori fixed lower bound xmin
2 .379

Consequently, the following cost function is used at each state x in380

the MPC design:381

J(x)(u, w) := ρfx1(N) +

N∑
i=1

x1(i|u, x, w) + ρu|u(i)| (26)

where x(i|u, x, w) is the state i sampling period ahead when starting382

from the initial state x while applying the control sequence u under383

the parameter vector w. The above function has to be minimized while384

enforcing the following constraint on the predicted trajectory:385

g(x)(u, w) := min
i∈{1,...,N}

[x2(i|u, x, w)] ≥ xmin
2 . (27)

The control input is saturated according to u ∈ [0, 5]× [0, 1].386

B. Stochastic MPC Controller Settings387

In all the forthcoming simulations, the sampling period τ = 0.2388

(Days) is used. When stochastic MPC is used, the number of clusters389

is taken equal to ncl = 3. The number Nn = 25 of new samples is390

Fig. 2. Histogram of the terminal normalized tumor sizes under nomi-
nal and stochastic MPC controllers.

generated at each sampling period (see Fig. 1). The size of the FIFO 391

buffer is taken equal to nb = 4×Nn = 100 (q = 4). The parameters 392

εJ and εg used to account for the variance in the definition of the cost 393

function and the constraints are taken equal to εJ = εg = 0.1 (leading 394

to 90% of confidence rate). The weighting coefficients ρf = 1000, 395

ρu = 1, and ρ = 10 are used. The clustering is performed using the 396

KMeans module of the scikit-learn python library [15]. 397

The stochastic MPC is compared to the nominal MPC which uses 398

the nominal values of the parameters as given in Table I. As for the 399

stochastic MPC, the random values of these parameters are obtained 400

according to 401

wi = (1 + νi)w̄i where νi ∈ N (0, σ) (28)

where a variance σ = 0.2 is used leading to samples that might have 402

a discrepancy as high as 45–80% of the nominal values. Hundred 403

simulations are performed using either stochastic or nominal MPC and 404

statistical indicators are compared. Note that the cloud of disturbances 405

used in these 100 simulations are fired independently of those fired to 406

feed the FIFO buffer of the stochastic MPC. All the simulations use the 407

normalized initial state x0 = (1.0, 0.15, 0, 1) and all the simulations 408

last 40 d. The prediction horizon length is taken equal to N = 10 (2 d) 409

and five steps of the optimal control sequence is applied before a new 410

optimal sequence is computed. This leads to an updating control period 411

τu of 1 d. The problem encoding and the optimization are performed 412

using multiple-shooting formulation (with warm starting of the initial 413

guess at each sampling period) thanks to the free software CasADi [4] 414

(python version) on a MacBookPro 2.9 GHz Intel Core i7. 415

C. Results and Discussion 416

Fig. 2 shows the normalized (w.r.t the maximum bins) histograms of 417

the tumor sizes at the end of the closed-loop simulations. This figure 418

shows that the SNMPC outperforms the nominal MPC as it leads to a 419

vanishing tumor size except for two single outliers where the tumor is 420

increased as explained later on. Fig. 3 shows the normalized histogram 421
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Fig. 3. (top): Histogram of the minimal lymphocytes population size.
(Bottom): Zoom on the nominal histogram showing constraints violation
in 15% of the scenarios. Note that the bottom plot is a zoom on the top
plot around the lower bound xmin

2 = 0.05.

Fig. 4. Typical closed-loop behavior under the nominal MPC.

of the minimal lymphocytes population’s size during the closed-loop422

simulations. Note how the bottom plot of this figures shows that under423

the nominal MPC, the constraints is violated in around 15% of the424

scenarios. Note however how the constraints is largely respected when425

the SNMPC is used due to the cautious behavior of the stochastic426

controller.427

One might notice here that something uncommon is happening as428

the stochastic controller wins on both sides, namely the cost function429

and the constraints satisfaction. This can be explained by examining430

Fig. 5. Typical closed-loop behavior under the stochastic MPC.

Fig. 6. Typical drug delivery under nominal MPC.

the typical behavior of the closed-loop under the nominal versus the 431

stochastic MPC controllers which are depicted, respectively, in Figs. 4 432

and 5. As a matter of fact, since the nominal controller is not cautious 433

and does not see the risk of violating the constraints, it applies intensive 434

chemotherapy drug from the beginning as this reduced the tumor size 435

quickly and hence lead to a lower value of the cost function. But when 436

the horizon recedes, the closed-loop system is trapped since there is 437

no more possibility to reduce the cost significantly without violating 438

the constraint on the lymphocytes population size. That is the reason 439

why the nominal controller can only regulate the lymphocytes size by 440

applying in parallel chemotherapy and immunotherapy (see the Fig. 6). 441

On the other hand, the stochastic MPC does not fall in this trap as 442

handling all the clusters representative makes it aware of a high risk of 443

constraints violation in case intensive chemotherapy is used from the 444

beginning. That is the reason why, it applies chemotherapy only after 445

a while when the level of lymphocytes becomes high enough to ensure 446

a secure delivery of chemotherapy drug. This can be clearly seen in 447

Figs. 5 and 7. 448

Note that a longer prediction horizon could have brought the nominal 449

controller into the same strategy than the stochastic one avoiding thus 450

the above mentioned trap. Indeed, longer prediction horizon would have 451

revealed that better contraction can be achieved while increasing the 452

health indicator should the application of the chemotherapy be delayed. 453

The choice of the scenario is here to illustrate the difference between the 454

two settings and the capabilities of SNMPC to enforce the satisfaction 455

of the constraints when compared to a nominal MPC. Finally, Table II 456

shows the comparison between the statistics of the computation time 457
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Fig. 7. Typical drug delivery under stochastic MPC.

TABLE II
STATISTICS OF THE COMPUTATION TIMES (IN MS) OF A SINGLE SOLUTION OF

THE OPTIMIZATION PROBLEM. (CASADI [4] (PYTHON VERSION) ON A
MACBOOKPRO 2.9 GHZ INTEL CORE I7)

that is needed to solve the underlying optimization problems at each458

control updating period. This table clearly shows that using ncl = 3459

cluster induces on average an extra computational burden of 40% while460

increasing the dispersion of the computation to a higher extent. This also461

suggests that without using the clustering approach, the computation462

time would be too prohibitive.463

V. CONCLUSION AND FUTURE WORK464

In this article, a clustering-based framework is proposed to derive an465

approximated version of nonlinear stochastic MPC control design that466

is illustrated on a realistic and challenging examples involving a high467

dimensional nonreconstructible uncertainty vector. Work in progress468

targets a better understanding of the way the number of clusters can be469

rationally chosen, the impact of the choice of the labels involved in the470

clustering step, and the size of the FIFO buffer (the forgetting rate of471

previous samples). Application to many other real-life examples is also472

under investigation.473
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