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Introduction

The Schwarzschild metric, the solution of the Einstein field equations in general relativity theory (GRT) that deals with a spherically symmetric and static universe containing a singularity, is given by:

ds 2 = 1 - r s r c 2 dt 2 -1 - r s r -1
dr 2 -r 2 dϕ 2 (Schwarzschild metric)

where r s = 2GM/c 2 is the Schwarzschild radius, r is the radial coordinate and ϕ is the azimuthal angle (we focus on the spacetime metric in the equatorial plane). Light propagates at zero eigentime: ds 2 = 0, so the coordinate speed of light in the Schwarzschild metric depends on the direction of the light ray: the coordinate speed of light is anisotropic. The Schwarzschild metric features an event horizon at which the metric becomes singular: as light gets closer to the event horizon at r = r s , the coordinate speed of light slows down. The spacetime metric of a static BH can be generalized by introducing three scalar functions f [r], g[r] and h[r]: ds 2 = f c 2 dt 2 -gdr 2 -hr 2 dϕ 2 (Generalized spacetime metric)

Note that the dtdr-term, which also obeys the spherical symmetry condition, has been neglected for simplicity's sake. The scalar functions can be written as series expansions:

f = 1+ ∞ j=1 f j r s r j g = 1+ ∞ j=1 g j r s r j h = 1 + ∞ j=1 h j r s r j
The refractive index of this spacetime metric is:

n[r, û] = h f + (û • r) 2 g -h f
where r = r/|r| denotes the unit vector that points in the direction of the position r with respect to the static BH and û is the direction of the light ray. Both the speed and the direction of light change in accordance with Fermat's principle. The photon sphere (or innermost circular orbit) can be obtained by solving the following equation for r:

d(r h/f ) dr = 0
The photon sphere in the Schwarzschild metric has a radius of r γ = 3r s /2.

The principle of least action reads:

δ ds = 0 and by changing variables from s to t, we can identify the Lagrangian of a test body of mass m:

L = -mc 2 f - 1 c 2 (g ṙ2 + hr 2 φ2
) where the overdot represents differentiation with respect to t. The identity g = h corresponds to an isotropic spacetime metric, in which the coordinate speed of light does not depend on the direction of the light ray. In 1921, H. A. Wilson introduced such an isotropic spacetime metric featuring the scalar refractive index: n = 1+r s /r. [START_REF] Wilson | An Electromagnetic Theory of Gravitation[END_REF] In 1957, Dicke further explored Wilson's model and discussed its possible relation to Mach's principle: the tentative and loosely defined notion that inertial forces are determined by the quantity and distribution of matter in the universe. [START_REF] Dicke | Gravitation without a principle of equivalence[END_REF] Here, we specify the conditions under which the generalized spacetime metric of a static BH shows consistency with the classical solar system tests. A method is described for computing the capture cross section for an incoming photon from infinity, which is applied to the Schwarzschild metric and the isotropic exponential spacetime metric.

2 Lagrangian approach

Lagrangian optics

Fermat's principle can be formulated as a principle of least action:

δ nd = n d dx dx = δ L γ dx = 0
where d is an infinitesimal displacement along the path and L γ is the optical Lagrangian:

L γ = n d dx = n 1 + dy dx 2
The Euler-Lagrange equation associated with the optical Lagrangian is:

d dx     ∂L γ ∂ dy dx     =

∂L γ ∂y

It follows that:

d 2 y dx 2 = 1 n ∂n ∂y 1 + dy dx 2 2 - 1 n dn dx dy dx 1 + dy dx 2
This equation will be useful in determining the gravitational deflection of light.

Conserved quantities

The Lagrangian can be recast in Hamiltonian form:

H = ∂L ∂ ṙ • ṙ -L = mc 2 f f - 1 c 2 (g ṙ2 + hr 2 φ2 ) (Hamiltonian)
The variable ϕ is absent from the Lagrangian:

d dt ∂L ∂ φ = ∂L ∂ϕ = 0
Hence, the canonical momentum conjugate to ϕ is conserved:

L z = ∂L ∂ φ = m φr 2 h f - 1 c 2 (g ṙ2 + hr 2 φ2 ) (Angular momentum)
which can be identified with the angular momentum along the axis perpendicular to the orbital plane.

Circular orbit

The orbital speed of a circular orbit with a radius r can be obtained by solving the Euler-Lagrange equation for ṙ = r = 0:

d dt ∂L ∂ ṙ = 0 ∂L ∂r = - mc 2 2 f - hr 2 φ2 c 2 df dr - 1 c 2 dh dr r 2 φ2 + 2hr φ2
which gives the following solution for the orbital speed of a circular orbit:

u circ = c    df dr 2h r + dh dr    1/2
Hence, the circular orbit Hamiltonian and circular orbit angular momentum are:

H circ = mc 2 f   f -h    df dr 2h r + dh dr       -1/2 L z,circ = mcrh    df dr 2h r + dh dr    1/2   f -    df dr 2h r + dh dr       -1/2

Effective radial potential

The equation of motion for the radius r in terms of t is:

ds dt 2 = -f c 2 + g dr dt 2 + hr 2 dϕ dt 2
where:

ds dt 2 = - mc 2 f H 2 c 2 dϕ dt 2 = L z c 2 f Hr 2 h 2
The equation of motion can be rewritten as:

m 1 2 dr dt 2 +m mc 2 H 2 c 2 2 f 2 g -m c 2 2 f g +m cL z H 2 c 2 2gh f r 2 = 0
which describes a particle moving in a one-dimensional effective radial potential:

U eff [r] = m mc 2 H 2 c 2 2 f 2 g -m c 2 2 f g +m cL z H 2 c 2 2gh f r 2
A stable circular orbit occurs at a local minimum of the effective radial potential and the innermost stable circular orbit (ISCO) radius can be obtained by minimizing the circular orbit angular momentum. The ISCO in the Schwarzschild metric is located at: r = 3r s .

3 Classical solar system tests

Gravitational redshift and gravitational deflection of light

The gravitational redshift can be accounted for if the following condition holds:

f 1 = -1 (Condition 1)
A commonly used method to approximate the deflection angle ∆ϕ is to integrate the curvature over an infinite straight path (dy/dx = 0):

∆ϕ ≈ ∞ -∞ d 2 y dx 2 y=r0 dx = ∞ -∞ 1 n ∂n ∂y y=r0 dx = r s r 0 1 -f 1 ) + O r s r 0 2
Since the observed angle of deflection is ∆ϕ ≈ 2r s /r 0 , we have:

g 1 -f 1 = 2 (Condition 2)
which, combined with Condition 1, yields:

g 1 = 1 (Condition 2*)

Gravitational time delay

A light signal that passes near a gravitational mass takes slightly longer to travel to a target than it would if the mass were not present. This time delay can be split into two different parts:

1. The Shapiro time delay, caused by a variation in the speed of a photon if it is submerged in a gravitational potential.

2. The geometric delay, caused by the increased length of the total light path from the source to the target, which is due to gravitational deflection.

The straight path approximation is correct in the first order, because the contribution from the geometric delay is of the second order. Hence, we use the straight path approximation to compute the gravitational time delay for an Earth-based light signal that passes the Sun, reaches a spacecraft and returns back to Earth along the same path:

∆t ≈ 2 c √ r 2 2 -r 2 0 - √ r 2 1 -r 2 0 h f + x 2 x 2 + r 2 0 g -h f -1 y=r0 dx = = (h 1 -g 1 ) r s c r 2 2 -r 2 0 r 2 + r 2 1 -r 2 0 r 1 ≈Constant +(g 1 -f 1 ) r s c ln r 2 2 -r 2 0 + r 2 -r 2 1 -r 2 0 + r 1 + O r 2 s
where r 0 is the distance of closest approach to the Sun, r 1 is the Earth-Sun distance and r 2 is the spacecraft-Sun distance. Although the anisotropy in the spacetime metric does enter into the prediction of the gravitational time delay, its contribution can be neglected due to its small time variation (small by today's standards, that is). Hence, the spacetime metric is consistent with the gravitational time delay test if Condition 2 holds: g 1 -f 1 = 2.

Perihelion precession of Mercury

The inverse square of the angular frequency ω ϕ of a circular orbit as a function of r is:

1 ω 2 ϕ = r u circ 2 = r c 2 r r s - 2 f 1 + 4f 2 -f 1 h 1 f 2 1 r s r + O r s r
If a perturbation is added to the circular orbit, then the square of the angular frequency ω r of the radial oscillation is given by:

ω 2 r = 1 m d 2 U eff dr 2 H=Hcirc Lz=Lz,circ = = mc 2 H circ 2 c 2 2 d 2 dr 2 f 2 g - c 2 2 d 2 dr 2 f g + cL z,circ H circ 2 c 2 2 d 2 dr 2 1 gh r 2 = = c r 2 r s r - f 1 2 + -f 2 1 + f 1 g 1 2 + 3f 1 h 1 4 r s r + O r s r 2
Hence, the advance of the perihelion in one revolution is:

∆ϕ = 2π 1 - ω r ω ϕ = 2π -f 1 + g 1 + h 1 2 + f 2 f 1 =3/2 r s r +O r s r 2
which closely matches the observed perihelion precession of Mercury if the following condition holds:

-f 1 + g 1 + h 1 2 + f 2 f 1 = 3 2 (Condition 3)
Combining these three conditions yields the following relation between h 1 and f 2 :

h 1 = 2f 2 (Condition 3*)
Indeed, in the Schwarzschild metric, we have: h 1 = f 2 = 0, while the isotropic spacetime metric requires: h 1 = 1 and f 2 = 1/2, as previously noted by Bragança and Lemos.[3] A well-known example of an isotropic spacetime metric that fits these prescribed criteria is the isotropic Schwarzschild metric:

ds 2 = 1 - r s 4r 2 1 + r s 4r 2 dt 2 -1 + r s 4r 4 (dr 2 + r 2 dϕ 2 )
which can be obtained by applying the following substitution to the Schwarzschild metric:

r → r 1 + r s 4r 2
Another example is the isotropic exponential spacetime metric:

ds 2 = exp - r s r c 2 dt 2 -exp r s r (dr 2 + r 2 dϕ 2 )
This spacetime metric contains no event horizon, but does feature a photon sphere of radius r γ = r s and an ISCO of radius r isco = r s (3 + √ 5)/2. Possible field equations corresponding to the isotropic exponential spacetime metric have been investigated by Ni [START_REF] Ni | Theoretical Frameworks for Testing Relativistic Gravity.IV. a Compendium of Metric Theories of Gravity and Their POST Newtonian Limits[END_REF] and Watt and Misner [START_REF] Watt | Relativistic scalar gravity: a laboratory for numerical relativity[END_REF].

Capture cross section 4.1 General method

The capture cross section for an incoming photon from infinity is the effective area within which the photon ends up captured by the BH. Let b be the impact parameter and β 0 the initial proper speed, then the Hamiltonian and angular momentum are given by:

H = mc 2 1 -β 2 0 L z = mcβ 0 b 1 -β 2 0
Hence, the effective radial potential can be written as:

U eff [r] = m 1 -β 2 0 c 2 2 f 2 g -m c 2 2 f g + mβ 2 0 b 2 c 2 2gh f r 2
In the limit β 0 → 1, the effective radial potential becomes:

lim β0→1 U eff [r] = -m c 2 2 f g + mb 2 c 2 2gh f r 2
If an incoming photon is to be captured by the BH, the height of the potential barrier has to be such that the particle doesn't bounce back and passes through the potential barrier. We solve the following equation for b:

lim β0→1 U eff [r γ ] = 0
Hence, the capture cross section for a photon is:

σ = πr 2 γ h[r γ ]/f [r γ ].

Schwarzschild metric and isotropic exponential spacetime metric

The capture cross section for a photon in the Schwarzschild metric is:

σ = πr 2 γ 1 - r s r γ -1 = π 27 4 r 2 
s whereas the capture cross section for a photon in the isotropic exponential spacetime metric is:

σ = πr 2 γ exp 2 r s r γ = π exp[2]r 2 s
The fractional difference between the photon sphere radius in the Schwarzschild metric and the photon sphere radius in the isotropic exponential spacetime metric is:

r s -3r s /2 3r s /2 = - 1 3 
while the fractional difference in the apparent photon sphere radius for a distant observer is of much smaller magnitude:

exp[1]r s - √ 27r s /2 √ 27r s /2 ≈ 0.046 5 

Conclusion

The spacetime metric of a static BH can be generalized by introducing three scalar functions f [r], g[r] and h[r]:

ds 2 = f c 2 dt 2 -gdr 2 -hr 2 dϕ 2
where the scalar functions can be written as series expansions:

f = 1+ ∞ j=1 f j r s r j g = 1+ ∞ j=1 g j r s r j h = 1 + ∞ j=1 h j r s r j
We have determined the conditions under which the spacetime metric shows consistency with the four classical solar system tests:

An example of an isotropic spacetime metric that satisfies these conditions is the isotropic exponential spacetime metric. The main properties of the Schwarzschild metric and the isotropic exponential spacetime metric are summarized in the following 
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