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In this article, a supervised clustering-based heuristic 4 is proposed for the real-time implementation of approximate solu-5 tions to stochastic nonlinear model predictive control frameworks. 6 The key idea is to update online a low cardinality set of uncertainty 7 vectors to be used in the expression of the stochastic cost and 8 constraints. These vectors are the centers of uncertainty clusters 9 that are built using the optimal control sequences, cost, and con-10 straints indicators as supervision labels. The use of a moving clus-11 tering data buffer which accumulates recent past computations 12 enables to reduce the computational burden per sampling period 13 while making available at each period a relevant amount of samples 14 for the clustering task. A relevant example is given to illustrate the 15 contribution and the associated algorithms.
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Digital Object Identifier 10.1109/TAC.2020.2970424 principle of optimality in which the conditional probability plays the role of extended state [START_REF] Mesbah | Stochastic model predictive control with active uncertainty learning: A survey on dual control[END_REF]. Unfortunately, solving the SDP leads to algorithms that scale exponentially in the dimension of the state.

Nevertheless, for small sized problems, nice and elegant solutions can be derived [START_REF] Rigaut | Stochastic optimization of braking energy storage and ventilation in a subway station[END_REF] that might even address realistic real-life problems.

A second option is to derive online a structured approximation (Gaussian processes or chaos polynomials for instance) of the probability density function at the current state and then to use the resulting approximation in evaluating the expectation of relevant quantities [START_REF] Bradford | Stochastic nonlinear model predictive control using Gaussian processes[END_REF] and [START_REF] Nagy | Distributional uncertainty analysis using power series and polynomial chaos expansions[END_REF]. Note however that this has to be done for all possible candidate control sequences in each iteration of the NLP solver. This obviously
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restricts the field of application of this approach to small-sized and rather slow systems if any.

The third and probably more pragmatic option is to use scenariosbased averaging in order to approximate the expectations (or optionally higher order moments) involved in the problem formulation [START_REF] Schildbach | The scenario approach for stochastic model predictive control with bounds on closedloop constraint violations[END_REF]. In this case, a high number (say K) of samples of the random quantities is drawn and the resulting constraints and state equations are concatenated while sharing the same control. A common optimal control sequence is then searched for using standard nominal solvers.

This last approach may lead to a very high dimensional problem that is not intuitively prone to a parallel computing or distribution over the system life-time. This is especially true when the underly-Q5 ing (deterministic) problem is solved using efficient multiple-shooting algorithms [START_REF] Bock | A direct multiple shooting method for real-time optimization of nonlinear dae processes[END_REF] since the dimension of the extended state is proportional to the number of samples K being involved. The latter can be quite high in order to get a decent level of certification [START_REF] Alamo | Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems[END_REF]. Moreover, the need to introduce variance-related terms in the formulation to better address the chance constraint certification [START_REF] Mesbah | Stochastic nonlinear model predictive control with probabilistic constraints[END_REF] makes things even worse as double summation on the set of scenarios has to be performed leading to a K 2 -rated complexity.

It is worth underlstanding that even when putting aside the computational challenges associated to SNMPC, one has to keep in mind that all these methods assume that the statistical description of the uncertainty vector is available (to draw relevant samples) and that the problem lies in the way to propagate it depending on the control actions. This knowledge is never available and can only be presumed.

Q6

This should achieve convincing us that we need to accept a painful Q7 transition from a proof-related certain paradigm to a realm of heuristics which can only be evaluated once implemented and its results diagnosed on real-life problems. Consequently, the implementability/scalability issues become crucial and key properties of any solution framework to SNMPC.

The present article addresses the scenario-based SNMPC framework under this last point of view, namely, that of implementable and scalable

heuristics.

An overview of the framework proposed in the present contribution is sketched in Fig. 1. In this figure, x, u, w, J, and g refer to state, control, uncertainty, cost function, and constraint, respectively. The basic block (at the bottom of Fig. 1) where SNMPC is performed is the grayed box that delivers the action to be applied to the controlled system, namely, 94 the first action in the scenario-based optimal sequence.
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The key difference with the standard implementation is that the in Section III by successively explaining the different boxes depicted in Fig. 1. An illustrative example is given in Section IV. Finally, Section V concludes the article and gives some hints for further investigation.

II. DEFINITIONS AND NOTATION

We consider nonlinear dynamic systems given by

x + = f (x, u, w) (1) 
where x ∈ R n , u ∈ U ⊂ R m , and w ∈ R r stand, respectively, for the vectors of state, control, and uncertainty. It is assumed here for simplicity that the whole state vector is measured while the uncertainty is not. Moreover, it is also assumed that the size of the uncertainty vector and the level of excitation are such that the uncertainty estimation through dedicated observer is not a reasonable option.

Consider that a couple of cost/constraints functions can be defined at any current state x by1 J (x) (u, w) ∈ R + and g (x) (u, w) ≤ 0 ∈ R that express, respectively, a cost function to be minimized (in some sense) and a constraints violation indicator to be limited (in some sense) over some finite prediction horizon of length N and starting from the initial state x. When the state is implicitly known (or fixed during some argumentation), the short notation J(u, w) and g(u, w) can be used.

Remark 2.1: Note that g is a scalar map that might encompass a set of constraints to be enforced through dedicated maps (such as max{0, •}2 for instance). The treatment of this function can be vectorized for computational efficiency (including by using of a vector of slack variables in softening the constraints rather than the scalar used in the sequel). We keep nevertheless this scalar notation for the sake of simplicity of exposition of the main ideas. In the simulation however, vectorized implementation is used.

The ideal stochastic NMPC formulation that is approximated in the present article takes the following form:

min (u,µ) E(J (x) (u, •)) + 1 -J J S(J (x) (u, •)) + ρμ (2) under E(g (x) (u, •)) + 1 -g g S(g (x) (u, •)) ≤ μ ≥ 0 (3) 
which can be understood by means of the following comments:

E and S denote, respectively, the expectation and the standard deviation of their arguments over the presumably known statistics on the uncertainty vector w.

According to [START_REF] Mesbah | Stochastic nonlinear model predictive control with probabilistic constraints[END_REF], under some technical conditions, 2 when μ = 0 the satisfaction of (3) implies that the probability of satisfaction of the original constraint g (x) (u, w) ≤ 0 is greater than 1g and this, regardless of the specific statistics of the uncertain variables. Using μ with a high penalty ρ implements a soft version of this formulation.

Similarly, under the same conditions, the cost function that is minimized in (2) when using ρ = 0, is precisely the bound below which it can be certified, with a probability greater than 1 -J , that the expectation of the cost lies.

The difficulty in implementing a solution to the formulation (2)-(3) lies in the cost of approximating the expectation and standard deviation involved. The commonly used approaches replace the expectation by an averaging sum over a high number of uncertainties samples which can be quite heavy to compute as mentioned in the introduction. In the following section, the proposed approximating method to the formulation (2)-( 3 
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To summarize, at each sampling period k > q, the clustering data 217 set is given by

218 D b (k) := {D n (k -1), . . . , D n (k -q)} (6)
where D n (k -j) is the dataset containing the solutions of the N n 219 nominal problems defined by (4) with the state x k-j . For smaller 220 initial values of k, the buffer contains only the available k -1 datasets D n (k -1), . . . , D(0).

Remark 3.1:

The choice of the size q of the clustering set D b is obviously the object of a recurrent type of dilemmas commonly encountered in real-time MPC. This dilemma holds between the quality of the solution of a problem (better if the size of the cluster is large) and the very relevance of the problem itself (weak if the buffer contains data that correspond to too old states). In nominal deterministic MPC, the parameter to be tuned is the number of iterations of the underlying optimization algorithm [START_REF] Alamir | A state-dependent updating period for certified real-time 478 model predictive control[END_REF].

Having the clustering data D b , the next section explains the supervised clustering task that leads to the selection of the n cl clusters whose centers form the database D feeding the SNMPC formulation (Fig. 1).

C. Clustering the Uncertainty Set: Creating and Updating the Low Cardinality Dataset D

Clustering is a key branch of Data Mining whose objective is to split a set of data into subsets such that inside each subset, the data are similar in some sense (according to some distance). Obviously, the clustering topic is vast and it is outside the scope of the present contribution to give a survey of available clustering techniques. Readers can consult [START_REF] Xu | A comprehensive survey of clustering algorithms[END_REF] for a comprehensive and recent survey.

Fortunately enough, when it comes to use clustering (or more generally many machine learning) algorithms as parts of a wider solution framework (as it is the case in the present contribution), free publicly available implementations of clustering task can be used such as the well-known scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF].

A clustering map C takes as arguments as follows 1) a disctere set V := {v (i) } n b i=1 to be split into clusters;

2) an integer n cl representing the number of clusters which one wishes V to be split into and delivers as output a n b -dimensional vector of labels I ∈ {1, . . . , n cl } n b that associates to each member v (i) of V its associated cluster. This is shortly written as follows:

I = C(V, n cl ) ∈ {1, . . . , n cl } n b . ( 7 
)
Recall that our objective is to perform a clustering of the set of disturbance vectors W := {w

(s) b } n b
s=1 contained in the dataset D b (see Fig. 1).

Clustering algorithms (K-Means, Mean-shift, DBSCAN, to cite but few algorithms in the scikit-learn library) generally perform an unsupervised learning in the sense that they consider only internal relationships and distances between the elements of the set V to split and this is regardless of any exogenous information 3 about these elements.

Following the discussion of Section III, we seek a clustering that considers as similar those disturbance vectors that correspond to similar triplets of control profiles, cost, and constraint indicators. This is the reason why the set V that is used hereafter is given by

V = {(u (s) * , J (s) * , g (s) * )} n b s=1 . ( 8 
)
That is why we refer to the proposed clustering approach as a supervised Q9 clustering as the set of class labels I that will be used to split the uncertainty vectors set is derived using the exogenous information contained in the set V given by ( 8), namely

I := C {(u (s) * , J (s) * , g (s) * )} n b s=1 , n cl . ( 9 
)
p (i) := 1 n b card {s ∈ {1, . . . , n b } | I s = i} . ( 11 
)
Finally, evaluations of the dispersions of the cost function and the 274 constraints inside each cluster can also be cheaply obtained using the 

J := Var J (s) * , s ∈ {1, . . . , n b } | I s = i (12) σ (i) g := Var g (s) * , s ∈ {1, . . . , n b } | I s = i . ( 13 
)
This ends the definition of the dataset D (see Fig. 1) that is used in 277 the formulation of the SNMPC which is described in the following 

287 min u,µ Ê(x) (u) + 1 -J J Ŝ(x) (u) + ρμ ( 14 
)
under the following constraints:

288 g (x) (u, w (i) ) + 1 -g g σ (i) g ≤ μ ≥ 0 ∀i ∈ {1, . . . , n cl } (15)
in which:

289 Ê(x) (u) := n cl i=1 p (i) J (x) (u, w (i) ) + 1 -J J σ (i) J (16) Ŝ(x) (u) := n cl i=1 p (i) J (x) (u, w (i) ) + 1 -J J σ (i) J - Ê(x) (u) 2 1 2 (17) 
where an estimation Ê(x) (u) of the expectation of the cost function
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(corresponding to the term E(J (x) (u, •)) in ( 2)) is computed using a 
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E. Discussion Regarding the Parameters Choice

The choice of the parameters q, N n , n cl is guided by the following issues.

1) As already underlined in Remark 3.1, the choice of q is determined by the need to keep the buffer D b relevant. This is because this buffer contains data that correspond to q past sampling instants τ . Therefore, denoting by τ max the maximum time during which one can reasonably consider the state as almost unchanged, the following constraint needs to be satisfied:

q ≤ τ max τ .
2) On the other hand, assuming that the computation of the N n optimization problems in D n is done in parallel and denoted by the following. Then the following constraint should be satisfied for the scheme to be feasible:

τ c clustering (qN n ) + τ c MPC (n cl ) + τ c MPC (1) ≤ τ u . ( 18 
)
3) Obviously, depending on the problem, the system cannot be left in open-loop more than some time duration τ max u , therefore, the following constraint holds on the r.h.s of [START_REF] Xu | A comprehensive survey of clustering algorithms[END_REF]:

τ u ≤ τ max u . ( 19 
)
4) In addition to [START_REF] Xu | A comprehensive survey of clustering algorithms[END_REF], the scalability of the kernel stochastic MPC problem can be evaluated by keeping in mind that the use of n cl clusters multiplies the number of constraints by n cl while keeping the same number of decision variables when single shooting method is used while it multiply both the constraints and the number of decision variables by n cl in a multiple shooting framework.

IV. ILLUSTRATIVE EXAMPLE: COMBINED THERAPY OF CANCER

A. System Equations, Objective, and Constraints

As an illustrative example, let us consider the problem of drug dosing during a combined chemotherapy/immunotherapy of cancer [START_REF] Alamir | On probabilistic certification of combined cancer therapies 475 using strongly uncertain models[END_REF] and [START_REF] Kassara | Angiogenesis inhibition and tumor-immune interactions with chemotherapy by a control set-valued method[END_REF]. The dynamic model involves 4 states, 2 control inputs, and 13 uncertain parameters. More precisely, the state components are defined as follows:

x 1 tumor cell population;

x 2 circulating lymphocytes population;

x 3 chemotherapy drug concentration;

x 4 effector immune cell population; u 1 rate of introduction of immunotherapy drug; u 2 rate of introduction of chemotherapy drug. and the dynamics is given by

ẋ1 = ax 1 (1 -bx 1 ) -c 1 x 4 x 1 -k 3 x 3 x 1 (20) ẋ2 = -δx 2 -k 2 x 3 x 2 + s 2 (21) ẋ3 = -γ 0 x 3 + u 2 (22) ẋ4 = g x 1 h + x 1 x 4 -rx 4 -p 0 x 4 x 1 -k 1 x 4 x 3 + s 1 u 1 . ( 23 
)

TABLE I NOMINAL VALUES OF THE PARAMETERS

The description of the relevance of all the terms and coefficients can be examined in [START_REF] Alamir | On probabilistic certification of combined cancer therapies 475 using strongly uncertain models[END_REF] although one can easily guess from the definition of the state components.

In order to understand the necessary tradeoff and timing issues, note that the immunotherapy drug (u 1 ) enables to increase the effector immune population size x 4 [see ( 23)] which enhances the tumor decrease through the second term (-c 1 x 4 x 1 ) in (20). On the other hand the chemotherapy drug (u 2 ) does not only attack the tumor cells through the term (-k 3 x 3 x 1 ) in (20) but also the effector immune population x 4 as well as the circulating lymphocytes x 2 through the terms -k 1 x 4 x 3 and -k 3 x 3 x 1 respectively present in ( 23) and (20). These coupled effects render mandatory the computation of a rationale timing and tradeoff that is made fragile in the presence of high uncertainties on all the parameters. Using the notation above, the uncertainty vector w gathers all the uncertain parameters involved in the model ( 20)-( 23), namely

w := a, b, c 1 , k 3 , δ, k 2 , s 2 , γ 0 , g, r, p 0 , k 1 , s 1 ∈ R 13 + (24)
that are supposed here to be constant but unknown. Note also that a reconstruction of all these parameters from patient measurement during the treatment is obviously out of question. Table I gives the nominal values of the parameters involved in the dynamics. Note that because of the excursion of these parameters and the related states, a normalized version of the dynamics (20)-( 23) is derived by using the following vector of normalization values of the state components:

x := 10 9 , 10 9 , 1, 10 9 .

(25

)
As it is typically the case in cancer treatment, the control objective is to reduce the tumor cells population x 1 at the end of the treatment while ensuring that the health of the patient (represented in the above model by the circulating lymphocytes population size x 2 ) remains greater than some a priori fixed lower bound x min 2 .

Consequently, the following cost function is used at each state x in the MPC design:

J (x) (u, w) := ρ f x 1 (N ) + N i=1 x 1 (i|u, x, w) + ρ u |u(i)| (26)
where x(i|u, x, w) is the state i sampling period ahead when starting from the initial state x while applying the control sequence u under the parameter vector w. The above function has to be minimized while enforcing the following constraint on the predicted trajectory:

g (x) (u, w) := min i∈{1,...,N } [x 2 (i|u, x, w)] ≥ x min 2 . ( 27 
)
The control input is saturated according to u ∈ [0, 5] × [0, 1].

B. Stochastic MPC Controller Settings

In all the forthcoming simulations, the sampling period τ = 0.2 generated at each sampling period (see Fig. 1). The size of the FIFO 391 buffer is taken equal to n b = 4 × N n = 100 (q = 4). The parameters 392 J and g used to account for the variance in the definition of the cost 393 function and the constraints are taken equal to J = g = 0.1 (leading 394 to 90% of confidence rate). The weighting coefficients ρ f = 1000, 395 ρ u = 1, and ρ = 10 are used. The clustering is performed using the 396 KMeans module of the scikit-learn python library [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF].

(

397

The stochastic MPC is compared to the nominal MPC which uses 398 the nominal values of the parameters as given in Table I. As for the 399 stochastic MPC, the random values of these parameters are obtained 400 according to

401 w i = (1 + ν i ) wi where ν i ∈ N (0, σ) (28) 
where a variance σ = 0. and five steps of the optimal control sequence is applied before a new 410 optimal sequence is computed. This leads to an updating control period 411 τ u of 1 d. The problem encoding and the optimization are performed 412 using multiple-shooting formulation (with warm starting of the initial 413 guess at each sampling period) thanks to the free software CasADi [START_REF] Andersson | CasADi: A software framework for nonlinear optimization and optimal control[END_REF] 414 (python version) on a MacBookPro 2.9 GHz Intel Core i7.

415

C. Results and Discussion

416 Fig. 2 shows the normalized (w.r.t the maximum bins) histograms of 417 the tumor sizes at the end of the closed-loop simulations. This figure 418 shows that the SNMPC outperforms the nominal MPC as it leads to a 419 vanishing tumor size except for two single outliers where the tumor is 420 increased as explained later on. Fig. 3 shows the normalized histogram 421 the typical behavior of the closed-loop under the nominal versus the stochastic MPC controllers which are depicted, respectively, in Figs. 4 and5. As a matter of fact, since the nominal controller is not cautious and does not see the risk of violating the constraints, it applies intensive chemotherapy drug from the beginning as this reduced the tumor size quickly and hence lead to a lower value of the cost function. But when the horizon recedes, the closed-loop system is trapped since there is no more possibility to reduce the cost significantly without violating the constraint on the lymphocytes population size. That is the reason why the nominal controller can only regulate the lymphocytes size by applying in parallel chemotherapy and immunotherapy (see the Fig. 6).

On the other hand, the stochastic MPC does not fall in this trap as handling all the clusters representative makes it aware of a high risk of constraints violation in case intensive chemotherapy is used from the beginning. That is the reason why, it applies chemotherapy only after a while when the level of lymphocytes becomes high enough to ensure a secure delivery of chemotherapy drug. This can be clearly seen in Figs. 5 and7.

Note that a longer prediction horizon could have brought the nominal controller into the same strategy than the stochastic one avoiding thus the above mentioned trap. Indeed, longer prediction horizon would have revealed that better contraction can be achieved while increasing the health indicator should the application of the chemotherapy be delayed. The choice of the scenario is here to illustrate the difference between the two settings and the capabilities of SNMPC to enforce the satisfaction of the constraints when compared to a nominal MPC. Finally, Table II shows the comparison between the statistics of the computation time that is needed to solve the underlying optimization problems at each 458 control updating period. This table clearly shows that using n cl = 3

Fig. 1 .

 1 Fig. 1. Schematic view of the proposed SNMPC framework.
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  SNMPC is formulated using only a few number (n cl ) of regularly 97 updated disturbance samples. More precisely, n cl is the number of 98 clusters used in a clustering step. This clustering box delivers to the 99 SNMPC box a regularly updated set containing the centers of clusters 100 together with their population weights (p (i) ) and dispersion indicators ) in the data set D b used to achieve the clustering task. This 102 data set D b is accumulated in a first in first out (FIFO) buffer.

  ) is described. Because the clustering is based on the labels constituted by the triplet 193 (u [j] * , J [j] * , g [j] * ), the clustering is qualified hereafter as a supervised 194 clustering. 195 Note that this step is totally parallelizable as the individual deter-196 ministic problems are totally decoupled. Nevertheless, the number N n 197 of samples can be moderate since a buffer is created and updated by 198 such data at each sampling period as explained and justified in the next 199 section. 200 Since the dataset D n is related to a current state x k at instant k, it 201 is denoted by D n (k) when the reference to the sampling instant k is 202 needed. 203 B. Updating the Clustering Buffer: Creating and Updating the 204 Dataset D b 205 This is a simple FIFO data storage task in which the successive 206 datasets D n of the form (5) are stacked for use in the clustering task. 207 As the new datasets D n (k) are added at each sampling period k, the 208 size n b := qN n of the clustering buffer (q is the number of successive 209 datasets D n (k) to be included) depends on the bandwidth of the system. 210 This is because integrating all the datasets D n (k) in a single clustering 211 dataset (called D b in Fig. 1) ignores the fact that each of these datasets 212 is related to a different state that defines the underlying optimization 213 problem (4). The underlying assumption is that the evolution of the state 214 during the q successive sampling periods can be viewed as sufficiently 215 small for the clustering dataset D b to remain relevant.

  of the Stochastic NMPC 280 In this section, approximate expressions for (2) and (3) are given 281 using the ingredients contained in the dataset D which is updated at 282 each sampling period using the steps explained in the previous sections.

283

  This is done by averaging over the set of centers w(i) , i = 1, . . . , n cl 284 of the clusters created above while accommodating for the dispersion 285 inside the clusters. More precisely, the following optimization problem 286 is considered:

291pJ

  (i) -based weighted sums in which the predicted values at the center of 292 the clusters are augmented by the terms that depend on the estimated included in the dataset D as described above. Similarly, 294 the term Ŝ(x) (u) is used as an approximation of the standard deviation295 term S(J (x) (u, •)) in (2).296As for the expression (15) of the constraints, note that thanks to the 297 low number of clusters n cl , one can afford to enforce the personalized 298 approximated expression of (3) on each cluster individually rather than 299 taking the global statistics over all the clusters. That is the reason why 300 the constraints are enforced on each individual cluster by tightening 301 the bounds by an amount that is proportional to the standard deviation 302 within each cluster as estimated from the precomputed parameters σ (i) g 303 for i = 1, . . . , n cl . This leads to a harder tightening of the constraints 304 over those clusters showing higher dispersions.
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  ) τ c clustering (qN n ): the time needed to perform the clustering task (which depends on the number of elements qN n ). b) τ c MPC (n cl ) : the time needed to solve the scenario-based MPC involving the n cl centers of the clusters. Note that this time increases mainly because of the concatenation of the constraints over each cluster. c) τ u = N u τ : the control updating period, namely the time between two successive resolutions of the scenario-based MPC problem.

  Days) is used. When stochastic MPC is used, the number of clusters is taken equal to n cl = 3. The number N n = 25 of new samples is

Fig. 2 .

 2 Fig. 2. Histogram of the terminal normalized tumor sizes under nominal and stochastic MPC controllers.

Fig. 3 .

 3 Fig. 3. (top): Histogram of the minimal lymphocytes population size. (Bottom): Zoom on the nominal histogram showing constraints violation in 15% of the scenarios. Note that the bottom plot is a zoom on the top plot around the lower bound x min 2 = 0.05.

Fig. 4 .Fig. 5 .

 45 Fig. 4. Typical closed-loop behavior under the nominal MPC.

Fig. 6 .

 6 Fig. 6. Typical drug delivery under nominal MPC.

Fig. 7 .

 7 Fig. 7. Typical drug delivery under stochastic MPC.

The latter 103 receives at each updating step a new block of data D n which is delivered 104 by the top block. This data block D n contains a set of N n nominal Q8 105 solutions u

  

	106	[j] * of a standard NMPC with presumably known newly
	107	sampled disturbance vectors w [j] together with the corresponding
	108	optimal costs and constraints indicators J * , g [j] * , j = 1, . . . , N n . As [j]
	109	the N n optimization problems are totally decoupled, the computation
	110	performed in this top block can be done in fully parallel way.	
	111	The rational behind this framework lies in the intuition that very
	112	often, while the space of possible uncertainty realizations might be
	113	very rich (including uniform distributions in high dimensional hyper-
	114	cubes), the set of corresponding optimal ingredients (control sequences,
	115	optimal cost, constraints indicators) might accept a low cardinality set
	116	of meaningfully distinct clusters. Moreover, the loss of information that
	117	results from using only the centers of clusters in the formulation can
	118	be partially mitigated by using the statistical information (σ	(i) J , σ	(i) g ),
	119	i = 1, . . . , n cl regarding the dispersion of cost and constraints indicator
	120	within each cluster. This information is transmitted from the clustering
	121	layer as indicated in Fig. 1. Sections III-B and III-C give more detailed
	122	description of the above two steps.		
	123	The aim of this article is to give a rigorous presentation of this
	124	framework and to propose a complete implementation on a relevant
	125	example in order to assess the performance and implementability of
		the framework.		

126

This article is organized as follows. Section II gives some definitions 127 and notation used in the sequel. The proposed framework is explained 128

  2 is used leading to samples that might have 402 a discrepancy as high as 45-80% of the nominal values. Hundred 403 simulations are performed using either stochastic or nominal MPC and 404 statistical indicators are compared. Note that the cloud of disturbances 405 used in these 100 simulations are fired independently of those fired to 406 feed the FIFO buffer of the stochastic MPC. All the simulations use the 407 normalized initial state x 0 = (1.0, 0.15, 0, 1) and all the simulations 408 last 40 d. The prediction horizon length is taken equal to N = 10 (2 d) 409

TABLE II STATISTICS

 II OF THE COMPUTATION TIMES (IN MS) OF A SINGLE SOLUTION OF THE OPTIMIZATION PROBLEM. (CASADI [4] (PYTHON VERSION) ON A MACBOOKPRO 2.9 GHZ INTEL CORE I7)

Boldfaced notation x, u, and w are used to denote variables profiles over some prediction horizon.

Although these conditions might not be satisfied, the idea is used here to support the proposed heuristic

cluster induces on average an extra computational burden of 40% while 460 increasing the dispersion of the computation to a higher extent. This also 461 suggests that without using the clustering approach, the computation 462 time would be too prohibitive.