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Gelatinolytic matrix metalloproteinases (MMP-2, -9) play a critical role not only in mam-
mals physiology but also during inflammation and healing processes. The natural stilbenoid,
resveratrol (RES), exhibits potent antioxidant effects, in a hormetic mode of action, and is
known to inhibit MMP-9. However, RES administration exhibits major issues, including poor
bioavailability and water solubility, hampering its potential therapeutic effect in vivo. In the
present study, we synthesized and evaluated five novel RES–lipid conjugates to increase
their cell membrane penetration and improve their bioavailability. The best in vitro MMP-9
inhibitory activity of RES–lipids conjugates was observed with RES-linoleic acid (LA) (5 μM),
when dissolved in a natural deep eutectic solvent (NADES), composed of an equimolar con-
tent of 1,2-propanediol:choline chloride (ChCl):water. The inhibition of MMP-9 expression by
RES-LA in activated THP-1 monocytes, was, at least due to the deactivation of ERK1/2 and
JNK1/2 MAP kinase signaling pathways. Moreover, RES-LA exhibited a strong effect pro-
tecting the TNF-α-induced exacerbated permeability in an HUVEC in vitro monolayer (by
81%) via the integrity protection of intercellular junction proteins from the MMP-9 activ-
ity. This effect was confirmed by using several complementary approaches including, the
real-time monitoring of trans-endothelial electric resistance (TEER), the Transwell HUVEC
permeability level, the microscopic examination of the platelet endothelial cell adhesion
molecule-1 (CD31/PECAM-1) integrity as well as the fluorescence in intercellular spaces.
Consequently, following this strong in vitro proof-of-concept, there is a need to test this
promising RES–lipid derivative compound to control the pathological endothelial perme-
ability in vivo.

Introduction
Matrix metalloproteinases (MMPs) are members of a family composed of at least six different subfamilies
with more than 25 zinc-dependent endopeptidases, which function in the extracellular environment and
degrade both matrix and non-matrix proteins [1]. In particular, the gelatinolytic MMPs, mainly MMP-9,
and to a lesser extent MMP-2, play a key role in the pathogenesis process of several diseases, through a
degradation of intercellular junction proteins, resulting in an exacerbated increase in the vascular per-
meability [2,3]. While several studies have established correlations between the overproduction of active
MMP-9 and the pathological exacerbated vascular permeability, some reports have evidenced that in-
hibitors of MMP-9 could play a mitigating role in the progression of the MMP-9-associated pathogenesis.
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Despite several pre-clinical and clinical trials to test the safety and efficacy of newly designed MMP-9 inhibitors,
none of them have been clinically approved, due to their poor bioavailability and/or toxicity [4,5]. Consequently, the
production of efficient, safe, and well-formulated compounds to control the pathological MMP-9 activity is still one
of the major clinical unmet needs. Therefore, in this preliminary in vitro study, we jointly explored two functional
aspects of the question, i.e. the potential therapeutic effect of a new MMP-9 inhibitor and a new formulation, which
remains another major issue to be solved.

Resveratrol (RES) is a natural polyphenolic phytoalexin mainly found in Vitis vinifera (Vitaceae) stalks and in
the roots of Fallopia japonica var. japonica (Polygonaceae). Despite that RES is well known for its antioxidant,
anti-inflammatory, and antiviral effects, and to a lesser extent for its inhibitory activity on active gelatinolytic MMP,
notably MMP-9 [6-8]. However, its clinical use remains limited due to its poor bioavailability [9,10]. In our previous
report on phloroglucinol (a true vinylogous of RES) [11], we prepared lipophenolic derivatives of RES using a lipid
moiety such as polyunsaturated fatty acids (PUFA), prone to protect its phenolic functional group from rapid metab-
olization and excretion and to increase its ability to penetrate and cross lipid membranes (increasing lipophilicity).
Herein, four new RES lipophenols were synthesized and evaluated for their capacity to inhibit MMP-9.

Natural deep eutectic solvents (NADES), recently discovered by Choi and colleagues [12], are considered as a third
class of plant solvents, in addition to water and oil phases. They mainly consist of primary plant metabolites, in-
cluding organic hydroxyacids, amino acids, and sugars. As soon as these metabolites are mixed together in a specific
molar ratio, they remain in a liquid state at a much lower temperature than their individual components. The emerg-
ing use of this new solvent class has been particularly observed in the field of green chemistry, for the extraction
of different plant bioactive compounds and much less applied to the extraction of organic solvents (which are more
toxic and volatile) [13]. In our previous study [14], we found that a particular NADES, consisting of an equimolar
1,2-propanediol:choline chloride:water mix (PCW), was not only able to solubilize RES, but also to increase its ca-
pacity to inhibit MMP-9 activity, by at least a ten-fold factor as compared with DMSO. Thus, NADES-PCW enabled
us to reach the RES hormetic mode of action. Therefore, we also used NADES in the present study for the evaluation
of the MMP-9-inhibitory activity of RES-linoleic acid (LA).

Materials and methods
Cells and reagents
THP-1 monocytes were cultured in 10% heat-inactivated FBS RPMI-1640 medium supplemented with penicillin-G
100 units/ml and streptomycin 100 μg/ml. HUVEC were cultured in (1%) low serum EndoGroTM medium, culture
kit purchased from Merck MilliporeTM (Paris, France). Micro-BCA Protein Assay Kit was purchased from Fisher
ScientificTM (Illkirch-Graffenstaden, France). TNF-α was purchased from PeproTechTM (Neuilly-sur-Seine, France).
Non-conjugated guinea pig anti-MMP-9 EP1255Y mAb was purchased from antibodies-online (Aachen, Germany).
The cy3-conjugated human anti-CD31/PECAM-1 (platelet endothelial cell adhesion molecule-1) mAb (clone 9G11),
and streptavidin-fluorescein were purchased from bio-TechneTM (Abingdon, United Kingdom). SB-3CT (commer-
cial MMP-2, -9 inhibitor) was purchased from Enzo Life SciencesTM (Villeurbanne, France). RES was purified from
stalks of Vitis vinifera, Vitaceae, according to the process described by Delaunay and colleagues [26]. JNK inhibitor
(sp600125), DMSO, MTT (Thiazolyl Blue), all chemicals and solvents used during the synthesis individual NADES
components were purchased from Sigma–AldrichTM (Marnes la Coquette, France). All other chemicals used in the
present study are of molecular biology grade.

Synthesis of RES-derived lipophenols
To evaluate the activity of different lipid chains at the 4′ position, RES-behenic acid (BE) (compound #5a), RES-LA
(compound #5b), and RES-docosahexaenoic acid (DHA) (compound #5c), were synthesized using enzymatic and
chemical synthesis starting from RES (Figure 1). In the first step, a lipase, from Candida antarctica (CALB, Novozyme
435, selective of the 4′ position) was used to regio-selectively introduce the acetyl group at the RES C4′-OH position.
The reaction was performed with good yield (85%) without any acetylation at the position 3/5. Hydroxyl groups at
positions 3 and 5 of the compound #1 were thus protected by triisopropyl silyl (TIPS) protecting groups using triflate
reagent (TIPS-OTf) and diisopropylethylamine (DIPEA) as a base to obtain the protected derivative (compound
#2). The acetyl group of the compound #2 was deprotected with a solution of sodium methanolate (MeONa) in
anhydrous methanol and resulted in RES-diTIPS (compound #3), with a yield of 95%. The coupling reactions between
compound #3 and the different fatty acids (FA), BE, LA, and DHA, were initiated using dicyclohexylcardodiimide
and dimethylamino pyridine (DCC/DMAP) as coupling reagents to access compounds #4a–c. Final deprotection of
TIPS protecting groups by Et3N-3HF in dry tetrahydrofuran (THF) yielded final lipophenols compounds #5a–c.
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Figure 1. Synthesis of RES-lipophenol derivatives

To study the importance of the position of the lipidic part on the RES structure, we synthesized a lipidic RES
having FA at the position 3. Starting from the fully protected RES (compound #2), one TIPS group at the position 5
was removed using mild Et3N-3HF carefully monitored by TLC (48%, Figure 1). Afterward, the mono-deprotected
derivative 6 was linked to the FA (DHA) using DCC/DMAP. In order to preserve the ester linkage of the compound 7,
the acetate group was deprotected using enzymatic lipase CALB in the presence of butanol (89%) instead of MeONa
solution. The final TIPS deprotection using Et3N-3HF provided the desired 3-RES-DHA (compound # 9). A quality
control assessment was established by a complete 1H and 13C NMR spectral analysis for each synthesized compound
(Supplementary Information).

Preparation of NADES
The NADES composed of the equimolar ratio of 1,2-propanediol, choline chloride, and water was prepared according
to the protocol modified from Abbott and colleagues [27]. The mixture was incubated at 60◦C and stirred with an
orbital shaker at 300 rpm until forming a clear solution. The formed NADES was used as a solvent for RES and
RES-LA at a final concentration of 10 mg/ml.

Assessment of MMP-9 activity in THP-1 monocytes
TNF-α-activated THP-1 monocytes (3 × 105 cells/ml) were seeded in 1% FBS RPMI-1640 to assess MMP-9 activity.
First, RES and its derived lipophenolic compounds were dissolved in DMSO and incubated at a final concentration
of 30 μM with 10 ng/ml TNF-α-activated THP-1 in a humid CO2 incubator chamber for 24 h at 37◦C. Subsequently,
the MMP-9 inhibitory activity in increasing concentrations (1, 5, 8, 10, 20, 30, and 40 μM) of RES-LA dissolved
in NADES was tested on activated THP-1 monocytes in the same conditions mentioned above. After incubation,
the cell suspension was centrifuged at 1000 rpm for 5 min; the supernatant was recovered and stored at −80◦C for
zymogram analyses. For the assessment of MMP-9 activity using JNK inhibitor (sp600125), cells were treated in the
same conditions as mentioned above.

Zymography
The inhibitory MMP-9 activity was assessed using gelatin zymography. Briefly, collected supernatants were loaded on
SDS/PAGE (10% gel) supplemented with 1% gelatin without reducing agents. After separation, gels were incubated
once with 2.5% Triton X-100, washed thrice for 5 min each with gelatinase buffer (NaCl 200 mM, Tris base 50 mM,
CaCl2 5 mM, and ZnCl2 0.25 mM; pH 7.5) and incubated for 24 h in the same buffer at 37◦C. Gels were further
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stained for 1 h with Coomassie Blue staining solution (0.025% Coomassie Blue, 40% methanol, and 10% acetic acid)
followed by destaining with 20% methanol and 10% glacial acetic acid solution. Gel bands were photographed and
analyzed using the GelAnalyzer 2010aTM software.

MTT assay
The cytotoxicity assay was carried out as described by Mosmann [28]. Briefly, 100 μl of primary HUVEC and THP-1
monocytes (105 cells/ml) were seeded in a 96-well plate and incubated in a CO2 chamber at 37◦C for 24 h. Cells
were treated for 72 h with 10, 20, 40, or 80 μM final concentration of RES-LA/NADES formulation. Cell medium was
replaced with MTT medium and plates were incubated for three additional hours. The formed formazan blue crystals
were further dissolved by adding 100 μl of 10% SDS in 0.01 N HCl to each well. The optical density was measured at
wavelength 570 nm (against the reference at 690 nm) using a TECANTM plate reader (Paris, France).

Endothelial monolayer permeability assay
The permeability of the HUVEC monolayer was examined using the in vitro vascular permeability assay kit from
MilliporeTM (Paris, France). Briefly, HUVEC (3 × 105 cells/insert) were seeded on collagen-coated semipermeable
inserts for 48 h or until formation of a confluent monolayer. Subsequently, medium was replaced and TNF-α (100
ng/ml) was added to each insert with or without 10 μM of either RES, RES-LA, or SB-3CT, followed by 24-h incu-
bation. The medium was replaced and FITC in cell culture medium (1:40) was added to each insert, and plates were
incubated for 20 min in the dark. Absorbances were read on a TECANTM spectrophotometer at 485–535 nm.

Immunofluorescence
Primary HUVEC (3 × 105 cells/well) were incubated on to biotinylated gelatin-coated slide chambers for 48 h up
to their confluence permitting the establishment of intercellular junctions. Then, cells were treated with TNF-α 100
ng/ml with or without 10 μM RES, RES-LA, or SB-3CT. After 24 h, cells were fixed with 3.7% formaldehyde and
washed thrice with PBS. Each chamber was incubated for 1 h with either FITC-conjugated streptavidin to stain the
biotinylated-gelatin and therefore assess the intercellular spaces, or Cy3-conjugated anti-PECAM-1 mAb (8 μg/ml),
in order to assess the integrity of intercellular junctions. After washing, slides were protected with mounting medium
to be examined microscopically.

Trans-endothelial electric resistance
The real-time permeability measurements of HUVEC monolayers were assayed using ECISTM 8W10E+ arrays (Ap-
plied Biophysics, Troy, NY). HUVEC (2 × 105 cells/well) were seeded in each gelatin-coated chamber and incubated
for 48 h. After the formation of confluent endothelial monolayer, 10 μM of RES, RES-LA, or SB-3CT were incubated
with 100 ng/ml TNF-α. Positive (TNF-α) and negative controls (0.1% NADES or DMSO) were also monitored, and
cells were incubated for additional 48 h. The trans-endothelial electric resistance (TEER) measurements were done in
real-time, and the resistance (�) was monitored at 8-s frequency measurement. Steady basal resistance fluctuations
indicate healthy HUVEC monolayers [29].

Real-time reverse transcription-PCR
Total RNA was isolated using TRIzol (Invitrogen). Briefly, RNA was extracted from TNF-α (10 ng/ml) activated
THP-1 monocytes (7.5 × 105 cells/well) with or without 10 μM of RES or RES-LA. Reverse transcription was
done with 200 ng RNA per sample using Thermo Scientific RT-kit (random hexamer primer) and RT-MLV (In-
vitrogen). The cDNA was further diluted ten times to carry out a real-time reverse transcription (RT)-PCR. The
primers used in the present study are: MMP-9 forward 5′-TTATCGCCGACAAGTGGCCCG-3′ and MMP-9 re-
verse 5′-AACTCGTCATCGTCGAAATGGGC-3′; HMBS forward 5′-TCACCATCGCAGCCATCT-3′; HMBS re-
verse 5′-GTTCCCACCACGCTCTTCT-3′. Relative quantities of amplicons from both MMP-9 and the housekeeping
(HMBS) genes were calculated using the comparative threshold cycle number (CT) method from LightCycler 480TM

device (Roche).

Phospho-kinase cell signaling
The phosphorylation status of MAPKs (ERK, JNK, p38), Akt, MKK, and mTOR were examined using the Human
Phopsho-MAPK Array (R&D SystemsTM, Minneapolis, U.S.A.). The experiment was started with 1-h pre-incubation
of THP-1 monocytes (5 × 105 cells/well) with 10 μM of either RES or RES-LA dissolved in NADES, followed by
a 5-min incubation with 10 ng/ml TNF-α. Total protein content was quantitated, and 40 μg of cell lysate was used
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License 4.0 (CC BY).



Bioscience Reports (2018) 38 BSR20171712
https://doi.org/10.1042/BSR20171712

in the Western blot test. Detection of phosphorylated proteins was done using the kit-specific antibodies, that were
revealed by chemiluminescent signal capture assay using a secondary horseradish peroxidase (HRP)-conjugated anti-
body (Jackson ImmunoResearchTM, PA). Electrophoretically migrated proteins were analyzed using the GelAnalyzer
software 2010aTM.

Statistical analysis
Data were expressed as mean +− S.D. and analyzed one-way and two-way ANOVA. The difference between groups
was calculated using Tukey multiple comparison tests. A P-value below 0.05 was considered statistically significant.
All experiments in the present study were repeated at least three times.

Results
Assessment of the MMP-9 inhibitory activity of RES derivatives
Four RES-lipophenolic derivatives were prepared and dissolved in DMSO: RES-BE, RES-LA, 3-RES-DHA, and
4′-RES-DHA (Figure 1). The hydrophilic/lipophilic balance was fine-tuned by esterification of RES by various FA,
including the saturated derivative (BE, C22:0, RES-BE; compound #5a), omega-6 PUFA (LA, C18:2 n-6, RES-LA;
compound #5b), and omega-3 PUFA (DHA, C22:6 n-3, RES-DHA; compound #5c) (Figure 1).

Their MMP-9 inhibitory activity was then compared with RES and assessed in vitro on TNF-α-activated THP-1
monocytes. Our results showed that RES, RES-LA, RES-BE and to a lesser extent 4′-RES-DHA exhibited an
MMP-9-inhibitory activity in TNF-α-activated monocytes (Figure 2A). Despite that RES-BE has demonstrated
MMP-9 inhibitory active, the addition of a saturated BE in the 4′ position of RES highly decreases its solubility. Al-
ternatively, 30 μM RES-DHA was able to reduce MMP-9 activity, its regio-isomer, having the lipid chain linked with
the hydroxyl group in position 3 of RES (3-RES-DHA = compound #9), was not active at the same concentration.

After the selection of RES-LA (based upon its better solubility and activity), the compound was dissolved in
NADES-PCW, and a dose–response MMP-9 inhibitory activity experiment was carried out on TNF-α-activated
THP-1 monocytes. Zymography results of (Figure 2A,B) were analyzed and plotted as shown in (Figure 2C,D). Our
data revealed RES-LA concentration-dependent inhibition of MMP-9 with a monophasic dose–response relationship
with RES-LA (Figure 2D). Here, RES-LA exhibited an inhibitory activity of MMP-9 up to a concentration 5 μM.

MTT cytotoxicity assay of RES-LA
The cytotoxicity of the RES-LA was assessed on primary HUVEC and THP-1 monocytes using the MTT assay (Figure
3). Results showed a total absence of toxicity on THP-1 monocytes was observed up to 80 μM of RES-LA. While a
significant reduction in HUVEC by 56% was observed at 40 μM of RES-LA.

Endothelial permeability assays
To assess the capability of RES-LA to counteract the exacerbation of TNF-α-induced endothelial permeability, three
complementary experimental approaches were used in the present study: (i) the endothelial permeability using a
FITC-dextran fluorescence spectrometric assay; (ii) the integrity of the intercellular junction protein PECAM-1 and
intercellular spaces in HUVEC monolayer by microscopic examination; and (iii) the endothelial permeability using
a real-time monitoring of TEER approach.

First, the effects of different concentrations of NADES or DMSO (0.5, 1, 2, and 5%) were assessed using the HU-
VEC monolayer permeability exacerbation model and was monitored using FITC-dextran assay (Figure 4A). Results
showed that NADES did not induce the endothelial permeability for concentrations below 2%, while DMSO did not
exhibit an effect on permeability for concentrations below 1%. The permeability effect of TNF-α alone on HUVEC
monolayer was assessed by fluorescent spectrophotometry, our findings showed a clear TNF-α-dependent endothe-
lial permeability enhancement (Figure 4B). In contrast, the incubation of TNF-α-activated HUVEC monolayer in the
presence of either SB-3CT, RES, or RES-LA, permitted to observe a marked reduction in the exacerbated endothelial
permeability level, getting back to the basal level. Respectively, RES-LA, RES, and SB-3CT were able to reduce the
TNF-α-induced permeability respectively by 81, 67, and 63% (Figure 4B).

In addition, all these inhibitors exhibited the capacity to protect the integrity of the intercellular junction, as illus-
trated in the HUVEC photomicrographs showing the PECAM-1 endothelial intercellular junction protein integrity
(Figure 5A), as well as the biotinylated gelatin representing the intercellular spaces (Figure 5B). To assess whether
these observed monolayer disturbances were specifically due to MMP-9, the HUVEC monolayers were incubated
with both 100 ng/ml TNF-α and a mouse anti-MMP-9 mAb (Figure 5). The results demonstrated a preservation of
both endothelial monolayer and PECAM-1 junction protein integrities.

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5



Bioscience Reports (2018) 38 BSR20171712
https://doi.org/10.1042/BSR20171712

Figure 2. Assessment of MMP-9 inhibitory activity of RES derivatives

THP-1 monocytes were seeded (3 × 105 cells/well) in 24-well plates in the presence of TNF-α 10 ng/ml and incubated with RES

derivatives at 30 μM (A), or with increasing concentrations (1, 5 10, 20, 30, 40 μM) of RES-LA (B). After an incubation lapse-time

of 24 h at 37◦C, the supernatant was collected and tested by zymography. Gel bands showed the MMP-9 gelatinolytic activity.

Gel bands were analyzed, and data were plotted against TNF-α-treated groups (C,D). Data represent a mean +− S.D. **P≤0.01,

***P≤0.001.

Figure 3. MTT cell viability assay of RES-LA

MTT cell viability assay was carried out by seeding THP-1 or HUVEC (104 cells/well) in 96-well plates in the presence of different

concentration of RES-LA (10, 20, 40, and 80 μM). Data were normalized using cells incubated with culture medium supplemented

with 0.1% NADES, which was considered as the negative control or 1% SDS in 0.01 N HCl as the positive control. Data represent

mean +− S.D. ***P≤0.001.
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Figure 4. In vitro endothelial permeability assay

After seeding primary HUVEC (3 × 105) on collagen-coated insert, cells were incubated for 48 h. Different concentrations of NADES

or DMSO incubated for 24 h at 37◦C with primary HUVEC monolayers (A). Cells were incubated with TNF-α 100 ng/ml with or without

10 μM of RES, RES-LA, or SB-3CT (B). Data represent mean +− S.D.; **P≤0.01, ***P≤0.001.

Figure 5. Localization of PECAM-1 and intercellular spaces

HUVEC (3 × 105 cells/well) were plated for 48 h on biotinylated-gelatin coated chambers. TNF-α (100 ng/ml) was added in the

presence or in the absence of 10 μM RES, RES-LA, SB-3CT, or with anti-MMP-9 mAb for 24 h. All samples were treated either with

a Cy3-conjugated mouse anti-human CD31/PECAM-1 mAb (A) or with a fluorescein-streptavidin compound (B).

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 6. Real-time monitoring of TEER

HUVEC were seeded (2 × 105 cells/well) in gelatin A-coated golden ECIS ‘8W10E+’ well arrays. After formation of a confluent HU-

VEC monolayer, cells were treated with 100 ng/ml TNF-α in the presence or absence of 10 μM of either RES, RES-LA, or SB-3CT.

Real-time TEER measurements were done at and 8-s frequency. Results were analyzed using ECIS software. (A) Represents un-

treated, negative controls (0.1% NADES or DMSO), and TNF-α groups. (B) Represents RES, RES-LA, or SB-3CT groups.

The real-time monitoring of TEER (Figure 6) showed that TNF-α triggered a decrease in TEER values of the
HUVEC confluent cell monolayer, as compared with both untreated and negative control groups, only 4 h (t =
34 h) after activation (Figure 6A). This TNF-α-induced TEER reduction lasted until the end of the experiment,
18 h post-activation of the HUVEC monolayer (t = 48 h). In contrast, RES, RES-LA and SB-3CT reduced the
TNF-α-induced resistance declination (Figure 6B). This important observation indicates that the use of MMP-9 in-
hibitors could preserve the endothelial monolayer integrity.

Quantitative real-time qPCR to assess MMP-9 mRNA expression in the
activated THP-1 monocytes
The effect of both RES and RES-LA on the MMP-9 mRNA expression was monitored at 3, 6, 12, and 24 h in
TNF-α-activated THP-1 monocytes (Figure 7). Negative vehicle control group was the cell cultivation with 0.1%
NADES. Results showed that MMP-9 mRNA levels were significantly higher in TNF-α-treated THP-1 monocytes as

8 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. MMP-9 mRNA expression in RES- and RES-LA-treated monocytes

Different groups of TNF-α-activated THP-1 monocytes (7.5 × 105 cells/well) were treated with either 10 μM RES or RES-LA for

either 3, 6, 12, or 24 h. Relative quantities of MMP-9 compared with the housekeeping HMBS gene expression were assessed

using a comparative threshold cycle number (CT) yield. Data represent the corresponding means +− S.D. **P≤0.01, ***P≤0.001.

compared with the negative control. Both RES and RES-LA compounds significantly decreased the TNF-α-induced
MMP-9 mRNA expression in a time-dependent manner (Figure 7).

Phospho-kinase assay of RES and RES-LA in activated THP-1 monocytes
In cancer research, TNF-α was reported to play a role in the progression of cancer by up-regulating the expression of
MMP-9 via the activation of ERK1/2, p38, and JNK intracellular signaling pathways, [15,16]. Nevertheless, MEK has
been reported to increase cancer progression via MKK3/6-p38 dependent pathways which maintain cancer viability
and aggressiveness [17]. For these reasons, we assessed the effect of RES-LA on the phosphorylation level of different
cell kinases including MAPK (p38, ERK, JNK), Akt, MKK, and mTOR in TNF-α-activated THP-1 monocytes (Figure
8). These graphs were built from immunoblots (Supplementary Figure S2A–D). Results showed a TNF-α-dependent
phosphorylation of ERK1/2, JNK1/2, and p38-αMAPK. Whereas the rest of pathways were not activated by TNF-α as
compared with untreated groups. Alternatively, RES and RES-LA have significantly inhibited the TNF-α-dependent
phosphorylation of JNK1/2 and ERK1/2 (Figure 8A,B), as well as other TNF-α-independent pathways including
p38γ (Figure 8C), MKK3/6 (Figure 8D), and mTOR (Figure 8E). Zymogram analyses revealed that the JNK inhibitor,
sp600125, at 5 and 15 μM was able to reduce the MMP-9 activity in TNF-α-activated cells (Supplementary Figure
SM).

Discussion
Vascular leakage is always associated with an exacerbated endothelial permeability, which is due to the degrada-
tion of intercellular protein junctions, extracellular matrix, and basement membrane by high expression of active
MMP-9 as well as pro-inflammatory cytokines and mediators [18]. Even though RES has been reported to strongly
inhibit MMP-9, its use in clinics remains limited due to its poor bioavailability. Therefore, we developed RES-derived
lipophenols to overcome these particular concerns.

The results obtained from the assessment of the MMP-9 inhibitory activity of the RES lipophenols (Figure 2) high-
light the importance of the position and structure of the FA to confer to these RES-derived compounds and increased
MMP-9 inhibitory activity. Indeed, RES-LA, the omega-6 LA incorporated at the 4′ position (5b) led to observe the
highest activity as compared with both 5a and 5c compounds (Figure 1). Considering a previous study that revealed
the interaction between RES and the active site residues of MMP-2 and MMP-9 [19], we suggest that the positions of
lipids on the RES scaffold structure could have an impact on the resorcinol moiety and the structure–activity relation-
ship of the RES derivatives. This hypothesis could be supported by the facts that the total topology of the lipophenol
would be changed depending not only on the position of the FA but also on its type. Since saturated FAs are much
less flexible than PUFA, the difference of the inhibitory activity of the unsaturated DHA (six double bonds) and LA
(two double bonds) conjugates suggest that the spatial environment of the lipophenol could have a potential impact
on the mechanism of action of those compounds. Afterward, we assessed the cytotoxicity assay of most active and
soluble lipophenol derivative, RES-LA, on THP-1 and HUVEC (Figure 3). Our data revealed a less cytotoxic pro-
file of RES-LA as compared with the parent compound RES as assessed in our previous study [14]. Additionally, we
chose NADES as a solvent, since it is believed to be less toxic than other organic solvents due to its natural composi-
tion [13]. However, in our previous study, the compared cytotoxicity levels between NADES (1,2-propanediol:choline
chloride:water, 1:1:1) and DMSO were not different [14]. We also demonstrated in that same study that NADES was
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Figure 8. Phospho-kinase status of ERK, JNK, Akt, MKK, and mTOR in response to RES or RES-LA

THP-1 monocytes (5 × 105 cells/well) were pre-treated or not with 10 μM of RES or RES-LA for 1 h, followed by 5-min incubation

with TNF-α 10 ng/ml. The phosphorylation status of MAP kinases JNK1/2 (A), ERK1/2 (B), p38 (C), as well as Akt1 (D), MKK3/6

and mTOR (E) kinases were monitored. Data represent mean +− S.D. *P≤0.05, **P≤0.01, ***P≤0.001.

able to improve the MMP-9 inhibitory activity of RES by at least ten fold higher than DMSO, thus permitting to
evidence the hormetic mode of action of RES.

In the present study, we examined the effect of RES and RES-LA on reducing the exacerbated endothelial per-
meability induced by TNF-α. The latter is reported to play a major role in inflammatory response and induction
of an exacerbated increase in endothelial permeability resulting in a pathological vascular leakage [18]. Our data
revealed that RES and RES-LA were not only capable of decreasing the in vitro endothelial permeability as moni-
tored by spectrophotometry (Figure 4) and in real-time using TEER (Figure 6), but also prevented the dissociation of
the intercellular adherent junctions including PECAM-1 by inhibiting MMP-9 activity (Figure 5A). The specificity of
MMP-9-induced permeability was validated by using anti-MMP-9 mAb that reduced the degradation of PECAM-1 as
shown in (Figure 5A). These findings are consistent with Kato and colleagues [20], who studied the relation between
MMP-9 deficiency and PECAM-1 in injured steatotic livers from transgenic MMP-9−/− mice.

To assess the cellular pathways by which RES-LA inhibits MMP-9 expression (Figure 7), we evaluated the phos-
phorylation status of different kinases including MAP-kinases in activated monocytes (Figure 8). Amongst the tested
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pathways, we found that TNF-α activates ERK1/2 and JNK1/2 signaling pathways in THP-1 monocytes. These path-
ways were deactivated by either RES or RES-LA (Figure 8A,B). Indeed, ERK-dependent TNF-α phosphorylation
has been reported to induce MMP-9 expression [21,22]. Yet, JNK-dependent MMP-9 activation remains controver-
sial depending on the experimental conditions [16,22]. Therefore, we validated our results by using JNK inhibitor
(sp00125) in zymogram analysis that has shown to decrease MMP-9 activity (Supplementary Figure S3). Alterna-
tively, some pathways (p38γ, MKK3/6, Akt1, and mTOR) were not activated by TNF-α in THP-1 monocytes. These
pathways were also inhibited by either RES or RES-LA. Therefore, it is interesting to stress that RES has been reported
to promote autophagy and induce its anti-inflammatory effect by deactivating mTOR signaling pathway [23,24]. In
addition, RES was also shown to prevent TNF-α-induced muscle atrophy via the Akt/mTOR-dependent pathway
[25]. In view of RES-LA regulates the same signaling pathways as the parent molecule, RES, we hypothesize that it
could exert the same anti-inflammatory and anticancer activities as the parent molecule, RES.

Conclusion
Altogether the results of the present study clearly show that RES-LA exhibited in our study a drastic reduction in
the exacerbated pathological endothelial permeability by inhibiting the activity and expression of MMP-9 and con-
sequently preserving the endothelial intercellular junction integrity. Moreover, this work has also evidenced that in
THP-1 monocytes, RES-LA was able to inhibit the TNF-α-induced MMP-9 expression by deactivating ERK1/2 and
JNK1/2 MAPK. Besides inhibiting the phosphorylation of other signaling pathways including p38-γ, MKK3/6, Akt1,
and mTOR. In addition, the present study provides a novel non-toxic RES derivative, which can overcome the bioavail-
ability limitations of RES. Thus, RES-LA could be considered as a novel promising NADES-formulated compound
to preserve the endothelial barrier integrity able to mitigate the inflammatory-exacerbated vascular endothelial dys-
function. Obviously, these in vitro results need to be confirmed and extended using appropriate animal models to
prepare pre-clinical trials.
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