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SHARPLY 2-TRANSITIVE GROUPS OF FINITE MORLEY RANK

TUNA ALTINEL, AYŞE BERKMAN AND FRANK O. WAGNER

Abstract. A near-field of finite Morley rank and characteristic 6= 2 is an alge-
braically closed field. It follows that sharply 2-transitive permutation group of finite
Morley rank of permutation characteristic 3 is the group of affine transformations
of an algebraically closed field of characteristic 3.

Introduction

A Frobenius group is a group G together with a malnormal subgroup B, i.e. B ∩
Bg = {1} for all g ∈ G \ B. These groups arise naturally from transitive non-
regular permutation groups such that only 1 fixes two distinct points, taking as
B is the stabiliser of a single point. Borovik and Nesin have conjectured that a
Frobenius group of finite Morley rank splits, i.e. that there is a normal subgroup N
wth G = N ⋊ B, and moreover that N is nilpotent.

A particular case of Frobenius groups are sharply two-transitive permutation
groups. It is easy to see that they contain an involution: any permutation in G
exchanging two points must have order 2. We shall call such a group standard if it
is the group of affine tansformations of some algebraically clsoed field K, i.e. of the
form K+

⋊K×.

Conjecture 1. A sharply 2-transitive permutation group of finite Morley rank is
standard.

The conjecture can be decomposed into two parts:

(1) A sharply 2-transitive permutation group of finite Morley rank splits.
(2) A sharply 2-transitive split permutation group of finite Morley rank is stan-

dard.

If G is a sharply 2-transitive permutation group, then all involutions in G are conju-
gate. If B does not contain an involution, the permutation characteristic of G is 2.
Otherwise, all product of two distinct involutions are conjugate, and the permutation
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characteristic of G is the order of ij, for any two distinct involutions i and j. For
details, the reader may for instance consult [3, Chapters 11.3 and 11.4].

We shall show (1) in permutation characteristic 2 and 3, and (2) in permutation
characteristic 6= 2. In particular, the conjecture holds in permutation characteristic
3.

1. Permutation Characteristic 2

Let G be connected sharply 2-transitive on X , of finite Morley rank, and B the
stabiliser of x ∈ X . We want to show that G is split.

Suppose G has is a non-trivial proper normal connected subgroup N . If N ∩B =
{1} (in particular if N is abelian) then RM(N) ≥ RM(nB) = RM(B) for any
n ∈ N \ {1}, and 2RM(B) ≤ RM(NB) ≤ RM(G) = 2RM(B). Thus G = N ⋊ B,
and G is split. So we may assume G semisimple, and N ∩ B non-trivial. We may
assume that N is minimal possible. Then N is simple, G = NB, and (N,N ∩B) is
a Frobenius group.

If G is of characteristic 2 and i /∈ N is an involution, then G/N ∼= B/(B ∩ N)
contains an involution, a contradiction. By [2] a 2-Sylow subgroup S of N is infinite,
and S0 = B∗T . If T 6= 1, then CN(T ) is generous in N and intersects

⋃
n∈N (B∩N)n,

a contradiction. Thus N is algebraic by [1], but an algebraic Frobenius group splits.
The same proof works if G itself is simple of characteristic 2.

2. Permutation Characteristic 6= 2

Definition 2. A near-field is a skew field, except that the left distributive law (y +
z)x = yx+ zx need not hold.

Definition 3. A near-domain is a near-field, except that additively it only is a loop,
i.e.

• x+ 0 = 0 + x = x for all x,
• a+ x = b has a unique solution for all a, b,
• x+ a = b has a unique solution for all a, b

which satisfies in addition

• a+ b = 0 implies b+ a = 0, and
• for all a, b there is da,b such that for all x one has a+(b+x) = (a+ b)+da,bx.

Fact 4. [5] A strictly 2-transitive permutation group is the group of affine transfor-
mations of a near-domain; it is split if and only if the near-domain is a near-field.

Definition 5. The kernel ker(K) of a near-domain K is the set of elements with
respect to which multiplication is left distributive:

ker(K) = {x ∈ K : ∀ y, z ∈ K (y + z)x = yx+ zx}.
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Remark 6. The prime field of a near-field is contained in the kernel.

Proof. Consider n = 1 + · · ·+ 1, and y, z ∈ K. Then by right distributivity

(y + z)n = (y + z) + · · ·+ (y + z) = (y + · · ·+ y) + (z + · · ·+ z) = yn+ zn.

In characteristic 0 we obtain for m = 1 · · ·+ 1 6= 0 :

(y + z)m−1n = (ym−1m+ zm−1m)m−1n = (ym−1 + zm−1)mm−1n

= (ym−1 + zm−1)n = ym−1n+ zm−1n. �

Note that this does not imply that the prime field is in the centre of K, even if
the kernel is finite (and K connected), as conjugation is not an automorphism of K
and need not stabilize the kernel.

Theorem 7. A near-field K of finite Morley rank in characteristic 6= 2 is an alge-
braically closed field.

Proof. If the kernel is infinite (in particular if char(K) = 0 or Z(K) is infinite), this
follows from [3] or [4].

In characteristic p > 0, note first that K is connected, as for any additive proper
subgroup H of finite index the intersection

⋂
x∈K× xH is trivial, but equals a finite

subintersection, and hence is of finite index, a contradiction.
Let A be an infinite abelian multiplicative subgroup; increasing A, we may assume

that it is definable. Let M0 be an A-minimal additive subgroup. Then M0 is ad-
ditively isomorphic to the additive group of an algebraically closed field K0, and A
embeds multiplicatively into K×

0 . In fact, for any e0 ∈ M0 \ {0} and a1, . . . , an ∈ A
such that a1e0+· · ·+ane0 = 0, we have by right distributivity that ae01 +· · ·+ae0n = 0,
so the addition induced on A by K0 is the one inherited from K-addition on Ae0 .
So we might replace A by Ae0 , M0 by e−1

0 M0 and e0 by 1. Then A ⊆ M0, field
addition on K0 is induced from K and field multiplication on K0 is induced from
K on A ×K0, but does not necessarily agree with multiplication from K if the left
factor is in K0 \ A. In particular, A0 is a good torus. But the next theorem implies
that Z(K∗) is infinite, which is the required contradiction. �

Theorem 8. Let G be a connected group of finite Morley rank whose connected
definable abelian subgroups are good tori, of 2-Prüfer rank ≤ 1. Then its 2-Sylow
subgroup is connected and central.

Proof. Recall that for a torus A we have NG(A)
0 = CG(A)

0 = CG(A), and A does not
have an infinite family of definable subgroups. Moreover, CG(A) is generous in G.

We claim that a connected soluble multiplicative subgroup S is abelian: If A is
the last non-trivial derived group, then A is central in S. So if N is the second last
derived subgroup, N is nilpotent, and is the central product of a divisible abelian
group with a connected nilpotent group of bounded exponent. If the latter were
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infinite, it would contain an infinite elementary abelian subgroup, a contradiction.
Thus N is abelian, and N = A = S. It follows that if A is connected maximal
abelian, then A = CG(A), and A is almost self-normalizing and generous in G.

If A and A′ are two non-conjugate maximal abelian connected subgroups of G
with maximal intersection I, then in CG(I)

0 both A and A′ are generous, and there
is a conjugate A′′ of A′ intersecting A in a generic point outside I. Contradiction,
since A′′ ∩ A > I. It follows that all maximal connected abelian subgroups are
conjugate. We shall call a maximal connected abelian subgroup of G a full torus;
a connected subgroup H of G is full if it contains a full torus. Consider a non-
trivial element g ∈ G. Then CG(g) is infinite, and contains a torus T , which we
take maximal possible. So CG(T ) is connected, and g ∈ CG(T ). If g /∈ T then gT
has an infinite centralizer C/T in CG(T )/T , which contains an infinite connected
abelian subgroup A/T . But then A is again abelian connected, whence a torus,
and g ∈ CG(A/T ) = C0

G(A/T ) ≤ NG(A)
0 = CG(A). Thus T < A ≤ CG(g), a

contradiction. It follows that every element is contained in a torus T . But now T
can be extended to a maximal connected abelian subgroup T ′, which must be a full
torus containing g.

If a 2-Sylow0-subgroup S is central, then G/dc(S) has finite, whence trivial 2-
Sylow subgroups, so S is connected. It hence suffices to show that S is central. If
not, as CG(S)

0 = NG(S)
0, there is a ∈ G with Sa 6= S. Choose two full tori A

and A′ containing distinct 2-Sylows0 S 6= S ′ such that A ∩ A′ is maximal possible.
Replacing G by CG(A∩A′)0/(A∩A′), we may assume that this intersection is trivial.
In particular any two full tori with non-trivial intersection have the same 2-Sylow0.
So for any g ∈ G, since any two full tori in CG(g) are conjugate and must contain g,
there is a unique 2-Sylow0 in CG(g).

Consider involutions i ∈ S and i′ ∈ S ′. Then i and i′ invert the element m = ii′.
Let S ′′ be the unique 2-Sylow0 in CG(m). Then i and i′ normalize CG(m), whence
also S ′′. Now either S ′′ 6= S or S ′′ 6= S ′, and we may assume S ′′ 6= S. Then
i /∈ CG(S

′′), as otherwise CG(S
′′)/dc(S ′′) would contain an involution, whence a

2-torus, a contradiction.
Suppose CCG(S′′)(i) is infinite. Then it contains a torus T , and there is a full torus

A′′ ≥ S ′′T . Moreover, i ∈ CG(T ) = CG(T )
0, so there is a torus T ′ containing i and

T . But then there is a full torus A∗ containing T ′. But A′′ ∩ A∗ ≥ T so S ′′ = S∗,
contradicting i /∈ CG(S

′′). As i normalizes CG(S
′′) and centralizes only finitely many

points, it inverts CG(S
′′)0 = CG(S

′′). It follows that CG(S
′′) is abelian, and equal

to the full torus A′′; moreover all elements of the coset iA′′ are involutions. Note
that m ∈ CG(S

′′) = A′′, and i ∈ NG(S
′′) = NG(A

′′). For any non-trivial g ∈ G the
centralizer CG(g) contains a unique 2-Sylow0, and hence a unique full torus, which
must contain g. It follows that CG(g)

0 is this full torus. So the full tori of G are
disjoint, and cover G.
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Let N be a minimal normal definable subgroup of G. Then N cannot be abelian,
so N is simple by connectedness of G. If N does not contain an involution, then any
involution i of G gives rise to an involutive automorphism of N , whose set of fixed
points is contained, up to finite index, in a torus of N , a contradiction to [Poizat].
It follows that N contains involutions, and we may replace G by N .

Any two involutions in NG(A
′′) \ A′′ invert S, so their product is in CG(S) = A′′

and they form a unique coset modulo A′′. We obtain a geometry on G whose points
are the involutions, and whose lines are the cosets iA for a full torus A and involution
i ∈ NG(A), i.e. precisely the involutions in NG(A(j)), where A = A(j) is the unique
full torus containing j. Then j is the unique involution commuting with all the
involutions of the line ℓ(j) = NG(A(j))[2]. Any two distinct lines ℓ(i) and ℓ(j)
have empty intersection, or intersect in a coset of A(i) ∩ A(j) = {1} (note that the
corresponding 2-Sylows must be distinct), i.e. in a single point. Any two distinct
points lie on at least one common line, and in fact a unique common line. There
is a polarity which associates an involution i to a line ℓ(i) and vice versa, and
which preserves incidence. It follows that any two lines intersect in a unique point.
Moreover, the are no isotropic points: i /∈ ℓ(i) for all i. By Bachman’s theorem, G is a
group of linear transformations of a 3-dimensional vector space over an interpretable
field K which preserve a symmetric bilinear form without isotropic vectors. But this
contradicts stability. �

Fact 9. [6] A near-domain of characteristic 3 is a near-field.

Corollary 10. A near-domain of characteristic 3 of finite Morley rank is an alge-
braically closed field.

Corollary 11. A strictly 2-transitive group of finite Morley rank and (permutation)
characteristic 3 is the group of affine transformations of an algebraically closed field
of characteristic 3.
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