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A TWO-DIMENSIONAL “FLEA ON THE ELEPHANT”
PHENOMENON AND ITS NUMERICAL VISUALIZATION

ROBERTA BIANCHINI∗, LAURENT GOSSE† , AND ENRIQUE ZUAZUA‡

Abstract. Localization phenomena (sometimes called “flea on the elephant”) for the operator
Lε = −ε2∆u+ p(x)u, p(x) being an asymmetric double-well potential, are studied both analytically
and numerically, mostly in two space dimensions within a perturbative framework. Starting from
a classical harmonic potential, the effects of various perturbations are retrieved, especially in the
case of two asymmetric potential wells. These findings are illustrated numerically by means of an
original algorithm, which relies on a discrete approximation of the Steklov-Poincaré operator for Lε,
and for which error estimates are established. Such a two-dimensional discretization produces less
mesh-imprinting than more standard finite-differences and captures correctly sharp layers.

Key words. Asymmetric double-well potential; Lipschitz domains; Schrödinger equation;
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1. Introduction and preliminaries. The “flea on the elephant” is an expres-
sion coined by Barry Simon in [47] to describe the following counter-intuitive phe-
nomenon: being V (x, y) a symmetric (smooth) two-well potential and V + δV an
arbitrarily small (smooth) perturbation of it, then for 0 < ε ≪ 1, corresponding
perturbed eigenfunctions will preferably localize in the largest well (see also [38]).

1.1. Elementary ”flea on the elephant” in 1D. Given ε > 0, we start from
the steady one-dimensional Schrödinger equation for some energy level Eε,

−ε∂xxψε + V (x)ψε = Eε ψε(x), x ∈ (0, 1),

where, for 0 < a < b < 1, the (square-wells) potential V (x) is piecewise constant,

V (x) = V̄ χx∈(a,b) +∞
(
χx<0 + χx>1

)
, V̄ > 0.

Dirichlet conditions correspond to infinite potential walls: ψ(0) = ψ(1) = 0,

k := k(Eε) =

√
Eε
ε
, κ := κ(Eε) =

√
V̄ − Eε

ε
,

describe bound-states, so that,

∀x ∈ (0, 1), ψ(x) =

 A sin kx, x ∈ (0, a)
B exp(κ(x− a)) + C exp(κ(b− x)),
D sin k(1− x), x ∈ (b, 1),

where (real) constants A,B,C,D are such that C1 smoothness holds:
A sin ka = B + C exp(κ(b− a))

D sin k(1− b) = B exp(κ(b− a)) + C

}
C0 smoothness,

kA cos ka = κ[B − C exp(κ(b− a))]
−kD cos k(1− b) = κ[B exp(κ(b− a))− C]

}
C1 smoothness,

(1.1)
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The vector of coefficients can be characterized by means of the kernel of a 4×4 matrix,∣∣∣∣∣∣∣∣
sin ka −1 − exp(κ(b− a)) 0
0 − exp(κ(b− a)) −1 sin k(1− b)

k
κ cos ka −1 exp(κ(b− a)) 0

0 exp(κ(b− a)) −1 k
κ cos k(1− b)

∣∣∣∣∣∣∣∣ = 0.

Since (1.1) implies,

A(κ sin ka+ k cos ka)

D(κ sin k(1− b)− k cos k(1− b))
= exp(κ(a− b)),

A(κ sin ka− k cos ka)

D(κ sin k(1− b) + k cos k(1− b))
= exp(κ(b− a)),

then

A2 cos2 ka(κ2 tan2 ka− k2)

D2 cos2 k(1− b)(κ2 tan2 k(1− b)− k2)
= 1, (1.2)

so that, when a = 1− b in (1.2), symmetry, D2 = A2, easily follows. The asymmetric
case is less straightforward in terms of algebra, even in 1D, see for instance [20, 31,
38, 45, 49] and [26, Chapter 2]. Accordingly, numerical simulations of a 1D explicit
example are displayed in Fig. 1.1. Finite-differences based on L-splines and borrowed

Figure 1.1. Eigenfunctions for symmetric (left) vs. asymmetric (right) square wells.

from [18] were set up in order to maximize both stability and accuracy in this context
of a square-well potential: namely, we implemented both,

a = 0.35, b = 0.65 on the left, a = 0.35, b = 0.675 on the right,

with ε = 0.001, 27 grid points, and the following discretization,

rj± 1
2
=

√
V (xj± 1

2
)

ε
, − ε

∆x

[
rj+ 1

2

sinh(rj+ 1
2
∆x)

(
ψj+1 − cosh(rj+ 1

2
∆x)ψj

)
−

rj− 1
2

sinh(rj− 1
2
∆x)

(
cosh(rj− 1

2
∆x)ψj − ψj−1

)]
= Eεψj .
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The (Anderson-like) localization process [14] is easy to see; similar behavior occurs in
2D, too, as shown in Fig. 5.5 for two symmetric, and asymmetric, Gaussian well po-
tentials. Heuristically, it is explained by recalling that the curvature of eigenfunctions
grows with their energy: the widest well (lying at the same depth) allows the ground
state to have a larger wavelength, hence a smaller curvature. This kind of strong
Accumulation phenomenon due to any little perturbation is known in literature as
“the flea on the elephant”, with a complete analysis given in [7, 32, 39, 44, 48].

1.2. Plan of the paper. In several dimensions, the spectral effects of perturbing
a quadratic potential were studied in the literature, see for instance [32, 27, 47, 48,
30]. In those papers, from both a mathematical physics and a functional analysis
perspective, many results were stated; there are also other probabilistic approaches in
this direction, with applications to large deviations, see [46] and more recent references
quoted in [30]. Accordingly, in Section 2, basic results for the harmonic potential are
derived, so that, in Section 3, perturbations can be studied, especially concerning the
width of the wells and their location. Section 4 deals with a 2D extension of the
“L-spline scheme” set up in 1D: its derivation follows [17] and is presented in §4.1
and some error estimates are given in §4.3. Section 5 contains some computational
results, mostly for the accuracy on the harmonic potential in a square domain, and
for perturbations of a two-well potential. Concluding remarks are given in Section
6, where the ability of the 2D scheme to capture sharp layers is illustrated in Fig.
6.1. Appendix A recalls regularity results for elliptic equations in square domains,
following either [8, 21, 29] or [2, 28, 34, 24] for a study of “compatibility conditions”.

2. Gaussian eigenfunctions of the quadratic potential. Let a differential
operator Lε(u) := −ε2∆u+ p(x)u have a potential with conditions [P]:

• p(x) ∈ C2(RN ), p(x) ≥ 0;
• p(x) has exactly two quadratic minima located in xi, for i = 1, 2

lim
x→xi

p(x)

|x− xi|2
= Ci, for some constants Ci.

More general potentials were considered in, e.g., [7, 26, 39, 44]. In the whole space
x ∈ RN , the eigenvalue problem for the harmonic oscillator reads,

p(x) =
N

2
+

|x|2

4ε2
, Lε(u) = −ε2∆u+

(
N

2
+

|x|2

4ε2

)
u, (2.1)

being | · | the Euclidean norm. Inserting a change of variables,

∀x ∈ RN , u(x) := exp

(
|x|2

4ε2

)
w(x) inside Lε(u) = λu, (2.2)

yields a (steady) convection-diffusion equation,

L̃ε(w) := exp

(
−|x|2

4ε2

)
Lε(u) =

(
− ε2∆w − x · ∇w

)
= λw. (2.3)

Namely, in terms of the new variable w(x), the spectral problem (2.1) reads

− ε2∆w(x)− x · ∇w(x) = λw(x), x ∈ RN . (2.4)



4 Roberta Bianchini, Laurent Gosse, and Enrique Zuazua

Convection-diffusion problem (2.4) recasts as a drift-diffusion (conservative) one,

− ε2∇ · (Kε(x)∇w)− λwKε(x) = 0, Kε(x) = exp

(
|x|2

2ε2

)
, (2.5)

so that nontrivial solutions to (2.4) are critical points of the following functional:

f 7→ Eε(f) =
ε2

2

∫
RN

|∇f |2Kε(x) dx− λ

2

∫
RN

|f(x)|2Kε(x) dx, (2.6)

for f belonging, for ε fixed, to the following “weighted Sobolev space”,

H1(Kε) =

{
f : RN → R :

∫
RN

(
|f |2 + ε2|∇f |2

)
Kε(x) dx < +∞

}
. (2.7)

Proposition 1. For Kε(x) being as in (2.5) and H1(Kε) given by (2.7), the
continuous embedding H1(Kε) ⊂ L2(Kε) is compact,

H1(Kε) ⊂⊂ L2(Kε) :=

{
f : RN → R :

∫
RN

|f |2Kε(x) dx < +∞
}
.

Proof. The proof contained in [13] applies, based on the following lemma:
Lemma 1. For any f ∈ C1

c (RN ), the Poincaré inequality holds:∫
RN

|f |2
(
N

2
+

|x|2

4ε2

)
Kε(x) dx ≤ ε2

∫
RN

|∇f |2Kε(x) dx. (2.8)

The differential operator L̃ε in (2.3) is set in the domain

D(L̃ε) =
{
f ∈ H1(Kε); L̃εf ∈ L2(Kε)

}
:= H2(Kε), (2.9)

in which it is self-adjoint and, by Proposition 1, D(L̃ε) ⊂⊂ L2(Kε) compactly em-
bedded. This implies that L̃ε presents an increasing sequence of eigenvalues (λk)k≥0,
where λ0 > 0 is guaranteed by inequality (2.8). Moreover, for any m ≥ 0,

if f ∈ L2(Kε), then (1 + |ξ|2)m
2 f̂ ∈ L2(RN ),

so that the Fourier transform f̂ is smooth,

∀m ≥ 0, f̂ ∈ Hm(RN ), f̂ ∈ C∞(RN ).

It remains to take the Fourier transform of (2.4),

ε2|ξ|2ŵ(ξ)+Nŵ(ξ)+ξ·∇ŵ(ξ) = λŵ(ξ), ̂(xj∂xj
w)(ξ) = −ŵ(ξ)−ξj∂ξj ŵ(ξ). (2.10)

Another change of variables yields,

ξ · ∇v(ξ) = (λ−N)v(ξ), v(ξ) = exp(ε2
|ξ|2

2
)ŵ(ξ),

thus, v(ξ) is a polynomial function of degree (λ−N) = k − 1, k ∈ N, namely

v(ξ) = Pk−1(ξ), Pk−1(ξ) homogeneous polynomial of degree k − 1,
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and solutions to (2.10) satisfy ŵ(ξ) = exp(−ε2|ξ|2/2)Pk−1(ξ), see also [13].
Theorem 2.1. The eigenvalues of L̃ε in (2.3), where D(L̃ε) ⊂⊂ H1(Kε), are

λk = N + k − 1, k ∈ N, (2.11)

with the ground-state and its related eigenfunctions,

ϕε0(x) := exp

(
−|x|2

2ε2

)
, Dαϕε0(x), α = (α1, · · · , αN ), |α| = k − 1.

3. Perturbation analysis of the two wells potential. Hereafter, double well
potentials with identical and different wells are considered, in order to show the role
played by symmetry. In the symmetric case with ε ≪ 1, eigenfunctions accumulate
equally in both wells; oppositely, for asymmetric potentials, the ground state fills
mostly the widest well (see [30] for more of a differential geometry approach). We
qualitatively analyze effects of symmetry breaking in the potential shape p(x):

• accumulation of solutions in the widest well;
• the role played by the position of the perturbation;
• how a perturbation affects the spectrum of the original problem.

Consider the spectral problem associated with

D(Lε) ∋ u 7→ Lε(u) = −ε2∆u+
p(x)

4ε2
u, where p(x) satifies [P], (3.1)

the following statements hold true:
• the ground state accumulates in the widest well;
• potential perturbations’ affect the spectral problem as much as they are close

to the wells;
• eigenvalues and eigenfunctions’ modifications occur according to the way the

perturbation acts on the eigenfunctions of the original spectral problem.
3.1. Accumulation in the widest well. Yet, pick 0 < ε ≪ 1, and consider

the spectral problem (3.1), mostly when p(x) is a C2(RN ) has two wells at the same
height but with possibly different widths. Its eigenvalues form an increasing sequence,
whose minimum λ1 is given by Rayleigh’s quotient,

λ1 = inf
u∈D(Lε)

∫
RN ε

2|∇u|2 + p(x)
4ε2 |u|

2 dx∫
RN |u|2 dx

. (3.2)

Defining the measure dp = p(x) dx, Rayleigh’s quotient rewrites

λ1 = inf
u∈D(Lε)

∫
RN ε

2|∇u|2 dx+ 1
4ε2

∫
RN |u|2 dp∫

RN |u|2 dx
.

Lemma 2. Let x0 be any point located at any positive and fixed distance from 0.
Let d > 0: the first eigenvalue λ̃0 associated with the operator,

Lε = −ε2∆+
p(x)

4ε2
, p(x) = |x|2χBR(0) + d|x− x0|2χBR(x0), (3.3)

satisfies, for a positive constant value c, the following expansion:∣∣∣∣∣λ̃0 − N

2

∣∣∣∣∣ = O

(
R2

ε2

)
exp

(
−cR

2

ε2

)
. (3.4)
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The shift between eigenvalues (3.4) and (2.11) comes from the factor N
2 in (2.1).

Proof. The Rayleigh quotient reads:

λ̃0 = min
ψ∈H1(R2)

∫
R2

ε2|∇ψ(x)|2 + |ψ(x)|2

4ε2
(
|x|2χBR(0) + d|x− x0|2χBR(x0)

)
dx∫

R2

|ψ(x)|2 dx
. (3.5)

From Section 2, ϕ0(x) = exp(−|x|2

4ε2
) solves −ε2∆ϕ0 +

|x|2

4ε2
ϕ0 =

N

2
ϕ0, where

N

2
= λ0 = min

ψ ∈H1(R2)

∫
R2

ε2|∇ψ(x)|2 + |x|2

4ε2
|ψ(x)|2 dx∫

R2

|ψ(x)|2 dx

=

∫
R2

ε2|∇ϕ0(x)|2 +
|x|2

4ε2
|ϕ0(x)|2 dx∫

R2

|ϕ0(x)|2 dx
.

(3.6)

The explicit expression of λ0, provided by the Rayleigh quotient, can be used in λ̃0
in (3.5), in order to get the desired approximation. More precisely, by substituting
ϕ0(x) in the previous expression, the upper bound is given by

λ̃0 ≤ N

2
+

1

2πε2

(∫
R2

|x|2 exp(− |x|2
2ε2 )

4ε2
(χBR(0) − 1) dx

+

∫
R2

d|x− x0|2χBR(x0)

exp(− |x|2
2ε2 )

4ε2
dx

)
.

On the other hand, the lower bound,

λ̃0 = min
ψ ∈H1(R2)

∫
R2

ε2|∇ψ(x)|2 + |ψ(x)|2

4ε2
(
|x|2χBR(0) + d|x− x0|2χBR(x0)

)
dx∫

R2

|ψ(x)|2 dx

= min
ψ ∈H1(R2)

(∫
R2

ε2|∇ψ(x)|2 + |x|2

4ε2
|ψ(x)|2 dx∫

R2

|ψ(x)|2 dx
+

∫
R2

|ψ(x)|2 |x|
2

4ε2
(χBR(0) − 1) dx∫

R2

|ψ(x)|2 dx

+

∫
R2

|ψ(x)|2 d|x− x0|2

4ε2
χBR(x0) dx∫

R2

|ψ(x)|2 dx

)
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≥ min
ψ ∈H1(R2)

∫
R2

ε2|∇ψ(x)|2 + |x|2

4ε2
|ψ(x)|2 dx∫

R2

|ψ(x)|2 dx
−

(∫
R2

|ψ̃(x)|2 |x|
2

4ε2
(χBR(0) − 1) dx∫

R2

|ψ̃(x)|2 dx

+

∫
R2

|ψ̃(x)|2 d|x− x0|2

4ε2
χBR(x0) dx∫

R2

|ψ̃(x)|2 dx

)
,

where the last inequality holds for ψ̃(x) ∈ H1(R2), being all the addends in the
previous line positive. By using again (3.6) and setting ψ̃(x) = ϕ0(x), one gets

λ̃0 ≥ N

2
− 1

2πε2

(∫
R2

|x|2 exp(− |x|2
2ε2 )

4ε2
(χBR(0) − 1) dx

+

∫
R2

d|x− x0|2χBR(x0)

exp(− |x|2
2ε2 )

4ε2
dx

)
.

Passing to polar coordinates,

1

2πε2

∫
R2

|x|2

4ε2
(Id− χBR(0))|ϕ0(x)|2 dx

=
1

8πε4

∫ 2π

0

dθ

∫ ∞

R

ρ3 exp(− ρ2

2ε2
) dρ =

(R2 + 2ε2)

4ε2
exp(−R2

2ε2
),∫

R2

exp(−|x|2

2ε2
) dx = 2πε2.

Remark 1. Lemma 2 implies that λ0 = N
2 is a good approximation for the

expression of the first eigenvalue when the potential only has two wells. Performing
exactly the same computations with ϕd0(x) = exp(−d|x−x0|2

4ε2 ), one gets λd0 = Nd
2 .

However, in this case the error term in the expansion is bigger, meaning that this
approximation is less accurate than the one provided by the widest Gaussian.

The parameter d > 0 in (3.3) controls the convexity of the well centered in x0. If
the potential p(x) has different wells, the ground state is known to accumulate only
in one well, see [48, 27, 30]. From Lemma 2 (and Remark 1), the expression of the

first eigenvalue λ̃0 = N
2 + O

(
R2

ε2

)
exp

(
−cR

2

ε2

)
is reached by ϕ0(x). This suggests

that the accumulation well should be the one provided by |x|2
4ε2 .

Definition 1 (see [42, 43]). For a fixed λ̃ ∈ R, a quasi-eigenfunction is any
function u(x) ∈ D(Lε) such that the following “error function”,

Err(u) := −ε2∆u+
p(x)

4ε2
u− λ̃u,

satisfies, for any C(ε) exponentially decreasing, the inequality:

∥Err(u)∥L1(RN ) ≤ C(ε), ε≪ 1.
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In the next Lemma, we show that ϕ0(x) is a quasi-eigenfunction of Lε in (3.3),
in the sense of Definition 1. Identical computations bring that

ϕd0(x) := exp

(
−d|x− x0|2

4ε2

)
is a quasi-eigenfunction of the operator defined in (3.3), too. However, it turns out
that ϕ0(x) is a better approximation of the ground-state of (3.3) than ϕd0(x). The
meaning of the last sentence is clarified below.

Lemma 3. Under the hypotheses of Lemma 2, let us fix d > 1. Then

∥Err(ϕ0)∥L1(RN ) < ∥Err(ϕd0)∥L1(RN ), ϕd0(x) = exp(−d|x− x0|2

4ε2
). (3.7)

Proof. Thanks to Lemma 2, in terms of the Rayleigh quotient,

λ̃0 =
N

2
+O

(
R2

ε2

)
exp

(
−cR

2

ε2

)
,

is reached by ϕ0(x). This way, by comparing the two problems,

−ε2∆ϕ0 +
p(x)

4ε2
ϕ0 =

N

2
ϕ0 + Err(ϕ0), −ε2∆ϕd0 +

p(x)

4ε2
ϕd0 =

N

2
ϕd0 + Err(ϕd0),

with p(x) in (3.3), where

Err(ϕ0) =

[
|x|2

4ε2
(χBR(0) − Id) +

d|x− x0|2

4ε2
χBR(x0)

]
ϕ0,

Err(ϕd0) =

[
d|x− x0|2

4ε2
(χBR(x0) − Id) +

|x|2

4ε2
χBR(0) +

N(d− 1)

2

]
ϕd0,

and integrating in space, one gets (3.7). After proving that
• the best approximation for the first eigenvalue associated with Lε in (3.3),
λ̃0 ≈ N

2 , is provided by ϕ0(x) (Lemma 2),
• ϕ0(x) is the best quasi-eigenfunction (Lemma 3),

we finally show that the solution to the spectral problem accumulates in |x|2
4ε2 , the

widest well.
Proposition 2. Le p(x) be a double well potential satisfying conditions [P].

Let x1,x2 be the centers of the two potential wells, and x1 be the widest one. The
(normalized) solution u(x) ∈ H1(Kε) to the spectral problem associated with (3.3)
accumulates in the widest well. More precisely, for a fixed ε > 0, let BR(xi) be the
disk of radius R > 0 and center xi, i = 1, 2, there exists ε0 > 0 such that,

∀ε ≤ ε0,

∫
BR(x1)

|u(x)|2 dp > exp

(
c|x1 − x2|2

ε2

)∫
BR(x2)

|u(x)|2 dp.
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Proof. Without loss of generality, we consider Lε in (3.3). The first eigenfunction
is well approximated by ϕ0(x). This way,∫
BR(0)

|ϕ0(x)|2 dp =

∫
BR(0)

|ϕ0(x)|2
|x|2

4ε2
dx = 2π

∫ R

0

exp(− ρ2

2ε2
) ρ3 dρ;∫

BR(x0)

|ϕ0(x)|2 dp =

∫
BR(x0)

|ϕ0(x)|2
d|x− x0|2

2ε2
dx

= d exp(−|x0|2

2ε2
)

∫ 2π

0

dθ

∫ R

0

exp(
−ρ2 − 2ρx0 cos θ − 2ρy0 sin θ

2ε2
) ρ3 dρ

≥ 2πd exp(−|x0|2

ε2
)

∫ R

0

exp(−ρ
2

ε2
) ρ3 dρ,

which ends the proof.
3.2. Distance from the wells. Given a potential well and a localized pertur-

bation: does the distance between each other affect the spectral problem ? If wells are
far enough from each other, this is a local question which is addressed by perturbing
the harmonic potential. Hereafter, ε = 1 and the term N

2 in (2.1) is ignored,

L(u) = −∆u+
|x|2

4
u, ϕ0(x) = exp(−|x|2

4
). (3.8)

Let a small perturbation be given by χBR(x0)(x), the characteristic function of a disk
centered in x0 of radius R > 0, and consider a perturbed spectral problem,

LR(u) = −∆u+
|x|2

4
u+ χBR(x0)u = λu. (3.9)

The ground-state ϕ0(x) of (3.8) can be seen as an quasi-eigenfunction for the per-
turbed problem (3.9), as it almost satisfies the spectral equation for LR(u),

−∆ϕ0 +
|x|2

4
ϕ0 + χBR(x0)ϕ0 ≈ λϕ0,

with an error

Err(x0) = χBR(x0)ϕ0(x) = χBR(x0) exp(−
|x|2

4
).

In one dimension, N = 1, such an error is easy to quantify, for instance in L1,

x0 7→ ∥Err(x0)∥L1(R) =

∫ x0+R

x0−R
exp(−|x|2

4
) dx.

so that its variations with respect to x0 ∈ R satisfy:

d

dx0
∥Err(x0)∥L1(R) = exp(−

∣∣∣∣x0 +R

2

∣∣∣∣2)− exp(−
∣∣∣∣x0 −R

2

∣∣∣∣2) =
{
< 0, (x0 > 0),

> 0, (x0 < 0).

This derivative shows that,
• the position x0 = 0 is a local maximum for ∥Err(x0)∥L1(R);
• the perturbation’s effects on (3.8) decrease with both |x0| and R.

This elementary argument can be extended to N dimensions; precise results on the
role of the position of the perturbation are given in, e.g. [48].



10 Roberta Bianchini, Laurent Gosse, and Enrique Zuazua

3.3. Variations of the spectral components. Coming back to a general po-
tential p(x) in (3.1), we consider L(u) in (3.8), where λ, u are any eigenvalue and
normalized eigenfunction. Let M be any linear bounded operator and δ ≪ 1 a con-
stant small enough: again, we treat λ as a quasi-eigenvalue for the perturbed operator,

Lu+ δMu = λu+ Errδ(u), where Errδ(u) = δMu. (3.10)

We take the derivative of (3.10) w.r.t. δ, calculated in δ = 0,

Lu′ +Mu = λ′u+ λu′ +O(∥Mu∥), where ·′ := d

dδ

∣∣∣∣
δ=0

Namely,

(L− λ)u′ = (λ′ −M)u+O(∥Mu∥). (3.11)

Since λ is an eigenvalue of L, associated with the eigenfunction u, then u ∈ Ker(L−λ).
Fredholm’s Alternative implies that there exist solutions u′ to (3.11) such that

(λ′ −M)u+O(∥Mu∥) ⊥ Ker(L− λ),

i.e., denoting by < ·, · > the L2 scalar product,

< (λ′ −M)u, u >= O(∥Mu∥), ∥u∥2 =< u, u >= 1,

then,

λ′ =
d

dδ

∣∣∣∣
δ=0

λ(δ) =< Mu, u > +O(∥Mu∥), (3.12)

namely

|λ′| ≤ ∥Mu∥∥u∥+O(∥Mu∥) = ∥Mu∥+O(∥Mu∥),

so that the perturbation δM affects eigenvalues according to the way M affects the
original eigenfunction u. Yet, we look at the variations of this eigenfunction by taking
the derivative with respect to δ of the scalar product ∥u∥2 =< u, u >= 1.

1

2

d

dδ

∣∣∣∣
δ=0

(∥u∥2) =< u, u′ >= 0, i.e. u′ ⊥ u.

Orthogonality u′ ⊥ u and (L− λ)u′ ⊥ u, along with Fredholm’s Alternative imply

u′ is proportional to (λ′ −M)u+O(∥Mu∥) = (L− λ)u′,

so that, locally for δ ≃ 0,

∥u′∥ ≤ C∥Mu∥ for a given constant value C(λ).

4. Two-dimensional “Steklov numerical scheme”. In this section, a deriva-
tion is recalled from [17], in order to establish several properties in close relation with
the original problem of the “flea on the elephant”. Hereafter, we shall always work on
a uniform, Cartesian computational grid, with ∆x = ∆y.
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bb b

b

b

uni,j

uni+1,j

uni,j+1

uni,j−1

uni−1,j

⊗

⊗ ⊗

⊗

ᾱi− 1
2 ,j−

1
2

Figure 4.1. Transmission conditions at un
i,j given by Steklov-Poincaré operators.

4.1. Derivation of the numerical process. Consider the stationary, strictly
elliptic and coercive, two-dimensional problem,{

−∆u+ α2(x, y)u = 0, (x, y) ∈ Ω,

u(x, y) = g(x), (x, y) ∈ ∂Ω,
(4.1)

where Ω is a polygonal domain of R2. The numerical simulations, carried out with
the “Steklov scheme” [17], and presented below mostly focus on the spectral analysis
associated with the strictly elliptic operator L(u) := −∆u + α2(x, y)u. Accordingly,
we shall work on the square (Lipschtiz) domain Ω = (0, 1)2 ⊂ R2, so that the typical
regularity for u should be at least H2(Ω), see [8, 21]. We refer to Appendix A for
elementary regularity results for problems like (4.1) in a square domain: in particular,
when the compatibility conditions (A.2) hold at each corner, the Hölder regularity of
inhomogeneous Dirichlet data g passes to the solution u, see Theorem A.2.

The “Steklov scheme”, see [17, 18] works in the following way: (see Fig. 4.1)
• at each “node”, (xi− 1

2
, yj− 1

2
), the potential is “frozen”, so that

ᾱ2
i− 1

2 ,j−
1
2
:= α2(xi− 1

2
, yj− 1

2
), i, j ∈ Z2;

• in each disk DR(i− 1
2 , j −

1
2 ), centered at a node,

DR(i−
1

2
, j − 1

2
) =

{
|x− xi−1/2|2 + |y − yj−1/2|2 ≤ R2

}
, R =

∆x√
2
,

the following problem is explicitly solved in polar coordinates,{
−∆v + ᾱ2

i− 1
2 ,j−

1
2

v = 0, (x, y) ∈ DR,

v = g on the boundary, (x, y) ∈ CR := ∂DR,
(4.2)



12 Roberta Bianchini, Laurent Gosse, and Enrique Zuazua

by means of Fourier-Bessel series involving “modified Bessel functions”, In(·).
Note that, as shown in Figure 4.1, in the discrete framework we only consider
exactly three values of the trace of v at the boundary CR(i − 1

2 , j −
1
2 ), i.e.,

v(xi, yj), v(xi−1, yj), v(xi, yj−1). However, at the moment let us consider the
BVP (4.2) at the formal level, keeping in mind that precise trace estimates
on the discrete approximation of g in (4.2) will be discussed in Section 4.2.

• The exact solution of the stationary BVP (4.2) reads,

v(r, θ) = A0I0(ᾱr) +
∑
n∈N

(An cosnθ +Bn sinnθ)In(ᾱr), r ≤ R, (4.3)

where ᾱ = ᾱi− 1
2 ,j−

1
2
, and coefficients are determined by the boundary data

prescribed on the circle CR(i − 1
2 , j −

1
2 ). More precisely, if we are given a

boundary condition g ∈ Hs(0, T = 2πR), then it admits a Fourier series,

g(x) = a0 +
∑
n∈N

an cos(
2πnx

T
) + bn sin(

2πnx

T
),

so that, setting r = R in (4.3), and by uniqueness, we have

A0 =
a0

I0(ᾱR)
, An =

an
In(ᾱR)

, Bn =
bn

In(ᾱR)
, (4.4)

meaning that the solution to (4.2) is completely known.
• At this point, the main idea to derive the Steklov scheme, see [17, 18], is

based on the discretization of the normal derivative of the solution v(r, θ) in
(4.3), obtained by means of the Steklov-Poincaré operator. Since the domain
is circular, the normal derivative reduces to the radial one, and the Steklov-
Poincaré operator can be made explicit,

1

ᾱ

∂v

∂r
(R, θ) = A0I1(ᾱR) +

∑
n∈N

(An cosnθ +Bn sinnθ)
In−1 + In+1

2
(ᾱR),

and, by using identities (4.4), this rewrites,
1

ᾱ

∂v

∂r
(R, θ) = a0

I1
I0

(ᾱR)+
∑
n∈N

(an cosnθ+bn sinnθ)
In−1 + In+1

2In
(ᾱR). (4.5)

• In practice, as anticipated before, we never have all the Fourier coefficients
at hand, because there are at most four discrete (grid) numerical values,

Pk = R(cos θk, sin θk), 0 ≤ k ≤ 2, θk =
kπ

2
, (4.6)

on each circle CR(i± 1
2 , j ±

1
2 ), so the former series are truncated at n ≤ 1,

1

ᾱ

∂v

∂r
(R, θ) = a0

I1
I0

(ᾱR) + (a1 cos θ + b1 sin θ)
I0 + I2
2I1

(ᾱR). (4.7)

The explicit expressions of coefficients a0, a1, b1 are obtained by means of
(4.3), truncated at n ≤ 1, to each grid value Pk in (4.6) of the circle’s bound-
ary CR(i− 1

2 , j −
1
2 ). Precisely, expression (4.3) with identities (4.4) gives

P0 = v(R, θ = 0) = uni,j = A0I0(ᾱR) +A1I1(ᾱR),
P1 = v(R, θ = π

2 ) = uni−1,j = A0I0(ᾱR) +B1I1(ᾱR),
P2 = v(R, θ = −π

2 ) = uni,j−1 = A0I0(ᾱR)−B1I1(ᾱR),
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yield: 
a0 = A0I0(ᾱR) =

uni−1,j + uni,j−1

2
,

a1 = A1I1(ᾱR) = uni,j −
uni−1,j + ui,j−1

2
,

b1 = B1I1(ᾱR) =
uni−1,j − uni,j−1

2
.

(4.8)

Inserting (4.8) into (4.7),

1

ᾱ

∂v

∂r
(R, θ) =

{
uni,j

I0 + I2
2I1

cos θ + uni−1,j

[
I1
2I0

+
I0 + I2
4I1

(sin θ − cos θ)

]

+ uni,j−1

[
I1
2I0

− I0 + I2
4I1

(sin θ + cos θ)

]}
(ᾱR).

(4.9)
In the end, by using the regularity of the solution to the considered BVP, the
Steklov scheme is derived by balancing the four normal (radial) derivatives
for each circle CR(i± 1

2 , j ±
1
2 ),

∂v

∂r
(R, 0)(ᾱi− 1

2 ,j−
1
2
R) +

∂v

∂r
(R,

π

2
)(ᾱi− 1

2 ,j+
1
2
R)

+
∂v

∂r
(R, π)(ᾱi+ 1

2 ,j+
1
2
R) +

∂v

∂r
(R,

3π

2
)(ᾱi+ 1

2 ,j−
1
2
R) = 0,

(4.10)

and so the following numerical scheme is obtained,

ui,j

{
F(ᾱi− 1

2 ,j−
1
2
) + F(ᾱi+ 1

2 ,j−
1
2
) + F(ᾱi+ 1

2 ,j+
1
2
) + F(ᾱi− 1

2 ,j+
1
2
)
}

+ ui−1,j

{
G(ᾱi− 1

2 ,j−
1
2
) + G(ᾱi− 1

2 ,j+
1
2
)
}

+ ui,j−1

{
G(ᾱi− 1

2 ,j−
1
2
) + G(ᾱi+ 1

2 ,j−
1
2
)
}

+ ui+1,j

{
G(ᾱi+ 1

2 ,j−
1
2
) + G(ᾱi+ 1

2 ,j+
1
2
)
}

+ ui,j+1

{
G(ᾱi+ 1

2 ,j+
1
2
) + G(ᾱi− 1

2 ,j+
1
2
)
}
= 0,

(4.11)

where

F(α) = α
I0 + I2
2I1

(αR), G(α) = H(α)−F(α)

2
, H(α) = α

I1
I0

(αR).

Standard results for In(·) imply that both F(α) and G(α) behave like O(1/R)
when ᾱR ≪ 1 and O(1) when ᾱR ≫ 1. Moreover, (4.11) was proved to be
consistent with (4.1) and monotone (hence, positivity-preserving) in [17].

Yet, consider a N ×N two-dimensional grid (N2 internal points), and given the 2D
array of values ui,j , define the following one-dimensional vector,

UN =
[
u1,1, u2,1, · · · , uN,1, u1,2, · · · , uN,2, · · · · · · · · · , u1,N , · · · , uN,N

]
. (4.12)

Identity (4.11) recasts in matrix form like,

PNUN = B, PN a (N2 ×N2) matrix, (4.13)
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where B stands for discretized boundary data.
Lemma 4. Matrix PN in (4.13) is a symmetric M -matrix.
Proof. Let Ci,j(Si,j) be the general coefficient of the term ui,j , where Si,j indicates

in which grid’s point xi,j relation (4.11) is used. It is straightforward to check that
• Ci+1,j(Si,j) = Ci,j(Si+1,j) = G(ᾱi+1/2,j−1/2) + G(ᾱi+1/2,j+1/2), i, j ≥ 1;
• Ci,j+1(Si,j) = Ci,j(Si,j+1) = G(ᾱi+1/2,j+1/2) + G(ᾱi−1/2,j+1/2), i, j ≥ 1;
• Ci−1,j(Si,j) = Ci,j(Si−1,j) = G(ᾱi−1/2,j−1/2) + G(ᾱi−1/2,j+1/2), i ≥ 2, j ≥ 1;
• Ci,j−1(Si,j) = Ci,j(Si,j−1) = G(ᾱi+1/2,j−1/2) + G(ᾱi−1/2,j−1/2), i ≥ 1, j ≥ 2.

A sufficient condition for PN being a M -matrix is that:
• its principal diagonal is strictly positive,
• other entries are negative or null,
• it is diagonally-dominant.

All these properties follow from (4.11) because, for any n, In(x) ≥ 0 for x ≥ 0 and
they are monotonically increasing.

Accordingly, PN has a positive inverse, uniformly in ∥α2∥∞R. A useful estimate
is the minimum of its eigenvalues, because ∥(PN )−1∥2 ≤ 1/min(µℓ). Such a number
can be explicitly computed (see [11, pages 179–181] and [52]) when the potential is a
constant, α2 ∈ R+: being PN block-diagonal (with N ×N blocks),µℓ = 4F(α) + 8G(α) cos(π∆x),∥∥(PN )−1

∥∥
2
≤ 1

4(F(α) + 2G(α) cos(π∆x))
.

(4.14)

Before studying the truncation errors of (4.11), we stress that such a monotone dis-
cretization of (4.1) is a good candidate for problems which develop sharp layers.
Indeed, the modified Bessel functions In display an exponential behavior at infinity,
so that (4.11) can be fairly considered a “two-dimensional exponential-fit scheme”.

4.2. Truncated series and “localized sampling”. As mentioned before, in
practice, it is necessary to truncate the Fourier-Bessel series of the exact solution
v(r, θ), because only 4 grid points are available on each circle CR(i± 1

2 , j±
1
2 ) (instead

of boundary data of co-dimension 1), and for the present scheme, we use only 3.
In this section, we provide an estimate of the approximation due to this 3-points
discretization on each one of the four circles of the stencil, by comparison with the 4-
points discretization, which results to be an application of the trapezoidal integration
rule. Hereafter, consider h(θ) ∈ Hs(0, 2π), 2π-periodic, that is approximated by two
different trigonometric polynomials,{

h4(θ) = a0 + a1 cos θ + b1 sin θ + a2 cos 2θ,
h3(θ) = α0 + α1 cos θ + β1 sin θ,

both of them being determined by imposing,{
h4(0) = c, h4(

π
2 ) = a, h4(π) = d, h4(−π

2 ) = b,
h3(0) = c, h3(

π
2 ) = a, h3(−π

2 ) = b.

Hence, given any 4 generic points on a circle CR, coefficients read:

a0 =
1

4
(a+ b+ c+ d), b1 =

1

2
(a− b),

a1 =
1

2
(c− d), a2 =

c+ d

4
− a+ b

4
,
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so that,

a0 = O(1), a1,b1 = O(R), a2 = O(R2),

along with

α0 =
1

2
(a+ b), α1 = c− 1

2
(a+ b), β1 =

1

2
(a− b).

The polynomial h3 is sometimes referred to as to a “localized sampling” because,
oppositely to h4, it interpolates only the 3 points which are the closest to the location
where the radial derivative is meant to be computed. Despite their coefficients are
distinct, their difference h4 − h3 depends only on a2: indeed,

(h4 − h3)(θ) = (a0 − α0) + (a1 − α1) cos θ + a2 cos 2θ

= a2(1− 2 cos θ + cos 2θ).
(4.15)

The fact that the gap h3 − h4 is like a2, a “trapezoidal approximation”, is essential.
4.3. Local truncation error. If the circular trace of a 2D function u(x, y), has

a very small “mixed derivative”, |∂2xyu| ≪ 1, then a2 ≃ 0. Accordingly, define

g(x) = h(Rθ), g : (0, T = 2πR) → R, g is T -periodic.

It isn’t easy to estimate the (curvilinear) derivatives of g with respect to the abscissa
x because of the circle’s curvature, which equals 1

R :

dg

dx
=

1

R

dg

dθ
= −∂xu(R cos θ,R sin θ) sin θ + ∂yu(R cos θ,R sin θ) cos θ,

d2g

dx2
= − 1

R

(
∂xu(R cos θ,R sin θ) cos θ + ∂yu(R cos θ,R sin θ) sin θ

)
+ ...,

hence a “bad term” 1
R
∂u
∂r appears in the second derivative of g. This complicates the

control of errors produced when approximating h with both h4 and h3. To estimate
the noise induced by the “localized sampling” of only 3 grid points,

∥g − g3∥L2(0,T ) ≤ ∥g − g4∥L2(0,T ) + ∥g4 − g3∥L2(0,T ),

and we proceed thanks to the elementary observation:

∥g4 − g3∥2L2(0,T ) = |a2|2
∫ T

0

∣∣∣∣1− 2 cos(
x

R
) + cos(

2x

R
)

∣∣∣∣2 dx = T (1 + 4 + 1)|a2|2.

Lemma 5. Let u ∈ Hs(R2), s ≥ N + 1
2 , and f : (0, T = 2πR) → R its trace on a

circle of radius R > 0. Define the “N -points approximation” of its average f̂(0) as,

f̂N (0) :=
1

N

N−1∑
j=0

f(j
T

N
), f̂(0) =

1

T

∫ T

0

f(x)dx =
1

2π

∫ 2π

0

f(θ)dθ, θ =
x

R
,

then, either
• the method is exact, f̂(0) = f̂N (0) if f̂(k) ≡ 0 when |k| ≥ N ;
• or its error satisfies |f̂(0)− f̂N (0)| ≤

∑
k∈Z∗

|f̂(Nk)| ≤ O(RN ).



16 Roberta Bianchini, Laurent Gosse, and Enrique Zuazua

Figure 4.2. Counter-example of [4, Thm. 7]: polynomial (left) and its trace on C(0,∆x) (right).

Proof. See Appendix B.
Remark 2. Theorem 7 in [4] states that the LTE of the classical 5-points scheme

for Laplace’s equation1, being the limit ᾱ → 0 of (4.11, is of order ∆x4. Its proof
draws on the harmonic polynomial, the real part of (x+ iy)4 −∆x4, see Fig. 4.2,

p(x, y) = x4 − 6x2y2 + y4 −∆x4, (x, y) ∈ (−∆x,∆x)4,

for which p(±∆x,±∆x) = 0, but p(0, 0) = ∆x4 ̸= 0. Its trace on the circle centered
at the origin, of radius ∆x, C(0,∆x), is displayed on Fig. 4.2 (right) and reads

p(∆x cos θ,∆x sin θ) = ∆x4
(
cos4 θ − 6 cos2 θ sin2 θ + sin4 θ − 1

)
= ∆x4

(
cos(4θ)− 1

)
.

Lemma 5 applies to that simple case because, for any harmonic function u ∈ H
9
2 (R2),

u(0, 0) =
1

2πR

∫
C(0,R)

u(x, y) dℓ

=
1

4

(
u(R, 0) + u(0, R) + u(−R, 0) + u(0,−R)

)
+O(R4),

and picking R = ∆x, one recovers both second-order accuracy for general solutions,
and the exactness of the method if no frequencies higher than |k| = 3 are present. Such
bounds apply to “discrete weighted means” [15] and “tailored methods” [23], too.

The discrepancy between boundary data which involves the exact Fourier coeffi-
cients ĝ(k) and the one involving α0, α1, β1 is: (since g is real, ĝ(k) = ĝ(−k)∗)

|ĝ(0)− α0|2 + |2ℜ(ĝ(1))− α1|2 +
∣∣i(ĝ(1)− ĝ(−1)

)
− β1

∣∣2 + ∑
|k|>1

|ĝ(k)|2.

Theorem 4.1. Consider the problem (4.1) with the coefficient α ≡ ᾱ being
constant, and a corresponding solution u(x, y):

• if u ∈ C4, the global L2 error of (4.11) is second-order as ∆x→ 0;
• if ĝ(k) = 0 for |k| ≥ 2, the approximation (4.10) matches the exact one (4.5).

Proof. We establish each statement independently for the sake of clarity:

1which is exact for linear solutions of ∆u = 0. In 2D, there are only two linearly independent
homogeneous harmonic polynomials of degree m : the real and imaginary part of (x+ iy)m.
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• Given a point xi, yj , the local truncation error (LTE) is the discrepancy τi,j :=
τ(xi, yj) which remains when pointwise values of u, the exact solution to (4.1)
are inserted into the scheme (4.11). By grouping terms, it comes,

0 = F(ᾱ)
(
4ui,j − ui±1,j±1

)
+H(ᾱ)ui±1,j±1

= F(ᾱR)
(
−∆x2 ∆u(xi, yj) +O(∆x4)

)
+ 4H(ᾱ)

(
u(xi, yj) +O(∆x2)

)
,

so that, by performing Taylor expansions of In(ᾱR) with 0 ≤ ᾱR≪ 1,

F(ᾱ) =
1

R
+O(R), H(ᾱ) = ᾱ2R

2
+O(R3),

and the LTE is O(R3). To deduce the global error of the scheme, the L2

norm is computed by means of pointwise values,

∥u− u∆x∥2L2 = ∆x2
∑
i,j

|u(xi, yj)− ui,j |2. (4.16)

Thanks to the linearity of the scheme (4.11)–(4.13),

PN (u)− PN (u∆x) = τ = PN (u− u∆x),

being τ the formerly derived LTE. The global L2 error is controlled by,

∥u− u∆x∥2L2 = ∥(PN )−1 τ∥2L2 ≤
∥∥(PN )−1

∥∥2
2
∥τ∥2L2 ,

and the bound (4.14) on PN . Second-order accuracy follows from,∥∥(PN )−1
∥∥
2
= O(

1

R
) when 0 ≤ ᾱR≪ 1.

• We study the deviation between the exact derivatives (4.5) and the truncated
ones (4.7), used in (4.10), which involve only the first 3 terms of the Fourier
expansion (4.3). Since exact modified Bessel functions are used in the solution
v(r, θ) to (4.2) along with its radial derivatives (4.9), we must control∣∣∣∣ I0 + I2

2I1(ᾱR)

∣∣∣∣2 (|ĝ(1) + ĝ(−1)− α1|2 + |i(ĝ(1)− ĝ(−1))− β1|2
)

+

∣∣∣∣I1(ᾱR)I0(ᾱR)

∣∣∣∣2 |ĝ(0)− α0|2 +
∑
|k|>1

∣∣∣∣Ik−1 + Ik+1

2Ik(ᾱR)

∣∣∣∣2 |ĝ(k)|2

≤
∣∣∣∣ I0 + I2
2I1(ᾱR)

∣∣∣∣2
(
|ĝ(1) + ĝ(−1)− α1|2 + |i(ĝ(1)− ĝ(−1))− β1|2

+
∑
|k|>1

k2 |ĝ(k)|2
)

+

∣∣∣∣I1(ᾱR)I0(ᾱR)

∣∣∣∣2 |ĝ(0)− α0|2,

because standard properties of modified Bessel functions yield,

∀(x > 0, n ∈ N),
∣∣∣∣In−1 + In+1

2In(x)

∣∣∣∣2 ≤ n2
∣∣∣∣I0 + I2
2I1(x)

∣∣∣∣2 .
Each term can be bounded as follows:
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– |ĝ(0)− α0| = |(ĝ(0)− a0) + (a0 − α0)| = |ĝ(0)− a0 + a2|;
– |ĝ(1) + ĝ(−1)− α1| = |ĝ(1) + ĝ(−1)− a1 + 2a2|;
– |i(ĝ(1)− ĝ(−1))− β1| = |i(ĝ(1)− ĝ(−1))− b1|;
–
∑

|k|>1 k
2 |ĝ(k)|2 ≤ ∥g∥2H1 .

Since g is real-valued and a0,a1,b1,a2 are computed by trapezoidal rule with
N = 4, we use triangular inequalities in conjunction with Lemma 5,

a0 − ĝ(0) =
∑
k∈Z∗

ĝ(4k), a2 = 4ℜ(ĝ(2)) + 2
∑

k ̸={0,−1}

ℜ
(
ĝ(2 + 4k)

)
,

a1 − 2ℜ(ĝ(1)) = 2ℜ(ĝ(3)) + 2ℜ(ĝ(5)) +
∑
|k|>1

ĝ(1 + 4k) + ĝ(−1 + 4k),

b1 − 2ℑ(ĝ(1)) = 2ℑ(ĝ(3)) + 2ℑ(ĝ(5))− i
∑
|k|>1

ĝ(1 + 4k)− ĝ(−1 + 4k),

so that there is no error if ĝ(k) = 0 when |k| ≥ 2.

Theorem 4.1 expresses the fact that, while being only endowed with a 5-points
stencil, the “Steklov scheme” (4.11) delivers a high accuracy if the exact solution is
smooth, hence contains mostly low frequencies. Such regularity in a square domain
requires smooth boundary data to be supplemented by compatibility conditions (A.2)
at each corner, in order to apply Theorem A.2. This is a situation closely related
to “well-balanced methods” in 1D, see also [3, 16, 19] for 2D considerations. In
particular, the modified Bessel functions contained in (4.11), which numerically allow
not to split between the Laplacian and the zero-order term, moreover can fit the sharp
layers appearing in the solution in case the potential becomes stiff (like “exponential-
fit” methods in 1D). However, our error bound doesn’t directly extend to

−∆u+ α2 u = f(x, y), u
∣∣∣
∂Ω

= g,

because the 2D scheme approximates the source f as a piecewise constant function
inside each disk DR(i − 1

2 , j −
1
2 ) (see [17, page 177]); see e.g. [4] for more details.

Moreover, “compatibility conditions” involving f would be more intricate, see [2, 24].
5. Two-dimensional numerical illustrations.
5.1. Validation of error estimates. To assess practically the former estimates,

the following exact solutions were considered in Ω = (−1, 1)2 with ε = 0.75,

E0(x, y) = I0(r/ε), r2 = x2 + y2, tan θ = y/x,

E1(x, y) = −E0(x, y) + I1(r/ε) (cos θ − 0.5 sin θ)

E2(x, y) = 2E1(x, y) + 0.5 I2(r/ε)(sin 2θ + cos 2θ).

These exact solutions to −ε2∆u + u = 0 allow to check both the accuracy of (4.11)
and the numerical features of a computational domain endowed with “corners”. In-
deed, boundary data of E0, E1, E2 on ∂Ω display Lipschitz areas, where “compatibility
conditions” (see Appendix A) aren’t satisfied and most of the pointwise errors of the
Steklov scheme accumulates: this is easily noticed with the radial solution E0. On the
right column of Fig. 5.1, the convergence rates of standard finite-differences, discrete
weighted means (DWM, see [15, 23, 52]) and (4.11) are compared. The red line, which
indicates second-order accuracy, allows to easily check that both finite-differences and
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Figure 5.1. Boundary data (left), pointwise errors (middle) and L2 convergence rates (right)
for finite-differences, discrete weighted-means and Steklov schemes. Red line indicates second order.

DWM are second-order methods, the size of the errors being very different, though.
The Steklov scheme (4.11) behaves differently, in the sense that when the grid is
coarse, it displays a fourth-order accuracy, which degrades to second-order when
∆x/ε goes below a certain value. This was to be expected as the modified Bessel
functions behave like polynomials when their argument is very small (see also [52]).
The DWM (or “tailored”, [23, 25]) methods, while being very accurate on E0, E1, E2,
aren’t endowed with such a fast convergence property. Next, in order to illustrate the
behavior for smaller ε’s, another (more complex) exact solution,

E3(x, y) = 0.5 I2(r/ε)(sin 2θ + cos 2θ) + I3(r/ε) sin 3θ, ε = 0.1125 or 0.075,

was computed by both the DWM and Steklov schemes; see Fig. 5.2. By inspecting
boundary data, one sees that a seemingly small variation in ε can produce a strong
increase of the “spikes” at the Ω = (−1, 1)2 square’s corners where compatibility
conditions aren’t met. Indeed, for smaller ε, most of the numerical error accumulates
in these regions. Both numerical methods appear to be similar and to converge at
second order in L2 when ∆x/ε is moderate; when ∆x/ε is bigger, the Steklov scheme
seems to behave a little bit better than the DWM (see Fig. 5.2, bottom).

5.2. Simple harmonic potential. Consider now an eigenvalue problem like,

−ε2∆u+ V (x, y)u = λu, (x, y) ∈ R2,

for which both eigenvalues λ’s and eigenfunctions are explicitly known when posed in
the whole space, see Theorem 2.1. When 0 < ε is small enough, this explicit spectrum
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Figure 5.2. Boundary data (left), pointwise errors (middle) and L2 convergence rates (right)
for Tailored (discrete weighted-means) and Steklov schemes. Red line again indicates second order.

Figure 5.3. Decay of L2 norm (4.16): ε = 0.0066 (top, left), ε = 0.0033 (top, right), ε = 0.0022
(bottom, left) and ε = 0.0011 (bottom, right), for problem (5.1). Red line indicates third order.

can still be used in order to quantify pointwise errors of numerical schemes, even if the
computational domain must be restricted to a bounded square in R2. Accordingly,

− ε2∆u+ V (x, y)u = λu, V (x, y) = 0.25
(
|x− 0.5|2 + |y − 0.5|2

)
, (5.1)

is now posed in x, y ∈ (0, 1)2 and its numerical spectrum is sought by both centered
finite-differences, and the “Steklov 2D scheme”. The Gaussian ground-state ϕε0 allows
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to measure practically the decay of L2 norms (4.16) as ∆x → 0 for both numerical
algorithms: on Fig. 5.3, errors appear to decay at an order higher than 3 as soon
as ∆x/ε is small enough, so that the grid can efficiently represent the numerical
approximation. The decay corresponding to third order is illustrated by a red line
on Fig. 5.3. To minimize the influence of truncating the computational domain
without restricting too much the support of eigenfunctions, a convenient value of ε
was experimentally found to be ε ≃ 0.007, with a grid 32 × 32. Pointwise relative
errors are displayed on Fig. 5.4: the left column displays relative errors coming from
the “Steklov scheme” which suffer from less “mesh imprinting” (and are smaller) than
the ones generated by standard centered finite differences (on the right column).

Remark 3. An inspection of Fig. 5.3 suggests that there are three different
regimes (instead of apparently two for finite differences) for the “Steklov scheme”:

• a stiff one, ε≪ ∆x, where the grid is really too coarse for a radial solution,
• an intermediate one for which ε ≃ ∆x where L2 errors can decay very fast

(faster than order 4) compared to centered finite-differences,
• a fine-grid one, ε≫ ∆x for which L2 errors decay at a rate close to order 3.

5.3. (A-)symmetric two-well potential. We illustrate this case with the
“Steklov 2D scheme” on the same computational grid, ε = 0.02 and the potentials,

V (x, y) = 1.01− exp
(
− 30

(
|x− 0.65|2 + |y − 0.35|2

))
− exp

(
− 30

(
|x− 0.35|2 + |y − 0.65|2

))
,

(V + δV )(x, y) = 1.01− exp
(
− 30.5

(
|x− 0.65|2 + |y − 0.35|2

))
− exp

(
− 30

(
|x− 0.35|2 + |y − 0.65|2

))
,

which share the same depth, but one is slightly wider than the other. On the left
column of Fig. 5.5, usual symmetric eigenfunctions are generated by the scheme
in presence of the double-Gaussian potential V (x, y), x, y ∈ (0, 1)2 with Dirichlet
boundaries and 25 × 25 grid points. As expected, the ground state has a definite
sign, in accordance with the statements in Proposition 2. For the perturbed potential
V +δV , a quite different picture emerges as the perturbed ground state is now strongly
localized in the largest well, still being of a definite sign. The first perturbed excited
state is localized in the narrow well and is endowed with small negative values. More
excited eigenfunctions are less localized, but still, are never symmetric. Discrete
orthogonality is checked in practice by looking at the L2 scalar products: it was
found to hold, up to machine accuracy (≃ 10−16) for both the five first unperturbed
eigenfunctions, and the perturbed ones (see also [37] for other benchmarks).

5.4. Time-dependent problem with two asymmetric wells. The 2D Steklov
scheme (4.11) can be recast as a time-marching algorithm, see [17, page 184], for

∂tu+ ε2∆u+ V (x, y)u = 0. (x, y) ∈ (0, 1)2, (5.2)

with Dirichlet boundary conditions. The potential was chosen as,

V (x, y) = 0.95− exp
(
− 10

(
|x− 0.75|2 + |y − 0.25|2

))
− exp

(
− 25

(
|x− 0.25|2 + |y − 0.75|2

))
.

(5.3)

Numerical results for ε2 = 0.00005, with a 32×32 grid, and Gaussian initial data are
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Figure 5.4. Steklov scheme with Bessel functions (left) vs. centered FD (right).

displayed on Fig. 5.6. As expected from the spectral results derived in Section 3, the
numerical solution accumulates more and more in the widest well, in agreement with
the shape of the ground-state for asymmetric potentials, as displayed (for instance)
on the right column of Fig. 5.5. The large-time behavior of (5.3) sees all the initial
data’s mass accumulate in the widest well, the narrow one being depleted (at a rate
which slows down as time grows). This is what is illustrated on the bottom line of
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Figure 5.5. Steklov scheme: symmetric (left) vs. asymmetric (right) potential.

Fig. 5.6, where the numerical steady-state is shown to have nearly all its mass inside
the widest well. Beyond T ≃ 50, the rate of change is very slow, though.

6. Conclusion and outlook. After recalling B. Simon’s “flea on the elephant”
phenomenon in 1D, see Fig. 1.1, analytical bounds were derived in Section 3 dealing
with various perturbations of the classical quadratic harmonic potential; in particular,
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Figure 5.6. Numerical solutions of time-dependent problem (5.2)–(5.3) at times T = 2, 3, 7, 20;
numerical steady-state at T = 100 (bottom, left) and corresponding L2 residues (bottom, right).

mass-accumulation in wider wells was justified with elementary arguments (see also
[9, 20, 31, 45]). Then, in Section 4, the 2D scheme of [16, 17] is derived in a way
which allows to produce error bounds for the constant coefficient case (see [52]). Such
an algorithm, involving modified Bessel functions in 2D, is reminiscent of “discrete
weighted means”, see [15, 23, 25, 40, 52]. Accordingly, the expected localization
behavior is retrieved in Section 5, mostly for rough computational grids for which
ε/∆x ≪ 1, see also [51], in both static and time-dependent contexts. As an outlook,
we outline an extension to a fourth-order Cahn-Hilliard [5, 12] type of equation:

∂tu−∆
(
u(1− u2)− ε∆u

)
= 0, x, y ∈ (0, 1)2. (6.1)

Following [50], we recast it as a system, except that, here, the nonlinearity is handled
as a (locally) constant coefficient, (i.e. mass-conservation property may be lost)

∂tu+ ε∆v − α2 v = 0, v = ∆u, ∆
(
u(1− u2)

)
≃ (1− ū2)∆u.
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The “frozen parameter” α varies from disk to disk (see Fig. 4.1),

α2(tn, xi± 1
2
, yj± 1

2
) = 1− u2(tn, xi± 1

2
, yj± 1

2
).

Starting from random initial data belonging to the interval (−1, 1), and fixing ε =

Figure 6.1. Simulation of Cahn-Hilliard equation (6.1): steady-state (left) and residues (right).

0.002 with a 32×32 computational grid, the expected phase-separation phenomenon,
displayed on Fig. 6.1, was retrieved by using an explicit Euler time-integrator.
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Appendix A. Elliptic regularity in a planar, square domain.
Let Ω = (0, 1) × (0, 1) be the (open) unit square and Γ stand for its boundary.

Consider the following strictly elliptic operator in Ω,

L[u] = −∆u+ r(x, y)u = 0, u
∣∣∣
Γ
= g, r ≥ 0, (A.1)

where both r and g are smooth functions. Because the domain is convex, but endowed
with “corners”, the variational solution to (A.1) cannot be expected to be smoother
than H2 in general, see [21] and, e.g., [29, Theorem 4.3]. Refined regularity estimates
relying on Besov spaces theory were given in [8, Carollary 3.1]:

Theorem A.1. Let r ≡ 0 in (A.1), which reduces to Laplace’s equation, and
g ∈W s,p(Γ) with p < 2

1−ε and s ∈ (1− ε, 1): the harmonic solution u ∈W t,q(Ω) for

1

2 + s
< q ≤ p, 0 < t < s+

1

q
.

If g ∈ H1(Γ), then s = 1, p = 2 and u ∈W t,q(Ω) with 1
3 < q ≤ 2 and 0 < t < 1 + 1

q .
Another point of view consists in seeking under which restrictions on g the solution

u can be as smooth as if (A.1) was solved in a smooth domain. Following [33], let

u(x, y) =

3∑
j ,ℓ=0

Λℓj(g)ϕi,j(x, y) + v(x, y), v smooth,
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where ℓ = 0, 1, 2, 3 is the index of a vertex, and Λ stands for a linear functional
acting on singular profiles ϕ localized around each corner of the domain Ω. These
functional are linear combinations of differential operators acting on g, and the number
of involved derivatives of g increases with respect to the index k. Accordingly, such
a decomposition suggests that cancelling the Λ’s should ensure that u can become
as smooth as its remainder v. These functionals were studied in many papers, after
early works by Nicol’ski, Volkov, Fufaev, see [34, Chap. III]: for (A.1) and x = y = 0,

Λj(g) =
d2jg

dx2j
(0+, 0)− (−1)j

d2jg

dy2j
(0, 0+) (A.2)

−
j∑
i=1

(−1)i−1 ∂2(j−i)

∂x2(j−i)
∂2(j−i)

∂y2(i−1)

(
r(0, 0)u(0, 0)

)
, j = 0, 1, 2, ...

Following [6, eq. (2.1)], see also [1, eq. (1.8-9)], the first ones in x = y = 0 are:

Λ0(g) = g(0+, 0)− g(0, 0+),

Λ1(g) =
d2g

dx2
(0+, 0) +

d2g

dy2
(0, 0+)− r(0, 0)u(0, 0),

Λ2(g) =
d4g

dx4
(0+, 0)− d4g

dy4
(0, 0+) +

(
∂2

∂x2
− ∂2

∂y2

)(
r(0, 0)u(0, 0)

)
.

If all the derivatives of both g and r vanish close to each corner, (A.2) holds. Ac-
cording to [24, Theorem 3.2] (see also [2, Theorem 2] and references therein), these
“compatibility conditions” suffice for (A.1) to pass the Hölder regularity of g onto u:

Theorem A.2. Let g ∈ C2,λ on Γ minus its 4 vertices and Λℓ0(g) = 0 for
ℓ = 0, 1, 2, 3: the solution of (A.1) u ∈ C2,λ(Ω̄). Moreover, for Ω̄ = [0, 1]× [0, 1],

u ∈ C2k,λ(Ω̄) ⇔ g ∈ C2k,λ and Λℓj(g) = 0 for j ≤ k and ℓ = 0, 1, 2, 3,

and if, under the same conditions, g ∈ C2k+1,λ, then u ∈ C2k+1,λ(Ω̄).
Such regularity results can be formulated in other functional spaces, see for in-

stance [35, 36]. There are several variants of this statement, like in [1, 10, 28, 33]:
Corollary 1. Assume that g ∈ C1,1 on Γ minus its 4 vertices and Λℓ0(g) = 0

for ℓ = 0, 1, 2, 3, then the following second derivatives of u are bounded in Ω,

max

(∣∣∣∣∂2u∂x2

∣∣∣∣ , ∣∣∣∣∂2u∂y2

∣∣∣∣) ≤ C, but not the mixed one, ∂2u

∂x ∂y
.

Restricting (A.2) to k = 0 only brings g(0+, 0) = g(0, 0+) at the vertex x = y = 0,
so that condition Λℓ0(g) = 0 means that g is continuous at all four vertices of Ω.

Appendix B. Trapezoidal rule and circular traces.
Let γR be the “circular trace operator” Hs(R2) → Hs− 1

2 (0, 2πR) for which,

γR : u 7→ γR[u], γR[u](θ) = u(R cos θ,R sin θ), f(x) = γR[u](Rθ),

where θ ∈ (0, 2π). The proof of Lemma 5 is split into several steps:
• Being f : (0, T = 2πR) → R periodic, it rewrites as a Fourier series,

f(x) =
∑
k∈Z

f̂(k) exp(ik
2πx

T
), f̂(k) =

1

T

∫ T

0

f(x) exp(−ik 2πx
T

)dx.
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Accordingly, the N -points (Nyström’s) “method of rectangles” rewrites:

T

N

N−1∑
j=0

f(j
T

N
) =

T

N

N−1∑
j=0

(∑
k∈Z

f̂(k) exp(ik
2πj

N
)

)

=
T

N

∑
k∈Z

f̂(k)

N−1∑
j=0

exp(ik
2πj

N
)

 .

• An elementary observation is that

1

T

∫ T

0

exp(ik
2πx

T
)dx− 1

N

N−1∑
j=0

exp(ik
2πj

N
) = −χ(k ∈ NZ∗),

where χ stands for the indicator function and Z∗, for Z without 0. Indeed,
for k ∈ Z, being a geometric summation of reason exp(ik 2π

N ),

N−1∑
j=0

exp(ik
2πj

N
) =

1− exp(ik 2π)

1− exp(ik 2π
N )

= N χ(k ∈ NZ),

so the numerator always vanishes. Indexes k ∈ NZ are such that the denom-
inator cancels, too: a Taylor expansion yields the expected result. Yet,

f̂(0)−

 1

N

∑
k∈Z

f̂(k)

N−1∑
j=0

exp(ik
2πj

N
)

 = −
∑

k∈Z, k ̸=0

f̂(Nk), (B.1)

and it remains to estimate the lacunary sum on the right-hand side.
• To estimate the right-hand side of (B.1), we recall that f is the restriction on a

circle of radius R > 0 and centered in (x0, y0) of u(x, y) ∈ Hs(R2). Standard
trace theory [41] gives that f ∈ Hs− 1

2 (0, T ): if s > 1, Sobolev inequalities
ensure that f is continuous. Moreover, for any index k ∈ N,

f̂(k) =
1

2π

∫ 2π

0

u(R cos θ,R sin θ) exp(−ikθ)dθ

= − R

2π

∫ 2π

0

(
− sin θ ∂xu+ cos θ ∂yu)

(
−1

ik
exp(−ikθ)

)
dθ

=
−iR
2πk

∫ 2π

0

−∂xu
(
sin θ exp(−ikθ)

)
+ ∂yu

(
cos θ exp(−ikθ)

)
dθ

=
R

4πk

∫ 2π

0

∂xu
(
exp(−i(k − 1)θ)− exp(−i(k + 1)θ)

)
dθ

− iR

4πk

∫ 2π

0

∂yu
(
exp(−i(k − 1)θ) + exp(−i(k + 1)θ)

)
dθ.

Recalling that γR[u](θ) = u(R cos θ,R sin θ), this yields:

γ̂R[u](k) =
R

2k

(
̂γR[∂xu](k − 1)− ̂γR[∂xu](k + 1)

−i
( ̂γR[∂yu](k − 1) + ̂γR[∂yu](k + 1)

))
,
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so that, the smoothness of u induces Fourier coefficients of γR[u] which are
of the order of powers of R, the radius of the circle. By induction, this
calculation can be repeated until,

– either Fourier coefficients of index zero are reached, and integrating by
parts isn’t possible;

– or the function u hasn’t enough regularity (when |k| > s− 1
2 ).

Finally, we get an estimate on the size of Fourier coefficients on the circle of
radius R, which can obviously be used to control the error (B.1):

∀k ∈ Z,
∣∣∣γ̂R[u](k)∣∣∣ = O

(
Rmin(|k|,s− 1

2 )
)
. (B.2)

If s− 1
2 ≥ |k|, then in general,

∀k ∈ Z,
∣∣∣γ̂R[u](k)∣∣∣ = O(R|k|)

∣∣∣ ̂γR[D|k|u](0)
∣∣∣ ,

which is the “circular average” of D|k|u, and the value at the circle’s center of its
harmonic extension. This agrees with the approximate values found at §4.2.
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