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Localization phenomena (sometimes called "flea on the elephant") for the operator L ε = -ε 2 ∆u + p(x)u, p(x) being an asymmetric double-well potential, are studied both analytically and numerically, mostly in two space dimensions within a perturbative framework. Starting from a classical harmonic potential, the effects of various perturbations are retrieved, especially in the case of two asymmetric potential wells. These findings are illustrated numerically by means of an original algorithm, which relies on a discrete approximation of the Steklov-Poincaré operator for L ε , and for which error estimates are established. Such a two-dimensional discretization produces less mesh-imprinting than more standard finite-differences and captures correctly sharp layers.

Introduction and preliminaries.

The "flea on the elephant" is an expression coined by Barry Simon in [START_REF] Simon | Semiclassical Analysis of Low Lying Eigenvalues[END_REF] to describe the following counter-intuitive phenomenon: being V (x, y) a symmetric (smooth) two-well potential and V + δV an arbitrarily small (smooth) perturbation of it, then for 0 < ε ≪ 1, corresponding perturbed eigenfunctions will preferably localize in the largest well (see also [START_REF] Landsman | A Flea on Schrödinger's Cat[END_REF]).

Elementary "flea on the elephant" in 1D.

Given ε > 0, we start from the steady one-dimensional Schrödinger equation for some energy level E ε ,

-ε∂ xx ψ ε + V (x)ψ ε = E ε ψ ε (x),
x ∈ (0, 1),

where, for 0 < a < b < 1, the (square-wells) potential V (x) is piecewise constant,

V (x) = V χ x∈(a,b) + ∞ ( χ x<0 + χ x>1 ) , V > 0.
Dirichlet conditions correspond to infinite potential walls: ψ(0) = ψ(1) = 0,

k := k(E ε ) = √ E ε ε , κ := κ(E ε ) = √ V -E ε ε ,
describe bound-states, so that, = exp(κ(b -a)), then

A 2 cos 2 ka(κ 2 tan 2 ka -k 2 ) D 2 cos 2 k(1 -b)(κ 2 tan 2 k(1 -b) -k 2 ) = 1, (1.2) 
so that, when a = 1 -b in (1.2), symmetry, D 2 = A 2 , easily follows. The asymmetric case is less straightforward in terms of algebra, even in 1D, see for instance [START_REF] Graffi | Tunnelling instability via perturbation theory[END_REF][START_REF] Jelic | The double well potential in quantum mechanics: a simple, numerically exact formulation[END_REF][START_REF] Landsman | A Flea on Schrödinger's Cat[END_REF][START_REF] Selg | Exactly solvable asymmetric double-well potentials[END_REF][START_REF] Song | Tunneling and energy splitting in an asymmetric double-well potential[END_REF] and [START_REF] Harrison | Quantum wells, wires and dots: theoretical and computational physics of semiconductor nano-structures[END_REF]Chapter 2]. Accordingly, numerical simulations of a 1D explicit example are displayed in Fig. 1.1. Finite-differences based on L-splines and borrowed from [START_REF] Gosse | L-Splines and Viscosity Limits for Well-Balanced Schemes Acting on Linear Parabolic Equations[END_REF] were set up in order to maximize both stability and accuracy in this context of a square-well potential: namely, we implemented both, a = 0.35, b = 0.65 on the left, a = 0.35, b = 0.675 on the right, with ε = 0.001, 2 7 grid points, and the following discretization,

r j± 1 2 = √ V (x j± 1 2 ) ε , - ε ∆x [ r j+ 1 2 sinh(r j+ 1 2 ∆x) ( ψ j+1 -cosh(r j+ 1 2 ∆x)ψ j ) - r j-1 2 sinh(r j-1 2 ∆x) ( cosh(r j-1 2 ∆x)ψ j -ψ j-1
) ]

= E ε ψ j .

2.

Gaussian eigenfunctions of the quadratic potential. Let a differential operator L ε (u) := -ε 2 ∆u + p(x)u have a potential with conditions [P]:

• p(x) ∈ C 2 (R N ), p(x) ≥ 0;

• p(x) has exactly two quadratic minima located in x i , for i = 1, 2 lim x→xi p(x) |x -x i | 2 = C i , for some constants C i .

More general potentials were considered in, e.g., [START_REF] Dancer | Semiclassical analysis of general second order elliptic operators on bounded domains[END_REF][START_REF] Harrison | Quantum wells, wires and dots: theoretical and computational physics of semiconductor nano-structures[END_REF][START_REF] Martinez | Effet tunnel et puits dégénérés[END_REF][START_REF] Reyes | An asymptotic eigenvalue problem for a Schrödinger type equation on domains with boundaries[END_REF]. In the whole space x ∈ R N , the eigenvalue problem for the harmonic oscillator reads, 

p(x) = N 2 + |x| 2 4ε 2 , L ε (u) = -ε 2 ∆u + ( N 2 + |x| 2 4ε 2 ) u, ( 2 
( |x| 2 4ε 2 ) w(x) inside L ε (u) = λu, ( 2.2) 
yields a (steady) convection-diffusion equation,

Lε (w) := exp ( - |x| 2 4ε 2 ) L ε (u) = ( -ε 2 ∆w -x • ∇w ) = λw. (2.3)
Namely, in terms of the new variable w(x), the spectral problem (2.1) reads

-ε 2 ∆w(x) -x • ∇w(x) = λw(x), x ∈ R N .
(2.4)

Convection-diffusion problem (2.4) recasts as a drift-diffusion (conservative) one,

-ε 2 ∇ • (K ε (x)∇w) -λwK ε (x) = 0, K ε (x) = exp ( |x| 2 2ε 2 
) , (2.5) so that nontrivial solutions to (2.4) are critical points of the following functional:

f → E ε (f ) = ε 2 2 ∫ R N |∇f | 2 K ε (x) dx - λ 2 ∫ R N |f (x)| 2 K ε (x) dx, (2.6) 
for f belonging, for ε fixed, to the following "weighted Sobolev space",

H 1 (K ε ) = { f : R N → R : ∫ R N ( |f | 2 + ε 2 |∇f | 2 ) K ε (x) dx < +∞ } . (2.7)
Proposition 1. For K ε (x) being as in (2.5) and H 1 (K ε ) given by (2.7), the continuous embedding

H 1 (K ε ) ⊂ L 2 (K ε ) is compact, H 1 (K ε ) ⊂⊂ L 2 (K ε ) := { f : R N → R : ∫ R N |f | 2 K ε (x) dx < +∞ } .
Proof. The proof contained in [START_REF] Escobedo | Variational problems related to self-similar solutions of the heat equation[END_REF] applies, based on the following lemma:

Lemma 1. For any f ∈ C 1 c (R N ), the Poincaré inequality holds: ∫ R N |f | 2 ( N 2 + |x| 2 4ε 2 ) K ε (x) dx ≤ ε 2 ∫ R N |∇f | 2 K ε (x) dx. (2.8) 
The differential operator Lε in (2.3) is set in the domain

D( Lε ) = { f ∈ H 1 (K ε ); Lε f ∈ L 2 (K ε ) } := H 2 (K ε ), (2.9) 
in which it is self-adjoint and, by Proposition 1, D( Lε ) ⊂⊂ L 2 (K ε ) compactly embedded. This implies that Lε presents an increasing sequence of eigenvalues (λ k ) k≥0 , where λ 0 > 0 is guaranteed by inequality (2.8). Moreover, for any m ≥ 0,

if f ∈ L 2 (K ε ), then (1 + |ξ| 2 ) m 2 f ∈ L 2 (R N ), so that the Fourier transform f is smooth, ∀m ≥ 0, f ∈ H m (R N ), f ∈ C ∞ (R N ).
It remains to take the Fourier transform of (2.4),

ε 2 |ξ| 2 ŵ(ξ)+N ŵ(ξ)+ξ•∇ ŵ(ξ) = λ ŵ(ξ), (x j ∂ xj w)(ξ) = -ŵ(ξ)-ξ j ∂ ξj ŵ(ξ). (2.10)
Another change of variables yields,

ξ • ∇v(ξ) = (λ -N )v(ξ), v(ξ) = exp(ε 2 |ξ| 2 2 ) ŵ(ξ), thus, v(ξ) is a polynomial function of degree (λ -N ) = k -1, k ∈ N, namely v(ξ) = P k-1 (ξ), P k-1 (ξ) homogeneous polynomial of degree k -1,
and solutions to (2.10) satisfy ŵ(ξ) = exp(-ε 2 |ξ| 2 /2)P k-1 (ξ), see also [START_REF] Escobedo | Variational problems related to self-similar solutions of the heat equation[END_REF].

Theorem 2.1. The eigenvalues of Lε in (2.3), where D( Lε ) ⊂⊂ H 1 (K ε ), are

λ k = N + k -1, k ∈ N, (2.11)
with the ground-state and its related eigenfunctions,

ϕ ε 0 (x) := exp ( - |x| 2 2ε 2 ) , D α ϕ ε 0 (x), α = (α 1 , • • • , α N ), |α| = k -1.

Perturbation analysis of the two wells potential.

Hereafter, double well potentials with identical and different wells are considered, in order to show the role played by symmetry. In the symmetric case with ε ≪ 1, eigenfunctions accumulate equally in both wells; oppositely, for asymmetric potentials, the ground state fills mostly the widest well (see [START_REF] Holcman | Singular perturbation for the first eigenfunction and blow-up analysis[END_REF] for more of a differential geometry approach). We qualitatively analyze effects of symmetry breaking in the potential shape p(x):

• accumulation of solutions in the widest well;

• the role played by the position of the perturbation;

• how a perturbation affects the spectrum of the original problem. Consider the spectral problem associated with

D(L ε ) ∋ u → L ε (u) = -ε 2 ∆u + p(x) 4ε 2 u, where p(x) satifies [P], (3.1) 
the following statements hold true:

• the ground state accumulates in the widest well;

• potential perturbations' affect the spectral problem as much as they are close to the wells; • eigenvalues and eigenfunctions' modifications occur according to the way the perturbation acts on the eigenfunctions of the original spectral problem.

Accumulation in the widest

well. Yet, pick 0 < ε ≪ 1, and consider the spectral problem (3.1), mostly when p(x) is a C 2 (R N ) has two wells at the same height but with possibly different widths. Its eigenvalues form an increasing sequence, whose minimum λ 1 is given by Rayleigh's quotient,

λ 1 = inf u∈D(L ε ) ∫ R N ε 2 |∇u| 2 + p(x) 4ε 2 |u| 2 dx ∫ R N |u| 2 dx . (3.2)
Defining the measure dp = p(x) dx, Rayleigh's quotient rewrites

λ 1 = inf u∈D(L ε ) ∫ R N ε 2 |∇u| 2 dx + 1 4ε 2 ∫ R N |u| 2 dp ∫ R N |u| 2 dx .
Lemma 2. Let x 0 be any point located at any positive and fixed distance from 0. Let d > 0: the first eigenvalue λ0 associated with the operator,

L ε = -ε 2 ∆ + p(x) 4ε 2 , p(x) = |x| 2 χ B R (0) + d|x -x 0 | 2 χ B R (x0) , (3.3)
satisfies, for a positive constant value c, the following expansion: .4) The shift between eigenvalues (3.4) and (2.11) comes from the factor N 2 in (2.1). Proof. The Rayleigh quotient reads:

λ0 - N 2 = O ( R 2 ε 2 ) exp ( - cR 2 ε 2 ) . ( 3 
λ0 = min ψ∈H 1 (R 2 ) ∫ R 2 ε 2 |∇ψ(x)| 2 + |ψ(x)| 2 4ε 2 ( |x| 2 χ B R (0) + d|x -x 0 | 2 χ B R (x0) ) dx ∫ R 2 |ψ(x)| 2 dx . (3.5) From Section 2, ϕ 0 (x) = exp(- |x| 2 4ε 2 ) solves -ε 2 ∆ϕ 0 + |x| 2 4ε 2 ϕ 0 = N 2 ϕ 0 ,
where

N 2 = λ 0 = min ψ ∈H 1 (R 2 ) ∫ R 2 ε 2 |∇ψ(x)| 2 + |x| 2 4ε 2 |ψ(x)| 2 dx ∫ R 2 |ψ(x)| 2 dx = ∫ R 2 ε 2 |∇ϕ 0 (x)| 2 + |x| 2 4ε 2 |ϕ 0 (x)| 2 dx ∫ R 2 |ϕ 0 (x)| 2 dx . (3.6)
The explicit expression of λ 0 , provided by the Rayleigh quotient, can be used in λ0 in (3.5), in order to get the desired approximation. More precisely, by substituting ϕ 0 (x) in the previous expression, the upper bound is given by

λ0 ≤ N 2 + 1 2πε 2 ( ∫ R 2 |x| 2 exp(-|x| 2 2ε 2 ) 4ε 2 (χ B R (0) -1) dx + ∫ R 2 d|x -x 0 | 2 χ B R (x0) exp(-|x| 2 2ε 2 ) 4ε 2 dx
) .

On the other hand, the lower bound,

λ0 = min ψ ∈H 1 (R 2 ) ∫ R 2 ε 2 |∇ψ(x)| 2 + |ψ(x)| 2 4ε 2 ( |x| 2 χ B R (0) + d|x -x 0 | 2 χ B R (x0) ) dx ∫ R 2 |ψ(x)| 2 dx = min ψ ∈H 1 (R 2 ) ( ∫ R 2 ε 2 |∇ψ(x)| 2 + |x| 2 4ε 2 |ψ(x)| 2 dx ∫ R 2 |ψ(x)| 2 dx + ∫ R 2 |ψ(x)| 2 |x| 2 4ε 2 (χ B R (0) -1) dx ∫ R 2 |ψ(x)| 2 dx + ∫ R 2 |ψ(x)| 2 d|x -x 0 | 2 4ε 2 χ B R (x0) dx ∫ R 2 |ψ(x)| 2 dx ) ≥ min ψ ∈H 1 (R 2 ) ∫ R 2 ε 2 |∇ψ(x)| 2 + |x| 2 4ε 2 |ψ(x)| 2 dx ∫ R 2 |ψ(x)| 2 dx - ( ∫ R 2 | ψ(x)| 2 |x| 2 4ε 2 (χ B R (0) -1) dx ∫ R 2 | ψ(x)| 2 dx + ∫ R 2 | ψ(x)| 2 d|x -x 0 | 2 4ε 2 χ B R (x0) dx ∫ R 2 | ψ(x)| 2 dx ) ,
where the last inequality holds for ψ(x) ∈ H 1 (R 2 ), being all the addends in the previous line positive. By using again (3.6) and setting ψ(x) = ϕ 0 (x), one gets

λ0 ≥ N 2 - 1 2πε 2 ( ∫ R 2 |x| 2 exp(-|x| 2 2ε 2 ) 4ε 2 (χ B R (0) -1) dx + ∫ R 2 d|x -x 0 | 2 χ B R (x0) exp(-|x| 2 2ε 2 ) 4ε 2 dx
) .

Passing to polar coordinates,

1 2πε 2 ∫ R 2 |x| 2 4ε 2 (Id -χ B R (0) )|ϕ 0 (x)| 2 dx = 1 8πε 4 ∫ 2π 0 dθ ∫ ∞ R ρ 3 exp(- ρ 2 2ε 2 ) dρ = (R 2 + 2ε 2 ) 4ε 2 exp(- R 2 2ε 2 ), ∫ R 2 exp(- |x| 2 2ε 2 ) dx = 2πε 2 .
Remark 1. Lemma 2 implies that λ 0 = N 2 is a good approximation for the expression of the first eigenvalue when the potential only has two wells. Performing exactly the same computations with

ϕ d 0 (x) = exp(-d|x-x0| 2 4ε 2
), one gets λ d 0 = N d 2 . However, in this case the error term in the expansion is bigger, meaning that this approximation is less accurate than the one provided by the widest Gaussian.

The parameter d > 0 in (3.3) controls the convexity of the well centered in x 0 . If the potential p(x) has different wells, the ground state is known to accumulate only in one well, see [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant[END_REF][START_REF] Helffer | Multiple wells in semi-classical limit[END_REF][START_REF] Holcman | Singular perturbation for the first eigenfunction and blow-up analysis[END_REF]. From Lemma 2 (and Remark 1), the expression of the

first eigenvalue λ0 = N 2 + O ( R 2 ε 2 ) exp ( - cR 2 ε 2
) is reached by ϕ 0 (x). This suggests that the accumulation well should be the one provided by |x| 2 4ε 2 . Definition 1 (see [START_REF] Ralston | Approximate eigenfunctions of the Laplacian[END_REF][START_REF] Ralston | On the construction of quasi-modes associated with stable periodic orbits[END_REF]). For a fixed λ ∈ R, a quasi-eigenfunction is any function u(x) ∈ D(L ε ) such that the following "error function",

Err(u) := -ε 2 ∆u + p(x) 4ε 2 u -λu,
satisfies, for any C(ε) exponentially decreasing, the inequality:

∥Err(u)∥ L 1 (R N ) ≤ C(ε), ε ≪ 1.
In the next Lemma, we show that ϕ 0 (x) is a quasi-eigenfunction of L ε in (3.3), in the sense of Definition 1. Identical computations bring that

ϕ d 0 (x) := exp ( - d|x -x 0 | 2 4ε 2
) is a quasi-eigenfunction of the operator defined in (3.3), too. However, it turns out that ϕ 0 (x) is a better approximation of the ground-state of (3.3) than ϕ d 0 (x). The meaning of the last sentence is clarified below.

Lemma 3. Under the hypotheses of Lemma 2, let us fix d > 1.

Then

∥Err(ϕ 0 )∥ L 1 (R N ) < ∥Err(ϕ d 0 )∥ L 1 (R N ) , ϕ d 0 (x) = exp(- d|x -x 0 | 2 4ε 2
).

(3.7)

Proof. Thanks to Lemma 2, in terms of the Rayleigh quotient,

λ0 = N 2 + O ( R 2 ε 2 ) exp ( - cR 2 ε 2
) , is reached by ϕ 0 (x). This way, by comparing the two problems,

-ε 2 ∆ϕ 0 + p(x) 4ε 2 ϕ 0 = N 2 ϕ 0 + Err(ϕ 0 ), -ε 2 ∆ϕ d 0 + p(x) 4ε 2 ϕ d 0 = N 2 ϕ d 0 + Err(ϕ d 0 ), with p(x) in (3.3),
where

Err(ϕ 0 ) = [ |x| 2 4ε 2 (χ B R (0) -Id) + d|x -x 0 | 2 4ε 2 χ B R (x0) ] ϕ 0 , Err(ϕ d 0 ) = [ d|x -x 0 | 2 4ε 2 (χ B R (x0) -Id) + |x| 2 4ε 2 χ B R (0) + N (d -1) 2 ] ϕ d 0 ,
and integrating in space, one gets (3.7). After proving that • the best approximation for the first eigenvalue associated with

L ε in (3.3), λ0 ≈ N 2 , is provided by ϕ 0 (x) (Lemma 2), • ϕ 0 (x)
is the best quasi-eigenfunction (Lemma 3), we finally show that the solution to the spectral problem accumulates in |x| 2 4ε 2 , the widest well.

Proposition 2. Le p(x) be a double well potential satisfying conditions [P]. Let x 1 , x 2 be the centers of the two potential wells, and x 1 be the widest one. The (normalized) solution u(x) ∈ H 1 (K ε ) to the spectral problem associated with (3.3) accumulates in the widest well. More precisely, for a fixed ε > 0, let B R (x i ) be the disk of radius R > 0 and center x i , i = 1, 2, there exists ε 0 > 0 such that,

∀ε ≤ ε 0 , ∫ B R (x1) |u(x)| 2 dp > exp ( c|x 1 -x 2 | 2 ε 2 ) ∫ B R (x2) |u(x)| 2 dp.
Proof. Without loss of generality, we consider L ε in (3.3). The first eigenfunction is well approximated by ϕ 0 (x). This way,

∫ B R (0) |ϕ 0 (x)| 2 dp = ∫ B R (0) |ϕ 0 (x)| 2 |x| 2 4ε 2 dx = 2π ∫ R 0 exp(- ρ 2 2ε 2 ) ρ 3 dρ; ∫ B R (x0) |ϕ 0 (x)| 2 dp = ∫ B R (x0) |ϕ 0 (x)| 2 d|x -x 0 | 2 2ε 2 dx = d exp(- |x 0 | 2 2ε 2 ) ∫ 2π 0 dθ ∫ R 0 exp( -ρ 2 -2ρx 0 cos θ -2ρy 0 sin θ 2ε 2 ) ρ 3 dρ ≥ 2πd exp(- |x 0 | 2 ε 2 ) ∫ R 0 exp(- ρ 2 ε 2 ) ρ 3 dρ,
which ends the proof.

Distance from the wells.

Given a potential well and a localized perturbation: does the distance between each other affect the spectral problem ? If wells are far enough from each other, this is a local question which is addressed by perturbing the harmonic potential. Hereafter, ε = 1 and the term N 2 in (2.1) is ignored,

L(u) = -∆u + |x| 2 4 u, ϕ 0 (x) = exp(- |x| 2 4 ). (3.8) 
Let a small perturbation be given by χ B R (x0) (x), the characteristic function of a disk centered in x 0 of radius R > 0, and consider a perturbed spectral problem,

L R (u) = -∆u + |x| 2 4 u + χ B R (x0) u = λu. ( 3.9) 
The ground-state ϕ 0 (x) of (3.8) can be seen as an quasi-eigenfunction for the perturbed problem (3.9), as it almost satisfies the spectral equation for L R (u),

-∆ϕ 0 + |x| 2 4 ϕ 0 + χ B R (x0) ϕ 0 ≈ λϕ 0 ,
with an error

Err(x 0 ) = χ B R (x0) ϕ 0 (x) = χ B R (x0) exp(- |x| 2 4 
).

In one dimension, N = 1, such an error is easy to quantify, for instance in L 1 ,

x 0 → ∥Err(x 0 )∥ L 1 (R) = ∫ x0+R x0-R exp(- |x| 2 4 ) dx.
so that its variations with respect to x 0 ∈ R satisfy:

d dx 0 ∥Err(x 0 )∥ L 1 (R) = exp(- x 0 + R 2 2 ) -exp(- x 0 -R 2 2 ) = { < 0, (x 0 > 0), > 0, (x 0 < 0).
This derivative shows that,

• the position x 0 = 0 is a local maximum for ∥Err(x 0 )∥ L 1 (R) ;

• the perturbation's effects on (3.8) decrease with both |x 0 | and R. This elementary argument can be extended to N dimensions; precise results on the role of the position of the perturbation are given in, e.g. [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant[END_REF].

Variations of the spectral components.

Coming back to a general potential p(x) in (3.1), we consider L(u) in (3.8), where λ, u are any eigenvalue and normalized eigenfunction. Let M be any linear bounded operator and δ ≪ 1 a constant small enough: again, we treat λ as a quasi-eigenvalue for the perturbed operator,

Lu + δM u = λu + Err δ (u),
where Err δ (u) = δM u.

(3.10)

We take the derivative of (3.10) w.r.t. δ, calculated in δ = 0,

Lu ′ + M u = λ ′ u + λu ′ + O(∥M u∥),
where

• ′ := d dδ δ=0
Namely,

(L -λ)u ′ = (λ ′ -M )u + O(∥M u∥). (3.11)
Since λ is an eigenvalue of L, associated with the eigenfunction u, then u ∈ Ker(L-λ).

Fredholm's Alternative implies that there exist solutions u ′ to (3.11) such that

(λ ′ -M )u + O(∥M u∥) ⊥ Ker(L -λ), i.e., denoting by < •, • > the L 2 scalar product, < (λ ′ -M )u, u >= O(∥M u∥), ∥u∥ 2 =< u, u >= 1, then, λ ′ = d dδ δ=0 λ(δ) =< M u, u > +O(∥M u∥), (3.12) namely |λ ′ | ≤ ∥M u∥∥u∥ + O(∥M u∥) = ∥M u∥ + O(∥M u∥),
so that the perturbation δM affects eigenvalues according to the way M affects the original eigenfunction u. Yet, we look at the variations of this eigenfunction by taking the derivative with respect to δ of the scalar product ∥u∥ 2 =< u, u >= 1.

1 2

d dδ δ=0 (∥u∥ 2 ) =< u, u ′ >= 0, i.e. u ′ ⊥ u. Orthogonality u ′ ⊥ u and (L -λ)u ′ ⊥ u, along with Fredholm's Alternative imply u ′ is proportional to (λ ′ -M )u + O(∥M u∥) = (L -λ)u ′ ,
so that, locally for δ ≃ 0, ∥u ′ ∥ ≤ C∥M u∥ for a given constant value C(λ).

4. Two-dimensional "Steklov numerical scheme". In this section, a derivation is recalled from [START_REF] Gosse | Viscous equations treated with L-splines and Steklov-Poincaré operator in two dimensions[END_REF], in order to establish several properties in close relation with the original problem of the "flea on the elephant". Hereafter, we shall always work on a uniform, Cartesian computational grid, with ∆x = ∆y. 4.1. Derivation of the numerical process. Consider the stationary, strictly elliptic and coercive, two-dimensional problem,

u n i,j u n i+1,j u n i,j+1 u n i,j-1 u n i-1,j ⊗ ⊗ ⊗ ⊗ ᾱi-1 2 ,j-1 2
{ -∆u + α 2 (x, y)u = 0, (x, y) ∈ Ω, u(x, y) = g(x), (x, y) ∈ ∂Ω, (4.1)
where Ω is a polygonal domain of R 2 . The numerical simulations, carried out with the "Steklov scheme" [START_REF] Gosse | Viscous equations treated with L-splines and Steklov-Poincaré operator in two dimensions[END_REF], and presented below mostly focus on the spectral analysis associated with the strictly elliptic operator L(u) := -∆u + α 2 (x, y)u. Accordingly, we shall work on the square (Lipschtiz) domain Ω = (0, 1) 2 ⊂ R 2 , so that the typical regularity for u should be at least H 2 (Ω), see [START_REF] Dahlke | Besov regularity for elliptic boundary value problems[END_REF][START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF]. We refer to Appendix A for elementary regularity results for problems like (4.1) in a square domain: in particular, when the compatibility conditions (A.2) hold at each corner, the Hölder regularity of inhomogeneous Dirichlet data g passes to the solution u, see Theorem A.2.

The "Steklov scheme", see [START_REF] Gosse | Viscous equations treated with L-splines and Steklov-Poincaré operator in two dimensions[END_REF][START_REF] Gosse | L-Splines and Viscosity Limits for Well-Balanced Schemes Acting on Linear Parabolic Equations[END_REF] works in the following way: (see Fig. 4.1)

• at each "node", (x i-1 2 , y j-1 2 ), the potential is "frozen", so that

ᾱ2 i-1 2 ,j-1 2 := α 2 (x i-1 2 , y j-1 2 ), i, j ∈ Z 2 ; • in each disk D R (i -1 2 , j -1 2 ), centered at a node, D R (i - 1 2 , j - 1 2 ) = { |x -x i-1/2 | 2 + |y -y j-1/2 | 2 ≤ R 2 } , R = ∆x √ 2 ,
the following problem is explicitly solved in polar coordinates,

{ -∆v + ᾱ2 i-1 2 ,j-1 2 v = 0, (x, y) ∈ D R , v = g on the boundary, (x, y) ∈ C R := ∂D R , ( 4.2) 
by means of Fourier-Bessel series involving "modified Bessel functions", I n (•).

Note that, as shown in Figure 4.1, in the discrete framework we only consider exactly three values of the trace of v at the boundary C R (i -1 2 , j -1 2 ), i.e., v(x i , y j ), v(x i-1 , y j ), v(x i , y j-1 ). However, at the moment let us consider the BVP (4.2) at the formal level, keeping in mind that precise trace estimates on the discrete approximation of g in (4.2) will be discussed in Section 4.2.

• The exact solution of the stationary BVP (4.2) reads,

v(r, θ) = A 0 I 0 (ᾱr) + ∑ n∈N (A n cos nθ + B n sin nθ)I n (ᾱr), r ≤ R, (4.3)
where ᾱ = ᾱi-1 2 ,j-1 2 , and coefficients are determined by the boundary data prescribed on the circle C R (i - 1 2 , j -1 2 ). More precisely, if we are given a boundary condition g ∈ H s (0, T = 2πR), then it admits a Fourier series,

g(x) = a 0 + ∑ n∈N a n cos( 2πn x T ) + b n sin( 2πn x T ),
so that, setting r = R in (4.3), and by uniqueness, we have

A 0 = a 0 I 0 (ᾱR) , A n = a n I n (ᾱR) , B n = b n I n (ᾱR) , ( 4.4) 
meaning that the solution to (4.2) is completely known. • At this point, the main idea to derive the Steklov scheme, see [START_REF] Gosse | Viscous equations treated with L-splines and Steklov-Poincaré operator in two dimensions[END_REF][START_REF] Gosse | L-Splines and Viscosity Limits for Well-Balanced Schemes Acting on Linear Parabolic Equations[END_REF], is based on the discretization of the normal derivative of the solution v(r, θ) in (4.3), obtained by means of the Steklov-Poincaré operator. Since the domain is circular, the normal derivative reduces to the radial one, and the Steklov-Poincaré operator can be made explicit,

1 ᾱ ∂v ∂r (R, θ) = A 0 I 1 (ᾱR) + ∑ n∈N (A n cos nθ + B n sin nθ) I n-1 + I n+1 2 (ᾱR),
and, by using identities (4.4), this rewrites,

1 ᾱ ∂v ∂r (R, θ) = a 0 I 1 I 0 (ᾱR) + ∑ n∈N (a n cos nθ + b n sin nθ) I n-1 + I n+1 2I n (ᾱR). (4.5)
• In practice, as anticipated before, we never have all the Fourier coefficients at hand, because there are at most four discrete (grid) numerical values,

P k = R(cos θ k , sin θ k ), 0 ≤ k ≤ 2, θ k = kπ 2 , (4.6) on each circle C R (i ± 1 2 , j ± 1 2 ), so the former series are truncated at n ≤ 1, 1 ᾱ ∂v ∂r (R, θ) = a 0 I 1 I 0 (ᾱR) + (a 1 cos θ + b 1 sin θ) I 0 + I 2 2I 1 (ᾱR). (4.7) 
The explicit expressions of coefficients a 0 , a 

P 0 = v(R, θ = 0) = u n i,j = A 0 I 0 (ᾱR) + A 1 I 1 (ᾱR), P 1 = v(R, θ = π 2 ) = u n i-1,j = A 0 I 0 (ᾱR) + B 1 I 1 (ᾱR), P 2 = v(R, θ = -π 2 ) = u n i,j-1 = A 0 I 0 (ᾱR) -B 1 I 1 (ᾱR), yield:            a 0 = A 0 I 0 (ᾱR) = u n i-1,j + u n i,j-1 2 , a 1 = A 1 I 1 (ᾱR) = u n i,j - u n i-1,j + u i,j-1 2 , b 1 = B 1 I 1 (ᾱR) = u n i-1,j -u n i,j-1
2 .

(4.8)

Inserting (4.8) into (4.7),

1 ᾱ ∂v ∂r (R, θ) = { u n i,j I 0 + I 2 2I 1 cos θ + u n i-1,j [ I 1 2I 0 + I 0 + I 2 4I 1 (sin θ -cos θ) ] + u n i,j-1 [ I 1 2I 0 - I 0 + I 2 4I 1 (sin θ + cos θ) ]} (ᾱR). 
(4.9) In the end, by using the regularity of the solution to the considered BVP, the Steklov scheme is derived by balancing the four normal (radial) derivatives

for each circle C R (i ± 1 2 , j ± 1 2 ), ∂v ∂r (R, 0)(ᾱ i-1 2 ,j-1 2 R) + ∂v ∂r (R, π 2 )(ᾱ i-1 2 ,j+ 1 2 R) + ∂v ∂r (R, π)(ᾱ i+ 1 2 ,j+ 1 2 R) + ∂v ∂r (R, 3π 2 )(ᾱ i+ 1 2 ,j-1 2 R) = 0, (4.10) 
and so the following numerical scheme is obtained,

u i,j { F(ᾱ i-1 2 ,j-1 2 ) + F(ᾱ i+ 1 2 ,j-1 2 ) + F(ᾱ i+ 1 2 ,j+ 1 2 ) + F(ᾱ i-1 2 ,j+ 1 2 ) } + u i-1,j { G(ᾱ i-1 2 ,j-1 2 ) + G(ᾱ i-1 2 ,j+ 1 2 ) } + u i,j-1 { G(ᾱ i-1 2 ,j-1 2 ) + G(ᾱ i+ 1 2 ,j-1 2 ) } + u i+1,j { G(ᾱ i+ 1 2 ,j-1 2 ) + G(ᾱ i+ 1 2 ,j+ 1 2 ) } + u i,j+1 { G(ᾱ i+ 1 2 ,j+ 1 2 ) + G(ᾱ i-1 2 ,j+ 1 2 ) } = 0, (4.11) 
where

F(α) = α I 0 + I 2 2I 1 (αR), G(α) = H(α) -F(α) 2 , H(α) = α I 1 I 0 (αR).
Standard results for I n (•) imply that both F(α) and G(α) behave like O(1/R) when ᾱR ≪ 1 and O(1) when ᾱR ≫ 1. Moreover, (4.11) was proved to be consistent with (4.1) and monotone (hence, positivity-preserving) in [START_REF] Gosse | Viscous equations treated with L-splines and Steklov-Poincaré operator in two dimensions[END_REF]. Yet, consider a N × N two-dimensional grid (N 2 internal points), and given the 2D array of values u i,j , define the following one-dimensional vector,

U N = [ u 1,1 , u 2,1 , • • • , u N,1 , u 1,2 , • • • , u N,2 , • • • • • • • • • , u 1,N , • • • , u N,N ]
. (4.12)

Identity (4.11) recasts in matrix form like,

P N U N = B, P N a (N 2 × N 2 ) matrix, (4.13) 
where B stands for discretized boundary data. Lemma 4. Matrix P N in (4.13) is a symmetric M -matrix. Proof. Let C i,j (S i,j ) be the general coefficient of the term u i,j , where S i,j indicates in which grid's point x i,j relation (4.11) is used. It is straightforward to check that

• C i+1,j (S i,j ) = C i,j (S i+1,j ) = G(ᾱ i+1/2,j-1/2 ) + G(ᾱ i+1/2,j+1/2 ), i, j ≥ 1; • C i,j+1 (S i,j ) = C i,j (S i,j+1 ) = G(ᾱ i+1/2,j+1/2 ) + G(ᾱ i-1/2,j+1/2 ), i, j ≥ 1; • C i-1,j (S i,j ) = C i,j (S i-1,j ) = G(ᾱ i-1/2,j-1/2 ) + G(ᾱ i-1/2,j+1/2 ), i ≥ 2, j ≥ 1; • C i,j-1 (S i,j ) = C i,j (S i,j-1 ) = G(ᾱ i+1/2,j-1/2 ) + G(ᾱ i-1/2,j-1/2 ), i ≥ 1, j ≥ 2.
A sufficient condition for P N being a M -matrix is that:

• its principal diagonal is strictly positive,

• other entries are negative or null,

• it is diagonally-dominant. All these properties follow from (4.11) because, for any n, I n (x) ≥ 0 for x ≥ 0 and they are monotonically increasing.

Accordingly, P N has a positive inverse, uniformly in ∥α 2 ∥ ∞ R. A useful estimate is the minimum of its eigenvalues, because ∥(P N ) -1 ∥ 2 ≤ 1/ min(µ ℓ ). Such a number can be explicitly computed (see [11, pages 179-181] and [START_REF] Val | On mean value solutions for the Helmholtz equation on square grids[END_REF]) when the potential is a constant, α 2 ∈ R + : being

P N block-diagonal (with N × N blocks),    µ ℓ = 4 F(α) + 8 G(α) cos(π∆x), (P N ) -1 2 ≤ 1 4(F(α) + 2G(α) cos(π∆x)) . ( 4.14) 
Before studying the truncation errors of (4.11), we stress that such a monotone discretization of (4.1) is a good candidate for problems which develop sharp layers. Indeed, the modified Bessel functions I n display an exponential behavior at infinity, so that (4.11) can be fairly considered a "two-dimensional exponential-fit scheme".

Truncated series and "localized sampling".

As mentioned before, in practice, it is necessary to truncate the Fourier-Bessel series of the exact solution v(r, θ), because only 4 grid points are available on each circle C R (i ± 1 2 , j ± 1 2 ) (instead of boundary data of co-dimension 1), and for the present scheme, we use only 3. In this section, we provide an estimate of the approximation due to this 3-points discretization on each one of the four circles of the stencil, by comparison with the 4points discretization, which results to be an application of the trapezoidal integration rule. Hereafter, consider h(θ) ∈ H s (0, 2π), 2π-periodic, that is approximated by two different trigonometric polynomials,

{ h 4 (θ) = a 0 + a 1 cos θ + b 1 sin θ + a 2 cos 2θ, h 3 (θ) = α 0 + α 1 cos θ + β 1 sin θ,
both of them being determined by imposing,

{ h 4 (0) = c, h 4 ( π 2 ) = a, h 4 (π) = d, h 4 (-π 2 ) = b, h 3 (0) = c, h 3 ( π 2 ) = a, h 3 (-π 2 ) = b.
Hence, given any 4 generic points on a circle C R , coefficients read:

a 0 = 1 4 (a + b + c + d), b 1 = 1 2 (a -b), a 1 = 1 2 (c -d), a 2 = c + d 4 - a + b 4 ,
so that,

a 0 = O(1), a 1 , b 1 = O(R), a 2 = O(R 2 ),
along with

α 0 = 1 2 (a + b), α 1 = c - 1 2 (a + b), β 1 = 1 2 (a -b).
The polynomial h 3 is sometimes referred to as to a "localized sampling" because, oppositely to h 4 , it interpolates only the 3 points which are the closest to the location where the radial derivative is meant to be computed. Despite their coefficients are distinct, their difference h 4 -h 3 depends only on a 2 : indeed,

(h 4 -h 3 )(θ) = (a 0 -α 0 ) + (a 1 -α 1 ) cos θ + a 2 cos 2θ = a 2 (1 -2 cos θ + cos 2θ). (4.15)
The fact that the gap h 3 -h 4 is like a 2 , a "trapezoidal approximation", is essential.

Local truncation error.

If the circular trace of a 2D function u(x, y), has a very small "mixed derivative", |∂ 2 xy u| ≪ 1, then a 2 ≃ 0. Accordingly, define

g(x) = h(Rθ), g : (0, T = 2πR) → R, g is T -periodic.
It isn't easy to estimate the (curvilinear) derivatives of g with respect to the abscissa x because of the circle's curvature, which equals 1 R :

dg dx = 1 R dg dθ = -∂ x u(R cos θ, R sin θ) sin θ + ∂ y u(R cos θ, R sin θ) cos θ, d 2 g dx 2 = - 1 R ( ∂ x u(R cos θ, R sin θ) cos θ + ∂ y u(R cos θ, R sin θ) sin θ ) + ...,
hence a "bad term" 1 R ∂u ∂r appears in the second derivative of g. This complicates the control of errors produced when approximating h with both h 4 and h 3 . To estimate the noise induced by the "localized sampling" of only 3 grid points,

∥g -g 3 ∥ L 2 (0,T ) ≤ ∥g -g 4 ∥ L 2 (0,T ) + ∥g 4 -g 3 ∥ L 2 (0,T ) ,
and we proceed thanks to the elementary observation:

∥g 4 -g 3 ∥ 2 L 2 (0,T ) = |a 2 | 2 ∫ T 0 1 -2 cos( x R ) + cos( 2x R ) 2 dx = T (1 + 4 + 1)|a 2 | 2 . Lemma 5. Let u ∈ H s (R 2 ), s ≥ N + 1 2
, and f : (0, T = 2πR) → R its trace on a circle of radius R > 0. Define the "N -points approximation" of its average f (0) as, Proof. See Appendix B. Remark 2. Theorem 7 in [START_REF] Birkhoff | Optimal few points discretizations of linear source problems[END_REF] states that the LTE of the classical 5-points scheme for Laplace's equation1 , being the limit ᾱ → 0 of (4.11, is of order ∆x 4 . Its proof draws on the harmonic polynomial, the real part of (x + iy) 4 -∆x 4 , see Fig. 4.2,p(x,y

fN (0) := 1 N N -1 ∑ j=0 f (j T N ), f (0) = 1 T ∫ T 0 f (x)dx = 1 2π ∫ 2π 0 f (θ)dθ, θ = x R , then, either • the method is exact, f (0) = fN (0) if f (k) ≡ 0 when |k| ≥ N ; • or its error satisfies | f (0) -fN (0)| ≤ ∑ k∈Z * | f (N k)| ≤ O(R N ).
) = x 4 -6x 2 y 2 + y 4 -∆x 4 , (x, y) ∈ (-∆x, ∆x) 4 ,
for which p(±∆x, ±∆x) = 0, but p(0, 0) = ∆x 4 ̸ = 0. Its trace on the circle centered at the origin, of radius ∆x, C(0, ∆x), is displayed on Fig. 4.2 (right) and reads

p(∆x cos θ, ∆x sin θ) = ∆x 4 ( cos 4 θ -6 cos 2 θ sin 2 θ + sin 4 θ -1 ) = ∆x 4 ( cos(4θ) -1
) .

Lemma 5 applies to that simple case because, for any harmonic function u ∈ H

9 2 (R 2 ), u(0, 0) = 1 2πR ∫ C(0,R) u(x, y) dℓ = 1 4 ( u(R, 0) + u(0, R) + u(-R, 0) + u(0, -R) ) + O(R 4 ),
and picking R = ∆x, one recovers both second-order accuracy for general solutions, and the exactness of the method if no frequencies higher than |k| = 3 are present. Such bounds apply to "discrete weighted means" [START_REF] Gartland | Discrete weighted mean approximation of a model convection-diffusion equation[END_REF] and "tailored methods" [START_REF] Han | A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain[END_REF], too. The discrepancy between boundary data which involves the exact Fourier coefficients ĝ(k) and the one involving

α 0 , α 1 , β 1 is: (since g is real, ĝ(k) = ĝ(-k) * ) |ĝ(0) -α 0 | 2 + |2ℜ(ĝ(1)) -α 1 | 2 + i ( ĝ(1) -ĝ(-1) ) -β 1 2 + ∑ |k|>1 |ĝ(k)| 2 .
Theorem 4.1. Consider the problem (4.1) with the coefficient α ≡ ᾱ being constant, and a corresponding solution u(x, y):

• if u ∈ C 4 , the global L 2 error of (4.11) is second-order as ∆x → 0;

• if ĝ(k) = 0 for |k| ≥ 2, the approximation (4.10) matches the exact one (4.5). Proof. We establish each statement independently for the sake of clarity:

• Given a point x i , y j , the local truncation error (LTE) is the discrepancy τ i,j := τ (x i , y j ) which remains when pointwise values of u, the exact solution to (4.1) are inserted into the scheme (4.11). By grouping terms, it comes,

0 = F(ᾱ) ( 4u i,j -u i±1,j±1 ) + H(ᾱ)u i±1,j±1 = F(ᾱR) ( -∆x 2 ∆u(x i , y j ) + O(∆x 4 ) ) + 4H(ᾱ) ( u(x i , y j ) + O(∆x 2 )
) , so that, by performing Taylor expansions of I n (ᾱR) with 0 ≤ ᾱR ≪ 1,

F(ᾱ) = 1 R + O(R), H(ᾱ) = ᾱ2 R 2 + O(R 3 ),
and the LTE is O(R 3 ). To deduce the global error of the scheme, the L 2 norm is computed by means of pointwise values,

∥u -u ∆x ∥ 2 L 2 = ∆x 2 ∑ i,j |u(x i , y j ) -u i,j | 2 . (4.16)
Thanks to the linearity of the scheme (4.11)-(4.13),

P N (u) -P N (u ∆x ) = τ = P N (u -u ∆x ),
being τ the formerly derived LTE. The global L 2 error is controlled by,

∥u -u ∆x ∥ 2 L 2 = ∥(P N ) -1 τ ∥ 2 L 2 ≤ (P N ) -1 2 2 ∥τ ∥ 2 L 2 ,
and the bound (4.14) on P N . Second-order accuracy follows from,

(P N ) -1 2 = O( 1 R ) when 0 ≤ ᾱR ≪ 1.
• We study the deviation between the exact derivatives (4.5) and the truncated ones (4.7), used in (4.10), which involve only the first 3 terms of the Fourier expansion (4.3). Since exact modified Bessel functions are used in the solution v(r, θ) to (4.2) along with its radial derivatives (4.9), we must control

I 0 + I 2 2I 1 (ᾱR) 2 ( |ĝ(1) + ĝ(-1) -α 1 | 2 + |i(ĝ(1) -ĝ(-1)) -β 1 | 2 ) + I 1 (ᾱR) I 0 (ᾱR) 2 |ĝ(0) -α 0 | 2 + ∑ |k|>1 I k-1 + I k+1 2I k (ᾱR) 2 |ĝ(k)| 2 ≤ I 0 + I 2 2I 1 (ᾱR) 2 ( |ĝ(1) + ĝ(-1) -α 1 | 2 + |i(ĝ(1) -ĝ(-1)) -β 1 | 2 + ∑ |k|>1 k 2 |ĝ(k)| 2 ) + I 1 (ᾱR) I 0 (ᾱR) 2 |ĝ(0) -α 0 | 2 ,
because standard properties of modified Bessel functions yield,

∀(x > 0, n ∈ N), I n-1 + I n+1 2I n (x) 2 ≤ n 2 I 0 + I 2 2I 1 (x) 2 .
Each term can be bounded as follows:

-|ĝ(0) -α 0 | = |(ĝ(0) -a 0 ) + (a 0 -α 0 )| = |ĝ(0) -a 0 + a 2 |; -|ĝ(1) + ĝ(-1) -α 1 | = |ĝ(1) + ĝ(-1) -a 1 + 2a 2 |; -|i(ĝ(1) -ĝ(-1)) -β 1 | = |i(ĝ(1) -ĝ(-1)) -b 1 |; - ∑ |k|>1 k 2 |ĝ(k)| 2 ≤ ∥g∥ 2 H 1 .
Since g is real-valued and a 0 , a 1 , b 1 , a 2 are computed by trapezoidal rule with N = 4, we use triangular inequalities in conjunction with Lemma 5,

a 0 -ĝ(0) = ∑ k∈Z * ĝ(4k), a 2 = 4ℜ(ĝ(2)) + 2 ∑ k̸ ={0,-1} ℜ ( ĝ(2 + 4k) ) , a 1 -2ℜ(ĝ(1)) = 2ℜ(ĝ(3)) + 2ℜ(ĝ(5)) + ∑ |k|>1 ĝ(1 + 4k) + ĝ(-1 + 4k), b 1 -2ℑ(ĝ(1)) = 2ℑ(ĝ(3)) + 2ℑ(ĝ(5)) -i ∑ |k|>1 ĝ(1 + 4k) -ĝ(-1 + 4k),
so that there is no error if ĝ(k) = 0 when |k| ≥ 2.

Theorem 4.1 expresses the fact that, while being only endowed with a 5-points stencil, the "Steklov scheme" (4.11) delivers a high accuracy if the exact solution is smooth, hence contains mostly low frequencies. Such regularity in a square domain requires smooth boundary data to be supplemented by compatibility conditions (A.2) at each corner, in order to apply Theorem A.2. This is a situation closely related to "well-balanced methods" in 1D, see also [START_REF] Bianchini | A truly two-dimensional discretization of drift-diffusion equations on Cartesian grids[END_REF][START_REF] Gosse | Dirichlet-to-Neumann mappings and finite-differences for anisotropic diffusion[END_REF][START_REF] Gosse | Aliasing and two-dimensional well-balanced for drift-diffusion equations on square grids[END_REF] for 2D considerations. In particular, the modified Bessel functions contained in (4.11), which numerically allow not to split between the Laplacian and the zero-order term, moreover can fit the sharp layers appearing in the solution in case the potential becomes stiff (like "exponentialfit" methods in 1D). However, our error bound doesn't directly extend to

-∆u + α 2 u = f (x, y), u ∂Ω = g,
because the 2D scheme approximates the source f as a piecewise constant function inside each disk D R (i -1 2 , j -1 2 ) (see [17, page 177]); see e.g. [START_REF] Birkhoff | Optimal few points discretizations of linear source problems[END_REF] for more details. Moreover, "compatibility conditions" involving f would be more intricate, see [START_REF] Azzam | On Differentiability Properties of Solutions of Elliptic Differential Equations[END_REF][START_REF] Han | Differentiability properties of solutions of the equation -ε 2 ∆u + ru = f (x, y) in a square[END_REF].

Two-dimensional numerical illustrations.

Validation of error estimates.

To assess practically the former estimates, the following exact solutions were considered in Ω = (-1, 1) 2 with ε = 0.75,

E 0 (x, y) = I 0 (r/ε), r 2 = x 2 + y 2 , tan θ = y/x, E 1 (x, y) = -E 0 (x, y) + I 1 (r/ε) (cos θ -0.5 sin θ) E 2 (x, y) = 2E 1 (x, y) + 0.5 I 2 (r/ε)(sin 2θ + cos 2θ).
These exact solutions to -ε 2 ∆u + u = 0 allow to check both the accuracy of (4.11) and the numerical features of a computational domain endowed with "corners". Indeed, boundary data of E 0 , E 1 , E 2 on ∂Ω display Lipschitz areas, where "compatibility conditions" (see Appendix A) aren't satisfied and most of the pointwise errors of the Steklov scheme accumulates: this is easily noticed with the radial solution E 0 . On the right column of Fig. 5.1, the convergence rates of standard finite-differences, discrete weighted means (DWM, see [START_REF] Gartland | Discrete weighted mean approximation of a model convection-diffusion equation[END_REF][START_REF] Han | A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain[END_REF][START_REF] Val | On mean value solutions for the Helmholtz equation on square grids[END_REF]) and (4.11) are compared. The red line, which indicates second-order accuracy, allows to easily check that both finite-differences and DWM are second-order methods, the size of the errors being very different, though. The Steklov scheme (4.11) behaves differently, in the sense that when the grid is coarse, it displays a fourth-order accuracy, which degrades to second-order when ∆x/ε goes below a certain value. This was to be expected as the modified Bessel functions behave like polynomials when their argument is very small (see also [START_REF] Val | On mean value solutions for the Helmholtz equation on square grids[END_REF]). The DWM (or "tailored", [START_REF] Han | A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain[END_REF][START_REF] Han | Multiscale tailored finite point method for second order elliptic equations with rough or highly oscillatory coefficients[END_REF]) methods, while being very accurate on E 0 , E 1 , E 2 , aren't endowed with such a fast convergence property. Next, in order to illustrate the behavior for smaller ε's, another (more complex) exact solution, E 3 (x, y) = 0.5 I 2 (r/ε)(sin 2θ + cos 2θ) + I 3 (r/ε) sin 3θ, ε = 0.1125 or 0.075, was computed by both the DWM and Steklov schemes; see Fig. 5.2. By inspecting boundary data, one sees that a seemingly small variation in ε can produce a strong increase of the "spikes" at the Ω = (-1, 1) 2 square's corners where compatibility conditions aren't met. Indeed, for smaller ε, most of the numerical error accumulates in these regions. Both numerical methods appear to be similar and to converge at second order in L 2 when ∆x/ε is moderate; when ∆x/ε is bigger, the Steklov scheme seems to behave a little bit better than the DWM (see Fig. 5.2, bottom).

Simple harmonic potential.

Consider now an eigenvalue problem like,

-ε 2 ∆u + V (x, y)u = λu, (x, y) ∈ R 2 ,
for which both eigenvalues λ's and eigenfunctions are explicitly known when posed in the whole space, see Theorem 2.1. When 0 < ε is small enough, this explicit spectrum can still be used in order to quantify pointwise errors of numerical schemes, even if the computational domain must be restricted to a bounded square in R 2 . Accordingly,

-ε 2 ∆u + V (x, y)u = λu, V (x, y) = 0.25 ( |x -0.5| 2 + |y -0.5| 2 ) , ( 5.1) 
is now posed in x, y ∈ (0, 1) 2 and its numerical spectrum is sought by both centered finite-differences, and the "Steklov 2D scheme". The Gaussian ground-state ϕ ε 0 allows to measure practically the decay of L 2 norms (4.16) as ∆x → 0 for both numerical algorithms: on Fig. 5.3, errors appear to decay at an order higher than 3 as soon as ∆x/ε is small enough, so that the grid can efficiently represent the numerical approximation. The decay corresponding to third order is illustrated by a red line on Fig. 5.3. To minimize the influence of truncating the computational domain without restricting too much the support of eigenfunctions, a convenient value of ε was experimentally found to be ε ≃ 0.007, with a grid 32 × 32. Pointwise relative errors are displayed on Fig. 5.4: the left column displays relative errors coming from the "Steklov scheme" which suffer from less "mesh imprinting" (and are smaller) than the ones generated by standard centered finite differences (on the right column). Remark 3. An inspection of Fig. 5.3 suggests that there are three different regimes (instead of apparently two for finite differences) for the "Steklov scheme":

• a stiff one, ε ≪ ∆x, where the grid is really too coarse for a radial solution,

• an intermediate one for which ε ≃ ∆x where L 2 errors can decay very fast (faster than order 4) compared to centered finite-differences, • a fine-grid one, ε ≫ ∆x for which L 2 errors decay at a rate close to order 3.

(A-

)symmetric two-well potential. We illustrate this case with "Steklov 2D scheme" on the same computational grid, ε = 0.02 and the potentials,

V (x, y) = 1.01 -exp ( -30 ( |x -0.65| 2 + |y -0.35| 2 ) ) -exp ( -30 ( |x -0.35| 2 + |y -0.65| 2 ) ) , (V + δV )(x, y) = 1.01 -exp ( -30.5 ( |x -0.65| 2 + |y -0.35| 2 ) ) -exp ( -30 ( |x -0.35| 2 + |y -0.65| 2 ) ) ,
which share the same depth, but one is slightly wider than the other. On the left column of Fig. 5.5, usual symmetric eigenfunctions are generated by the scheme in presence of the double-Gaussian potential V (x, y), x, y ∈ (0, 1) 2 with Dirichlet boundaries and 2 5 × 2 5 grid points. As expected, the ground state has a definite sign, in accordance with the statements in Proposition 2. For the perturbed potential V +δV , a quite different picture emerges as the perturbed ground state is now strongly localized in the largest well, still being of a definite sign. The first perturbed excited state is localized in the narrow well and is endowed with small negative values. More excited eigenfunctions are less localized, but still, are never symmetric. Discrete orthogonality is checked in practice by looking at the L 2 scalar products: it was found to hold, up to machine accuracy (≃ 10 -16 ) for both the five first unperturbed eigenfunctions, and the perturbed ones (see also [START_REF] Kong | Asymptotic analysis and numerical method for singularly perturbed eigenvalue problems[END_REF] for other benchmarks).

5.4. Time-dependent problem with two asymmetric wells. The 2D Steklov scheme (4.11) can be recast as a time-marching algorithm, see [17, page 184], for

∂ t u + ε 2 ∆u + V (x, y)u = 0. (x, y) ∈ (0, 1) 2 , ( 5.2) 
with Dirichlet boundary conditions. The potential was chosen as,

V (x, y) = 0.95 -exp ( -10 ( |x -0.75| 2 + |y -0.25| 2 ) ) -exp ( -25 ( |x -0.25| 2 + |y -0.75| 2 )
) .

(5.3)

Numerical results for ε 2 = 0.00005, with a 32 × 32 grid, and Gaussian initial data are displayed on Fig. 5.6. As expected from the spectral results derived in Section 3, the numerical solution accumulates more and more in the widest well, in agreement with the shape of the ground-state for asymmetric potentials, as displayed (for instance) on the right column of Fig. 5.5. The large-time behavior of (5.3) sees all the initial data's mass accumulate in the widest well, the narrow one being depleted (at a rate which slows down as time grows). This is what is illustrated on the bottom line of mass-accumulation in wider wells was justified with elementary arguments (see also [START_REF] Dauphine | Asymmetric wave functions from tiny perturbations[END_REF][START_REF] Graffi | Tunnelling instability via perturbation theory[END_REF][START_REF] Jelic | The double well potential in quantum mechanics: a simple, numerically exact formulation[END_REF][START_REF] Selg | Exactly solvable asymmetric double-well potentials[END_REF]). Then, in Section 4, the 2D scheme of [START_REF] Gosse | Dirichlet-to-Neumann mappings and finite-differences for anisotropic diffusion[END_REF][START_REF] Gosse | Viscous equations treated with L-splines and Steklov-Poincaré operator in two dimensions[END_REF] is derived in a way which allows to produce error bounds for the constant coefficient case (see [START_REF] Val | On mean value solutions for the Helmholtz equation on square grids[END_REF]). Such an algorithm, involving modified Bessel functions in 2D, is reminiscent of "discrete weighted means", see [START_REF] Gartland | Discrete weighted mean approximation of a model convection-diffusion equation[END_REF][START_REF] Han | A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain[END_REF][START_REF] Han | Multiscale tailored finite point method for second order elliptic equations with rough or highly oscillatory coefficients[END_REF][START_REF] Mayo | Fast High Order Accurate Solution of Laplace's Equation on Irregular Regions[END_REF][START_REF] Val | On mean value solutions for the Helmholtz equation on square grids[END_REF]. Accordingly, the expected localization behavior is retrieved in Section 5, mostly for rough computational grids for which ε/∆x ≪ 1, see also [START_REF] Trefethen | Computed eigenmodes of planar regions[END_REF], in both static and time-dependent contexts. As an outlook, we outline an extension to a fourth-order Cahn-Hilliard [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF][START_REF] Elliott | Numerical Studies of the Cahn-Hilliard Equation for Phase Separation[END_REF] type of equation:

∂ t u -∆ ( u(1 -u 2 ) -ε∆u ) = 0, x, y ∈ (0, 1) 2 . (6.1)
Following [START_REF] Sun | A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation[END_REF], we recast it as a system, except that, here, the nonlinearity is handled as a (locally) constant coefficient, (i.e. mass-conservation property may be lost)

∂ t u + ε∆v -α 2 v = 0, v = ∆u, ∆ ( u(1 -u 2 ) ) ≃ (1 -ū2 )∆u.
The "frozen parameter" α varies from disk to disk (see Fig. 4.1),

α 2 (t n , x i± 1 2 , y j± 1 2 ) = 1 -u 2 (t n , x i± 1 2 , y j± 1 2
). Starting from random initial data belonging to the interval (-1, 1), and fixing ε = 0.002 with a 32 × 32 computational grid, the expected phase-separation phenomenon, displayed on Fig. 6.1, was retrieved by using an explicit Euler time-integrator.

where ℓ = 0, 1, 2, 3 is the index of a vertex, and Λ stands for a linear functional acting on singular profiles ϕ localized around each corner of the domain Ω. These functional are linear combinations of differential operators acting on g, and the number of involved derivatives of g increases with respect to the index k. Accordingly, such a decomposition suggests that cancelling the Λ's should ensure that u can become as smooth as its remainder v. These functionals were studied in many papers, after early works by Nicol'ski, Volkov, Fufaev, see [34, Chap. III]: for (A.1) and x = y = 0,

Λ j (g) = d 2j g dx 2j (0 + , 0) -(-1) j d 2j g dy 2j (0, 0 + ) (A.2) - j ∑ i=1 (-1) i-1 ∂ 2(j-i) ∂x 2(j-i) ∂ 2(j-i) ∂y 2(i-1) ( r(0, 0)u(0, 0) ) , j = 0, 1, 2, ...
Following [6, eq. (2.1)], see also [1, eq. (1.8-9)], the first ones in x = y = 0 are:

Λ 0 (g) = g(0 + , 0) -g(0, 0 + ), Λ 1 (g) = d 2 g dx 2 (0 + , 0) + d 2 g dy 2 (0, 0 + ) -r(0, 0)u(0, 0), Λ 2 (g) = d 4 g dx 4 (0 + , 0) - d 4 g dy 4 (0, 0 + ) + ( ∂ 2 ∂x 2 - ∂ 2 ∂y 2 
) ( r(0, 0)u(0, 0)

) .

If all the derivatives of both g and r vanish close to each corner, (A.2) holds. According to [24, Theorem 3.2] (see also [2, Theorem 2] and references therein), these "compatibility conditions" suffice for (A.1) to pass the Hölder regularity of g onto u: Theorem A.2. Let g ∈ C 2,λ on Γ minus its 4 vertices and Λ ℓ 0 (g) = 0 for ℓ = 0, 1, 2, 3: the solution of (A.1) u ∈ C 2,λ ( Ω). Moreover, for Ω = [0, 1] × [0, 1], u ∈ C 2k,λ ( Ω) ⇔ g ∈ C 2k,λ and Λ ℓ j (g) = 0 for j ≤ k and ℓ = 0, 1, 2, 3, and if, under the same conditions, g ∈ C 2k+1,λ , then u ∈ C 2k+1,λ ( Ω). Such regularity results can be formulated in other functional spaces, see for instance [START_REF] Konenkov | The Dirichlet Problem in Zygmund Spaces in a Square[END_REF][START_REF] Konenkov | Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles[END_REF]. There are several variants of this statement, like in [START_REF] Andreev | On the Accuracy of Grid Approximations to Nonsmooth Solutions of a Singularly Perturbed Reaction-Diffusion Equation in the Square[END_REF][START_REF] Dosiyev | New Properties of 9-Point Finite Difference Solution of the Laplace Equation[END_REF][START_REF] Hell | Modification of dimension-splitting methodsovercoming the order reduction due to corner singularities[END_REF][START_REF] Kellogg | Some Simple Boundary Value Problems with Corner Singularities and Boundary Layers[END_REF]:

Corollary 1. Assume that g ∈ C 1,1 on Γ minus its 4 vertices and Λ ℓ 0 (g) = 0 for ℓ = 0, 1, 2, 3, then the following second derivatives of u are bounded in Ω, max

( ∂ 2 u ∂x 2 , ∂ 2 u ∂y 2
) ≤ C, but not the mixed one, ∂ 2 u ∂x ∂y .

Restricting (A.2) to k = 0 only brings g(0 + , 0) = g(0, 0 + ) at the vertex x = y = 0, so that condition Λ ℓ 0 (g) = 0 means that g is continuous at all four vertices of Ω. Appendix B. Trapezoidal rule and circular traces. Let γ R be the "circular trace operator" H s (R 2 ) → H s-1 2 (0, 2πR) for which,

γ R : u → γ R [u], γ R [u](θ) = u(R cos θ, R sin θ), f (x) = γ R [u](Rθ),
where θ ∈ (0, 2π). The proof of Lemma 5 is split into several steps:

• Being f : (0, T = 2πR) → R periodic, it rewrites as a Fourier series,

f (x) = ∑ k∈Z f (k) exp(ik 2πx T ), f (k) = 1 T ∫ T 0 f (x) exp(-ik 2πx T )dx.
Accordingly, the N -points (Nyström's) "method of rectangles" rewrites:

T N N -1 ∑ j=0 f (j T N ) = T N N -1 ∑ j=0 ( ∑ k∈Z f (k) exp(ik 2πj N ) ) = T N ∑ k∈Z f (k)   N -1 ∑ j=0 exp(ik 2πj N )   .
• An elementary observation is that

1 T ∫ T 0 exp(ik 2πx T )dx - 1 N N -1 ∑ j=0 exp(ik 2πj N ) = -χ(k ∈ N Z * ),
where χ stands for the indicator function and Z * , for Z without 0. Indeed, for k ∈ Z, being a geometric summation of reason exp(ik 2π N ),

N -1 ∑ j=0 exp(ik 2πj N ) = 1 -exp(ik 2π) 1 -exp(ik 2π N ) = N χ(k ∈ N Z),
so the numerator always vanishes. Indexes k ∈ N Z are such that the denominator cancels, too: a Taylor expansion yields the expected result. Yet,

f (0) -   1 N ∑ k∈Z f (k) N -1 ∑ j=0 exp(ik 2πj N )   = - ∑ k∈Z, k̸ =0 f (N k), (B.1)
and it remains to estimate the lacunary sum on the right-hand side. • To estimate the right-hand side of (B.1), we recall that f is the restriction on a circle of radius R > 0 and centered in (x 0 , y 0 ) of u(x, y) ∈ H s (R 2 ). Standard trace theory [START_REF] Miyazaki | Sobolev Trace Theorem and the Dirichlet Problem in the Unit Disk[END_REF] gives that f ∈ H s-1 2 (0, T ): if s > 1, Sobolev inequalities ensure that f is continuous. Moreover, for any index k ∈ N, Recalling that γ R [u](θ) = u(R cos θ, R sin θ), this yields:

γ R [u](k) = R 2k ( γ R [∂ x u](k -1) -γ R [∂ x u](k + 1) -i ( γ R [∂ y u](k -1) + γ R [∂ y u](k + 1)
) ) , so that, the smoothness of u induces Fourier coefficients of γ R [u] which are of the order of powers of R, the radius of the circle. By induction, this calculation can be repeated until, -either Fourier coefficients of index zero are reached, and integrating by parts isn't possible; -or the function u hasn't enough regularity (when |k| > s - 1 2 ). Finally, we get an estimate on the size of Fourier coefficients on the circle of radius R, which can obviously be used to control the error (B.1):

∀k ∈ Z, γ R [u](k) = O ( R min(|k|,s-1 2 )
) .

(B.2)

If s -1 2 ≥ |k|, then in general,

∀k ∈ Z, γ R [u](k) = O(R |k| ) γ R [D |k| u](0) ,
which is the "circular average" of D |k| u, and the value at the circle's center of its harmonic extension. This agrees with the approximate values found at §4.2.
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 42 Figure 4.2. Counter-example of [4, Thm. 7]: polynomial (left) and its trace on C(0, ∆x) (right).
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 51 Figure 5.1. Boundary data (left), pointwise errors (middle) and L 2 convergence rates (right) for finite-differences, discrete weighted-means and Steklov schemes. Red line indicates second order.
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 52 Figure 5.2. Boundary data (left), pointwise errors (middle) and L 2 convergence rates (right) for Tailored (discrete weighted-means) and Steklov schemes. Red line again indicates second order.
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 53 Figure 5.3. Decay of L 2 norm (4.16): ε = 0.0066 (top, left), ε = 0.0033 (top, right), ε = 0.0022 (bottom, left) and ε = 0.0011 (bottom, right), for problem (5.1). Red line third order.
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 54 Figure 5.4. Steklov scheme with Bessel functions (left) vs. centered FD (right).
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 55 Figure 5.5. Steklov scheme: symmetric (left) vs. asymmetric (right) potential.
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 566 Fig.5.6, where the numerical steady-state is shown to have nearly all its mass inside the widest well. Beyond T ≃ 50, the rate of change is very slow, though.6. Conclusion and outlook.After recalling B. Simon's "flea on the elephant" phenomenon in 1D, see Fig.1.1, analytical bounds were derived in Section 3 dealing with various perturbations of the classical quadratic harmonic potential; in particular,
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 56 Figure 5.6. Numerical solutions of time-dependent problem (5.2)-(5.3) at times T = 2, 3, 7, 20; numerical steady-state at T = 100 (bottom, left) and corresponding L 2 residues (bottom, right).
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 61 Figure 6.1. Simulation of Cahn-Hilliard equation (6.1): steady-state (left) and residues (right).

(

  cos θ, R sin θ) exp(-ikθ)dθ = --sin θ ∂ x u + cos θ ∂ y u) i(k -1)θ) -exp(-i(k + 1)θ) i(k -1)θ) + exp(-i(k + 1)θ) )dθ.

which is exact for linear solutions of ∆u = 0. In

2D, there are only two linearly independent homogeneous harmonic polynomials of degree m : the real and imaginary part of (x + iy) m .
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Appendix A. Elliptic regularity in a planar, square domain.

Let Ω = (0, 1) × (0, 1) be the (open) unit square and Γ stand for its boundary. Consider the following strictly elliptic operator in Ω,

where both r and g are smooth functions. Because the domain is convex, but endowed with "corners", the variational solution to (A.1) cannot be expected to be smoother than H 2 in general, see [START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF] and, e.g., [START_REF] Hua | A regularity result for boundary value problems on Lipschitz domains[END_REF]Theorem 4.3]. Refined regularity estimates relying on Besov spaces theory were given in [8, Carollary 3.1]: Theorem A.1. Let r ≡ 0 in (A.1), which reduces to Laplace's equation, and g ∈ W s,p (Γ) with p < 2 1-ε and s ∈ (1 -ε, 1): the harmonic solution u ∈ W t,q (Ω) for

If g ∈ H 1 (Γ), then s = 1, p = 2 and u ∈ W t,q (Ω) with 1 3 < q ≤ 2 and 0 < t < 1 + 1 q . Another point of view consists in seeking under which restrictions on g the solution u can be as smooth as if (A.1) was solved in a smooth domain. Following [START_REF] Kellogg | Some Simple Boundary Value Problems with Corner Singularities and Boundary Layers[END_REF], let u(x, y) = 3 ∑ j ,ℓ=0 Λ ℓ j (g)ϕ i,j (x, y) + v(x, y), v smooth,