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SHARPLY 2-TRANSITIVE GROUPS

OF FINITE MORLEY RANK

TUNA ALTINEL, AYŞE BERKMAN, AND FRANK O. WAGNER

Abstract. A near-field of finite Morley rank and characteristic 6= 2 is an algebraically closed
field. It follows that a sharply 2-transitive permutation group of finite Morley rank of permu-
tation characteristic 3 is the group of affine transformations of an algebraically closed field of
characteristic 3.

Introduction

A Frobenius group is a group G together with a malnormal subgroup B, i.e. B ∩ Bg = {1}
for all g ∈ G \ B; the group B is called the Frobenius complement. A Frobenius group G with
Frobenius complement B splits if there is a normal subgroup N , called the Frobenius kernel, such
that G = N ⋊B. All finite Frobenius groups split [10]; moreover the Frobenius kernel is nilpotent
[16]. This can bee seen as a precursor to the Feit-Thompson theorem on the solubility of groups
of odd order, which in turn is the starting point for the classification of the finite simple groups.
As Tao has remarked, all known proofs of Frobenius’ Theorem use group characters; removing
character theory might lead to a new route to the classification of finite simple groups [15].

On the model-theoretic side, the classification of the finite simple groups has inspired Borovik’s
programme for the resolution of theAlgebraicity Conjecture by Cherlin and Zilber, which asserts that
a simple group of finite Morley rank should be an algebraic group over an algebraically closed field.
This has been successful in case there is an infinite elementary abelian 2-subgroup [1]. However,
since neither representation nor character theory are available in this context, there is no analogue of
the Feit-Thompson Theorem, and there may well exist simple groups of finite Morley rank without
involutions (the so-called degenerate case), which are impervious to Borovik’s approach.

The interest of the study of Frobenius groups of finite Morley rank is thus two-fold: On one
hand, following Tao, one hopes to reproduce Frobenius’ Theorem in this context, and to climb
up the ladder to eventually eliminate degenerate simple groups of finite Morley rank (i.e. prove
a finite Morley rank version of the Feit-Thompson Theorem); on the other hand one seeks to
develop methods in the finite Morley rank context which might help to find a character-free proof
of Frobenius’ Theorem for finite groups.

Frobenius groups arise naturally as transitive non-regular permutation groups such that only the
identity fixes two distinct points, the Frobenius complement being the stabiliser of a single point.
Borovik and Nesin have conjectured that a Frobenius group of finite Morley rank has a nilpotent
Frobenius kernel (and in particular splits). A particular case of Frobenius groups are sharply two-
transitive permutation groups. It is easy to see that they contain an involution: any permutation
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g ∈ G exchanging two points x and y must have order 2; moreover g is the only permutation
exchanging x and y by sharp 2-transitivity, and if g′ is an involution exchanging x′ and y′, then
g′ = gh for the unique h ∈ G with h(x′) = x and h(y′) = y. Thus all involutions are conjugate.
Moreover, if the group is split, then the Frobenius kernel is abelian [13].

A sharply 2-transitive permutation group is called standard if it is the group of affine transfor-
mations of some algebraically closed field K, i.e. of the form K+

⋊K×.

Conjecture 1. [6] An infinite sharply 2-transitive permutation group of finite Morley rank is
standard. More precisely:

(i) A sharply 2-transitive permutation group of finite Morley rank splits.
(ii) A sharply 2-transitive split permutation group of finite Morley rank is standard.

If the Frobenius complement does not contain an involution, the permutation characteristic of
G is 2. Otherwise, all products of two distinct involutions are conjugate, and the permutation

characteristic of G is the order of ij, for any two distinct involutions i and j (or 0, if the order is
infinite).

Kerby and Wefelscheid [12] have shown (i) in permutation characteristic 3; Cherlin, Grundhöfer,
Nesin and Völklein [8] have shown (ii) in permutation characteristic 0. Note that an infinite sharply
2-transitive group of finite Morley rank is connected, and so is its Frobenius complement [6], i.e
they have no definable subgroups of finite index. We shall show (i) in permutation characteristic
2, and (ii) in permutation characteristic 6= 2. In particular, Conjecture 1 holds in permutation
characteristic 3.

However, our results do not advance the search for a finite Morley rank version of the Feit-
Thompson Theorem, nor address the question of degenerate simple groups of finite Morley rank,
since they are based on the study of involutions whose existence is guaranteed by sharp 2-transitivity.
They might, however, contribute to the study of the odd characteristic case of the Algebraicity
Conjecture (where the group contains a Prüfer 2-subgroup), which is still open.

For background material on groups of finite Morley rank the reader should consult [6], in partic-
ular Chapters 11.3 and 11.4 on Frobenus and sharply 2-transitive permutation groups.

1. Permutation Characteristic 2

In [6] Borovik and Nesin study mostly Frobenius groups whose Frobenius complement contains
an involution. The following result elucidates what happens in permutation characteristic 2. It
relies on the even case of the Algebraicity Conjecture.

Recall that a definable subgroupH ≤ G is generous if
⋃

g∈GHg is generic in G. If G is connected,
any two generic subsets have generic intersection. Hence any two generous subgroups can be con-
jugated to intersect non-trivially. Examples of generous subgroups include a malnormal subgroup
B (as RM(

⋃
g∈GBg) = RM(G/B) +RM(B) = RM(G)) and the centralizer of a decent torus, i.e.

a definable divisible abelian subgroup with dense torsion [7].

Theorem 2. Let G be a connected Frobenius group with Frobenius complement B. If B does

not contain an involution, then G has a normal definable connected subgroup N containing all

involutions, such that N ∩B = {1}.

Proof. Note that B is definable by [6, Proposition 11.19]. By [5] a 2-Sylow subgroup S of G is
infinite. If S has a non-trivial abelian divisible subgroup T , then its definable hull dc(T ), the
smallest definable group containing T , is a decent torus, its centralizer CG(T ) = CG(dc(T )) is
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generous, and after conjugation intersects B non-trivially. But then T ≤ B by malnormality, a
contradiction. It follows that S has bounded exponent.

Let N be a definable connected normal subgroup of G. If N ∩B is trivial, then either G = N⋊B
splits or BN/N is malnormal in G/N by [6, Lemma 11.37]; note that BN/N does not contain an
involution. If moreover N ≤ M ✂G with BN ∩M = N , then B ∩M = B ∩BN ∩M = B ∩N =
{1}. We now choose N of maximal Morley rank possible. If N < M ✂ G with B ∩ M = {1},
then RM(M/N) ≥ RM((mN)B/N) = RM(B) > 0. Thus N is maximal definable normal with
B ∩N = {1}; if it contains all involutions of G we are done.

Otherwise we can divide out by N and suppose that G has no definable normal subgroup in-
tersecting B trivially. In particular it has no definable abelian normal subgroup. Hence G has
a definable infinite minimal simple normal subgroup N (which may be G itself). Then N ∩ B is
malnormal, whence generous in N , as is (N ∩B)g for any g ∈ G. It follows that there is n ∈ N with
(N ∩B) ∩ (N ∩ B)gn 6= {1}. Then gn ∈ B by malnormality, and G = BN . Moreover, N contains
an involution, and is algebraic by [1]. But an algebraic Frobenius group splits [6, Lemma 11.39]. If
M is a Frobenius kernel of N , then M ∩B = M ∩N ∩B = {1} and G = BN = B(B∩N)K = BK.
Thus G = M ⋊B splits. �

Remark 3. A simple B-invariant section of N does not contain an involution. If it did, it would
be algebraic by [1], but a simple algebraic group cannot be a Frobenius complement [6, Corollary
11.40].

Corollary 4. An infinite sharply 2-transitive permutation group of finite Morley rank and permu-

tation characteristic 2 splits.

Proof. Let G be the group, B its Frobenius complement, and N✂G the definable normal subgroup
given by Theorem 2. If i ∈ N is an involution, then RM(N) ≥ RM(iB) = RM(B). Thus
2RM(B) ≤ RM(BN) ≤ RM(G) = 2RM(B). It follows that G = N ⋊ B splits. �

2. Centrality of the Sylow 2-Subgroup

Theorem 5. Let G be a connected group of finite Morley rank whose connected definable abelian

subgroups are decent tori. Then its 2-Sylow subgroup is connected and central.

Proof. If A is a decent torus, then CG(A) is generous in G and A does not have an infinite family
of definable subgroups [7]. Moreover, NG(A)

0 = CG(A)
0 = CG(A) by [3].

We claim that a connected soluble subgroup S is abelian: If A is the last non-trivial derived
group, then A is central in S. So if N is the second last derived subgroup, N is connected nilpotent,
and is the central product of a divisible abelian group with a connected nilpotent group of bounded
exponent. If the latter were infinite, it would contain an infinite elementary abelian subgroup, a
contradiction. So N is abelian, and N = A = S. Thus if A is connected maximal abelian, then
A = CG(A), and A is almost self-normalizing and generous in G.

If A and A′ are two non-conjugate maximal abelian connected subgroups of G with maximal
intersection I, then in CG(I)

0 both A and A′ are generous, and there is a CG(I)
0-conjugate of

A′ intersecting A in a generic point outside I, contradicting maximality of I. It follows that all
maximal connected abelian subgroups are conjugate. We shall call a maximal connected abelian
subgroup of G a full torus; a connected subgroup H of G is full if it contains a full torus. Consider
a non-trivial element g ∈ G. Then CG(g) is infinite [2] and contains a decent torus T , which we
take maximal possible. So CG(T ) is connected, and g ∈ CG(T ). If g /∈ T then gT has an infinite
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centralizer C/T in CG(T )/T , which contains an infinite connected abelian subgroup A/T . But then
A is again abelian connected, whence a torus, and

g ∈ CCG(T )(A/T ) = C0
CG(T )(A/T ) ≤ NCG(T )(A)

0 = CG(A).

Thus T < A ≤ CG(g), a contradiction. It follows that every element is contained in a torus T . But
now T can be extended to a maximal connected abelian subgroup T ′, which must be a full torus
containing g. This shows that if H is a full connected definable subgroup of G and g ∈ H , there is
a full torus T ≤ H containing g.

Let S be the connected component of a Sylow 2-subgroup (in short, a 2-Sylow0). Suppose for a
contradiction that S is not central. As CG(S)

0 = NG(S)
0, there is a ∈ G with Sa 6= S. Choose

two full tori A and A′ containing distinct 2-Sylows0 S 6= S′ such that A ∩ A′ is maximal possible.
Replacing G by CG(A∩A′)0/(A∩A′), we may assume that this intersection is trivial. In particular
any two full tori with non-trivial intersection have the same 2-Sylow0. So for any g ∈ G, since any
two full tori in CG(g)

0 are conjugate and must contain g, there is a unique 2-Sylow0 in CG(g)
0,

which is also the unique 2-Sylow0 in CG(g).
Consider involutions i ∈ S and i′ ∈ S′. Then i and i′ invert the element m = ii′. Let S′′ be the

unique 2-Sylow0 in CG(m). Then i and i′ normalize CG(m), whence also S′′. Now either S′′ 6= S
or S′′ 6= S′, and we may assume S′′ 6= S. Then i /∈ CG(S

′′), as otherwise CG(S
′′)/dc(S′′) would

contain an involution, whence a 2-torus, a contradiction.
Suppose CCG(S′′)(i) is infinite. Then it contains a torus T , and there is a full torus A′′ ≥ S′′T .

Moreover, all full tori in CG(i)
0 contain i, and there is one, say A∗, which also contains T . But

A′′ ∩ A∗ ≥ T so S′′ = S∗, contradicting i /∈ CG(S
′′). As i normalizes CG(S

′′) and centralizes
only finitely many points, it inverts CG(S

′′)0 = CG(S
′′). It follows that CG(S

′′) is abelian, and
CG(S

′′) = CG(A
′′) = A′′; moreover all involutions in NG(A

′′) \ A′′ invert A′′ and are in the same
coset iA′′ modulo A′′; conversely all elements of the coset iA′′ are involutions inverting A′′. Note
that m ∈ CG(S

′′) = A′′, and i ∈ NG(S
′′) = NG(A

′′); if j, k ∈ A′′ are two involutions, they commute
with i and invert A. So ik ∈ CG(A) ∩ A′′ = A ∩ A′′ = {1}, and a full torus contains a unique
involution. For any non-trivial g ∈ G the centralizer CG(g) contains a unique 2-Sylow0, and hence
a unique full torus, which must contain g. It follows that CG(g)

0 is this full torus. So the full tori
of G are disjoint, and cover G.

Let N be a minimal normal definable subgroup of G. Then N cannot be abelian, so N is simple
by connectedness of G. If N does not contain an involution, then any involution i of G gives rise
to an involutive automorphism of N . If F = CN (i) is the subgroup of fixed points and I the set
of points inverted by i, then N decomposes uniquely as F · I and all conjugates of F intersect I
trivially by [14]. Hence F is connected, and a torus of N . But the conjugates of F cover N , so
I = {1} and N = F , a contradiction. It follows that N contains involutions, and we may replace
G by N .

We obtain a geometry on G whose points are the involutions, and whose lines are the cosets iA
for a full torus A and involution i ∈ NG(A), i.e. sets ℓ(j) = NG(A(j))[2]\{j}, where A = A(j) is the
unique full torus containing j. Then j is the unique involution commuting with all the involutions
of ℓ(j). Any two distinct lines ℓ(i) and ℓ(j) have empty intersection, or intersect in a coset of
A(i) ∩ A(j) = {1} (note that the corresponding 2-Sylows must be distinct), i.e. in a single point.
Any two distinct points i, j lie on at least one common line ℓ(k), where A(k) = C0

G(ij). There is a
polarity which associates an involution i to a line ℓ(i) and vice versa, and which preserves incidence.
It follows that any two lines intersect in a unique point, and any two points lie on a unique line.
Moreover, the are no isotropic points: i /∈ ℓ(i) for all i. By Bachman’s theorem [4], G is a group of
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linear transformations of a 3-dimensional vector space over an interpretable field K which preserve
a symmetric bilinear form without isotropic vectors. But this contradicts stability.

It follows that S is central. But then G/dc(S) has finite Sylow 2-subgroups, which must be
trivial by [5]. Thus S is the connected central Sylow 2-subgroup of G. �

Deloro and Wiscons have recently obtained Theorem 5 as a corollary of a more general theorem
on the 2-structure of a connected group of finite Morley rank [9, Corollary B2].

3. Permutation Characteristic 6= 2

Definition 6. A near-field is a skew field, except that the left distributive law (y + z)x = yx+ zx
need not hold.

Fact 7. [11] A split sharply 2-transitive permutation group is the group of affine transformations

of a near-field; the near-field characteristic is equal to the permutation characteristic.

Definition 8. The kernel ker(K) of a near-field K is the set of elements with respect to which
multiplication is left distributive:

ker(K) = {x ∈ K : ∀ y, z ∈ K (y + z)x = yx+ zx}.

Remark 9. The prime field of a near-field is contained in the kernel.

Proof. Consider n = 1 + · · ·+ 1, and y, z ∈ K. Then by right distributivity

(y + z)n = (y + z) + · · ·+ (y + z) = (y + · · ·+ y) + (z + · · ·+ z) = yn+ zn.

In characteristic 0 we obtain for m = 1 · · ·+ 1 6= 0 :

(y + z)m−1n = (ym−1m+ zm−1m)m−1n = (ym−1 + zm−1)mm−1n

= (ym−1 + zm−1)n = ym−1n+ zm−1n. �

Note that this does not imply that the prime field is in the centre of K, even if the kernel is finite
(and K connected), as conjugation is not an automorphism of K and need not stabilize the kernel.

Theorem 10. An infinite near-field K of finite Morley rank in characteristic 6= 2 is an algebraically

closed field.

Proof. If the kernel is infinite (in particular if char(K) = 0 or Z(K×) is infinite), this follows from
[6] or [8].

In characteristic p > 0, note first that K is additively connected, as for any additive proper
subgroup H of finite index the intersection

⋂
x∈K× xH is trivial, but equals a finite subintersection,

and hence is of finite index, a contradiction. There is thus a unique type of maximal Morley rank,
so K× is multiplicatively connected as well.

Let A be a definable connected infinite abelian multiplicative subgroup, and M0 an A-minimal
additive subgroup. ThenM0 is additively isomorphic to the additive group of an algebraically closed
field K0, and A embeds multiplicatively into K×

0 . In fact, for any e0 ∈ M0 \ {0} and a1, . . . , an ∈ A
such that a1e0 + · · · + ane0 = 0, we have by right distributivity that ae01 + · · · + ae0n = 0, so the
addition induced on A by K0 is the one inherited from K-addition on Ae0 . So we might replace A
by Ae0 , M0 by e−1

0 M0 and e0 by 1. Then A ⊆ M0 = K+
0 , and field multiplication on K0 is induced

from K on A ×K0, but does not necessarily agree with multiplication from K if the left factor is
in K0 \A. In particular, A is a good torus by [17]. By Theorem 5 the centre Z(K×) contains the
Sylow 2-subgroup, which is infinite in permutation characteristic different from 2. We finish by the
first paragraph. �
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Corollary 11. A sharply 2-transitive group of finite Morley rank and permutation characteristic 3
is the group of affine transformations of an algebraically closed field of characteristic 3.

Proof. By [12] a sharply 2-transitive permutation group of permutation characteristic 3 splits. Now
use Fact 7 and Theorem 10. �
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