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Abstract

The Maker-Breaker domination game is played on a graph G by Dominator
and Staller. The players alternatively select a vertex of G that was not yet
chosen in the course of the game. Dominator wins if at some point the vertices
he has chosen form a dominating set. Staller wins if Dominator cannot form
a dominating set. In this paper we introduce the Maker-Breaker domination
number γMB(G) of G as the minimum number of moves of Dominator to win
the game provided that he has a winning strategy and is the first to play.
If Staller plays first, then the corresponding invariant is denoted γ′MB(G).
Comparing the two invariants it turns out that they behave much differently
than the related game domination numbers. The invariant γMB(G) is also
compared with the domination number. Using the Erdős-Selfridge Criterion
a large class of graphs G is found for which γMB(G) > γ(G) holds. Residual
graphs are introduced and used to bound/determine γMB(G) and γ′MB(G).
Using residual graphs, γMB(T ) and γ′MB(T ) are determined for an arbitrary
tree. The invariants are also obtained for cycles and bounded for union of
graphs. A list of open problems and directions for further investigations is
given.
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1 Introduction

Maker-Breaker games (as well as other positional games) have been introduced by
Erdős and Selfridge in [13], and since then have been the subject of numerous studies,
see [2, 3, 14, 15]. Maker-Breaker games are played on hypergraphs by two players
called Maker and Breaker. They take turns and at each turn the current player
selects a new vertex. Maker wins if at some point of the game he has selected all
vertices from one of the hyperedges, while Breaker wins if she can keep him from
doing it. See [1] and [16] for general introductions on this field.

Very recently, the Maker-Breaker domination game was introduced in [12]. The
game is played on a graph G with two players named Dominator and Staller. These
names were selected to emphasize the domination nature of the game and to be
consistent with the usual domination game where these two names are standard by
now. (The domination game was introduced in [4] and further studied in dozens of
papers, cf. [6, 11, 22, 23, 24].) The players alternatively select a vertex of G that
was not yet chosen in the course of the game. Dominator wins if at some point,
the vertices he has chosen form a dominating set. Staller wins if Dominator cannot
form a dominating set. Note that the Maker-Breaker domination game is a Maker-
Breaker game. Indeed, if for a graph G we build a hypergraph F with the same set
of vertices as G, and in which the hyperedges are the dominating sets of G, then
Dominator wins the Maker-Breaker domination game on G if and only if Maker wins
the Maker-Breaker game on F .

In several papers on Maker-Breaker games the authors were interested in the
smallest number of moves needed for Maker to win, see [7, 8, 15]. Also, in [12] it
was emphasized that when dealing with the Maker-Breaker games, there are two
natural questions: (i) which player has a winning strategy and (ii) what is the
minimum number of moves if Dominator has a winning strategy. In the seminal
paper question (i) is investigated, while in this paper we study (ii). For this sake
we say that if G is a graph, then the Maker-Breaker domination number γMB(G) of
G is the minimum number of moves of Dominator to win the game provided that
he has a winning strategy and is the first to play. Otherwise we set γMB(G) = ∞.
Similarly, γ′MB(G) denotes is the minimum number of moves of Dominator in the
game in which Staller plays first.

We proceed as follows. In the next section we list additional definitions and
several known results needed in this paper, as well as prove some basic results
on the Maker-Breaker domination number. In Section 3 we first compare γMB(G)
with γ′MB(G) and find out that they behave totally different than the related game
domination invariants. We also compare γMB(G) with the domination number and
using the Erdős-Selfridge Criterion prove that if the number of γ-sets of G is not
too big, then γMB(G) > γ(G). In Section 4 we introduce residual graphs, determine
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(resp. bound) γ′MB(G) (resp. γMB(G)) in terms of the residual graph, and determine
γMB(T ) and γ′MB(T ) for an arbitrary tree. In the next two sections we obtain the
invariants for cycles and bound them for union of graphs. We conclude with a list
of open problems and directions for further investigations.

2 Preliminaries

Let G be a graph. A vertex of G adjacent to a leaf is a support vertex of G. A
perfect matching of G is a set of pairwise independent edges that cover V (G). The
order of G will be denoted with n(G). If u is a vertex of G, then N [u] denotes the
closed neighborhood of u. If v is another vertex then we set N [u, v] = N [u] ∩ N [v].
A set D ⊆ V (G) is a dominating set of G if ∪u∈DN [u] = V (G). The domination
number γ(G) is the size of a smallest dominating set of G. A dominating set of size
γ(G) is called a γ-set of G.

The Maker-Breaker domination game is called a D-game (resp. S-game) if Domi-
nator (resp. Staller) is the first to play a vertex. The sequence of vertices selected in
a D-game will be denoted with d1, s1, d2, s2, . . ., and the sequence of vertices selected
in an S-game with s′1, d

′
1, s
′
2, d
′
2, . . . Suppose that Dominator wins a D-game. Then

the last vertex played is by Dominator, let it be dk. By the definition of the game,
{d1, . . . , dk} is a dominating set of G. Similarly, if Dominator wins an S-game and
the last vertex played by Dominator is d′`, then {d′1, . . . , d′`} is a dominating set of
G. We say that a move of Staller is a double threat if it creates two possibilities for
her to win in the next move and consequently Dominator cannot prevent Staller to
win.

Let G be a graph, k ≥ 1, and u1, . . . , uk, v1, . . . , vk pairwise different vertices of
G. Then we say that X = {{u1, v1}, . . . , {uk, vk}} is a pairing dominating set if

k⋃
i=1

N [ui, vi] = V (G) .

In the rest we will use this concept via the following interpretation proved in [12,
Proposition 9]. To be self-contained, we give here an alternative, short proof.

Lemma 2.1 Let u1, . . . , uk, v1, . . . , vk be pairwise different vertices of a graph G,
and let X = {{u1, v1}, . . . , {uk, vk}}. Then X is a pairing dominating set if and
only if every set {x1, . . . , xk}, where xi ∈ {ui, vi}, i ∈ [k], is a dominating set of G.

Proof. Suppose first that X is a pairing dominating set, that is, ∪ki=1N [ui, vi] =
V (G). Let {x1, . . . , xk} be an arbitrary set with xi ∈ {ui, vi}, i ∈ [k]. Then
V (G) = ∪ki=1N [ui, vi] ⊆ ∪ki=1N [xi]. So {x1, . . . , xk} is a dominating set of G.
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Conversely, consider a set {x1, . . . , xk}, where xi ∈ {ui, vi}, i ∈ [k], and suppose
that ∪ki=1N [ui, vi] is a proper subset of V (G). Let w ∈ V (G) \ ∪ki=1N [ui, vi]. Then
for every i ∈ [k] we have w /∈ N [ui, vi]. Let yi ∈ {ui, vi} be such that w /∈ N [yi]. But
then ∪ki=1N [yi] is a proper subset of V (G), that is, {y1, . . . , yk} is not a dominating
set. �

If X = {{u1, v1}, . . . , {uk, vk}} is a pairing dominating set such that uivi ∈ E(G)
holds for i ∈ [k], then we say that X is a dominating matching.

Fact 2.2 [12, Proposition 10] If G admits a pairing dominating set, then Dominator
has a winning strategy on G in the D-game as well as in the S-game.

The converse of Fact 2.2 does not hold in general. For instance, in [12, Figure
4] a chordal graph is presented on which Dominator has a winning strategy in both
games but admits no pairing dominating set. On the other hand, the converse holds
in the class of trees because if Dominator has a winning strategy on a tree T , then it
was proved in [12] that T has a dominating matching. Moreover, the converse also
holds for co-graphs.

Lemma 2.3 (No-Skip Lemma) In an optimal strategy of Dominator to achieve
γMB(G) or γ′MB(G) it is never an advantage for him to skip a move. Moreover,
if Staller skips a move it can only be an advantage for Dominator.

Proof. Suppose a D-game or an S-game is played. Let Dominator and Staller
play optimally until some point when Staller decides to skip a move. In that case,
Dominator imagines an arbitrary move of Staller, say x, and replies optimally to
this move. Since Dominator can always, no matter the way Staller selects vertices,
finish the game in no more that γMB(G) (resp. γ′MB(G)) moves, this property is
preserved after the imagined move x and the reply to it. Then Dominator proceeds
until the end of the game with the same strategy. Note that it may happen that in
the course of the game Staller selects a vertex which is not a legal move in the game
Dominator is imagining. In that case Dominator imagines that yet some other legal
move has been played by Staller. In this way the game on G will finish in no more
than γMB(G) (resp. γ′MB(G)) moves.

With a strategy of Staller parallel to the above strategy of Dominator we also
infer that it is never an advantage for Dominator to skip a move. �

If G is a graph and S ⊆ V (G), then let G|S denote that graph G in which
the vertices from S are declared to be already dominated, that is, Dominator is
not obliged to dominate them in the rest of the game. Then we have the following
Continuation Principle, a proof of which is much simpler that the corresponding
principle for the domination game [21].
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Remark 2.4 (Continuation Principle) Let G be a graph with A,B ⊆ V (G). If
B ⊆ A, then γMB(G|A) ≤ γMB(G|B) and γ′MB(G|A) ≤ γ′MB(G|B).

Indeed, the remark follows from the fact that Dominator can apply the same
strategy in G|A as in G|B.

Suppose that γMB(G) <∞. Then in any winning strategy of Dominator, he will
play at most half of the vertices (because Staller will play the other half) which in
turn implies that

1 ≤ γMB(G) ≤
⌈
n(G)

2

⌉
. (1)

The bound is sharp, consider for instance the disjoint union of K1 and several copies
of K2. It is also easy to see that all the possible values from (1) can be realized by
considering the disjoint union of a complete graph and an appropriate number of
K2s. Similarly, for the S-game, assuming that γ′MB(G) <∞, we have

1 ≤ γ′MB(G) ≤
⌊
n(G)

2

⌋
, (2)

where again all the values can be realized.
Later we will apply the celebrated Erdős-Selfridge Criterion for Maker-Breaker

games that reads as follows.

Theorem 2.5 (Erdős-Selfridge Criterion [13]) If F is a hypergraph, then∑
A∈F

2−|A| <
1

2
⇒ F is a Breaker’s win .

This theorem together with its proof can also be found in the book [16, Theorem
2.3.3].

3 Maker-Breaker domination numbers

In this section we first compare γMB(G) with γ′MB(G) and construct graphs for all
possible values of the invariants. In the second part we compare γMB(G) with the
domination number and using the Erdős-Selfridge Criterion find a large class of
graphs G for which γMB(G) > γ(G) holds.
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3.1 Realizations of Maker-Breaker domination numbers

One of the fundamental theorems on the domination game proved in [4, 21] asserts
that |γg(G)− γ′g(G)| ≤ 1 holds for every graph G. The next result reveals that the
situation with the Maker-Breaker domination number is dramatically different.

Theorem 3.1 If G is a graph, then γ(G) ≤ γMB(G) ≤ γ′MB(G). Moreover, for any
integers r, s, t, where 2 ≤ r ≤ s ≤ t, there exists a graph G such that γ(G) = r,
γMB(G) = s, and γ′MB(G) = t.

Proof. The assertion γ(G) ≤ γMB(G) is clear since {d1, d2, . . .} is a dominating set
of G.

A D-game can be viewed as an S-game in which Staller has passed her first move.
The No-Skip Lemma thus implies that γMB(G) ≤ γ′MB(G).

Let r, s, t be fixed integer where 2 ≤ r ≤ s ≤ t. Construct a graph Gr,s,t as
follows. Start with a path of length r− 1 on consecutive vertices x1, . . . , xr. Attach
t− r + 1 pendant triangles at x1 and s− r + 1 pendant triangles at x2. Finally, at
each (if any) of the vertices x3, . . . , xr attach a pendant vertex y3, . . . , yr, respectively.
The construction should be clear with the aid of Fig. 1.

t− r + 1 s− r + 1

· · · · · ·

x1 x2 x3 xr

y3 yr

Figure 1: Graph Gr,s,t

The t−r+1 triangle edges opposite to x1 and the s−r+1 triangle edges opposite
to x2 together with the edges x3y3, . . . , xryr form a dominating matching of Gr,s,t.
Hence by Fact 2.2, Dominator has a winning strategy in both games. We claim that
γ(Gr,s,t) = r, γMB(Gr,s,t) = s, and γ′MB(Gr,s,t) = t, where the first assertion is clear.

Consider the D-game. We first describe the following strategy of Dominator.
He starts the game with the move d1 = x1. Then no matter how Staller plays,
Dominator can proceed such that at most (r− 2) + (s− r+ 1) moves of him will be
needed to dominate the graph. To do this, whenever Staller plays on xi or yi, i ≥ 3,
Dominator replies with yi or xi, respectively. Also, Dominator proceeds along the
same lines when Staller plays on a vertex that lies in a triangle attached to x2. Using
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this strategy Dominator ensures that he will play at most 1+(r−2)+(s−r+1) = s
moves which means that γMB(G) ≤ s. To prove the other inequality, consider the
following strategy of Staller. If Dominator starts with d1 = x1, then Staller sets
s1 = x2. Then Dominator will need at least (r − 2) + (s− r + 1) additional moves
to dominate G. On the other hand, if d1 6= x1, then Staller sets s1 = x1, but then
Dominator will need at least (r− 2) + (t− r + 1) ≥ (r− 2) + (s− r + 1) additional
moves. In any case, γMB(G) ≥ 1 + (r − 2) + (s− r + 1) = s.

Consider next the S-game. The proof that γ′MB(Gr,s,t) = t proceeds similarly as
above. To show that γMB(G) ≥ t, Staller can apply a strategy to start the S-game
with s′1 = x1. In this way she can guarantee that Dominator will need to play at
least (t − r + 1) + 1 + (r − 2) = t moves. On the other hand, Dominator can play
such that no more than t vertices will be selected by him. Whenever Staller plays
xi or yi, i ≥ 3, he replies with yi or xi, respectively. Moreover, during the game he
will be able to play x1 or x2. �

Note that if γ(G) = 1, then also γMB(G) = 1. Hence Theorem 3.1 does not
extend to the case r = 1. On the other hand, if Gt, t ≥ 1, is the graph obtained
from t disjoint triangles by identifying a vertex from each of the triangles (so that
this new vertex is of degree 2t), then γ(Gt) = 1, γMB(Gt) = 1, and γ′MB(Gt) = t.

Theorem 3.1 extends also to highly connected graphs. To see this, consider the
graphs Hk,r,s,t, 2 ≤ r ≤ s ≤ t, k ≥ 1, that are schematically drawn in Fig. 2.
Here, each vertex of a Kk clique is adjacent to each vertex of the clique Kk+r.
Then by arguments similar to those from the proof of Theorem 3.1 one can see
that γ(Hk,r,s,t) = r, γMB(Hk,r,s,t) = s, and γ′MB(Hk,r,s,t) = t. Moreover, Hk,r,s,t is
(k + 1)-connected.

xr+1 xk+r

Kk Kk Kk Kk Kk Kk

Kk+r

t− r + 1 s− r + 1

· · · · · ·

. . .
. . .

x1 x2 x3 xr

Figure 2: Graph Hk,r,s,t
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3.2 Relation with the domination number

As already observed above, γ(G) = 1 if and only if γMB(G) = 1. In general it would
be interesting to characterize the graphs G such that γMB(G) = γ(G) = k, where
k ≥ 2 is a fixed integer. For k = 2 the answer is simple:

Proposition 3.2 Let G be a graph with γ(G) = 2. Then γMB(G) = γ(G) = 2 if
and only if G has a vertex that lies in at least two γ-sets of G.

Proof. Suppose γMB(G) = γ(G) = 2. After the moves d1 and s1 are played,
Dominator has a strategy to win the game with the move d2. Then {d1, d2} is a
γ-set of G. Moreover, Staller has an option to select s1 such that {d1, s1} is a γ-set,
hence d1 must lie in at least two γ-sets.

Conversely, let u be a vertex that lies in two γ-sets of G. Then Dominator plays
d1 = u, and then no matter which vertex is selected by Staller in her first move,
Dominator can finish the game in his second move. �

Proposition 3.2 can be rephrased to hold for larger k also, but this would be
more or less just rephrasing the definitions. It would be more interesting to find a
structural characterization of the corresponding graphs. This task, however, seems
difficult. On the other hand, the Erdős-Selfridge Criterion gives a sufficient condition
for γMB(G) > γ(G). Let Xγ(G) be the number of γ-sets of a graph G, cf. [9]. Then:

Proposition 3.3 If G is a graph and Xγ(G) < 2γ(G)−1, then γMB(G) > γ(G).

Proof. Let F be the hypergraph with V (F) = V (G) and whose hyperedges are the
γ-sets of G. Then Theorem 2.5 asserts that∑

A∈F

2−|A| <
1

2
⇒ F is a Breaker’s win . (3)

Since |E(F)| = Xγ(G) and each of these hyperedges has size γ(G), we can estimate
as follows:∑

A∈F

2−|A| =
∑
A∈F

2−γ(G) = Xγ(G) · 2−γ(G) < 2γ(G)−1 · 2−γ(G) =
1

2
.

Therefore, F is a Breaker’s win by (3). But this means that in G, Dominator is
unable to win with γ(G) moves, thus γMB(G) > γ(G). �

Consider the cycles C3k−1, k ≥ 1. It is known and easy to see that γ(C3k−1) =
k. We now determine the number of γ-sets of C3k−1. Each vertex from a γ-set
dominates itself and its two neighbors. As there are k such triplets and 3k − 1
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vertices in the graph, there is only one vertex that is dominated by two vertices
from the γ-set, all others are dominated exactly once. Thus if the vertex that is
dominated twice is fixed, then the γ-set of the cycle is uniquely determined. As
there are 3k− 1 choices for this vertex, we have Xγ(C3k−1) = 3k− 1. If k ≥ 5, then
Xγ(C3k−1) = 3k − 1 < 2k−1 = 2γ(C3k−1)−1, and by Proposition 3.3, we conclude that
γMB(C3k−1) > k = γ(C3k−1). Actually, γMB(C3k−1) is much bigger than γg(C3k−1)
as we will see in Section 5.

The converse of Proposition 3.3 does not hold as the following example shows.
If k ∈ {3, 4}, then Xγ(C3k−1) = 3k − 1 > 2k−1 = 2γ(C3k−1)−1, but as we will see in
Section 5, γ(C3k−1) = k < k + 1 =

⌊
3k−1
2

⌋
= γMB(C3k−1).

4 Residual graphs

In this section we study the Maker-Breaker domination number on a construction
that might be of independent interest and that will be later used to determine the
invariant for trees.

If G is a graph, then we say that the residual graph R(G) of G is the graph
obtained from G by iteratively removing pendant paths P2 until no such path is
present. By a pendant P2 we mean P2 attached to G with an edge. Hence, when
such a pendant P2 is removed, exactly two vertices and two edges are removed.
When G = P2, we can also remove it and obtain the empty graph.

Note that H = R(G) for some graph G if and only if H is the empty graph,
H = K1, or each support vertex of H has degree at least 3. This is in particular
true if H has no support vertices. We further observe:

Lemma 4.1 If G is a graph, then R(G) is unique (up to isomorphism).

Proof. Let P ′ = xy be an arbitrary pendant P2 of G, where x is a leaf of G and let z
be the other neighbor of y. Then either P ′ is removed at some point when pendant
P2s are removed from G, or P ′ is not removed at all. The latter possibility can
only happen if after this removal process only the path induced with x, y, z remains,
and then the pendant path P ′′ = yz is removed. In this case, however, we have
R(G) = K1. In addition, by induction every pendant P2 that appears during the
removal process will either be eventually removed or will lead to the residual tree
K1. �

Note that the proof of Lemma 4.1 also reveals that if R(G) 6= K1, then G \
V (R(G)) is unique. To see that it is not unique in general, consider a path P2k+1,
k ≥ 2, and different sequences of removing pendant P2s.

Lemma 4.2 Let G be a graph and R(G) a residual graph of G. Then
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(i) G \ V (R(G)) is a forest that has a unique perfect matching, and

(ii) G has a perfect matching if and only if R(G) has a perfect matching.

Proof. (i) G \ V (R(G)) is a forest since it is build from the empty graph by suc-
cessively attaching to it pendant P2s. If xiyi, i ∈ I, are the pendant P2s that were
removed when R(G) was obtained from G, then {xiyi}i∈I is a unique perfect match-
ing of G− V (R(G)).

(ii) If G has a perfect matching, then its restriction to G \ V (R(G)) must be
the unique perfect matching of G \ V (R(G)), hence R(G) has a perfect matching.
Conversely, if R(G) has a perfect matching, then it can be extended to a perfect
matching of G by means of (i). �

For the proof of the main result of this section, we also need the following.

Lemma 4.3 If T is a tree that admits a perfect matching and v ∈ V (T ), then

Staller has a strategy for the S-game such that Dominator has to select at least n(T )
2

vertices to dominate T and v is played by Staller in her last move.

Proof. We prove the claim by induction on n(T ). If T = P2 and v ∈ V (P2), then
Staller can play on v and Dominator has to reply on the other vertex.

Let now n(T ) ≥ 4 and consider T as a BFS-tree rooted at an arbitrary vertex
r. Let x be a leaf of this BFS-tree at the largest distance from r and let y be the
neighbor of x. Then deg(y) = 2 because T has a perfect matching. Let z be the
other neighbor of y. Set T ′ = T \ {x, y}. As T has a perfect matching, xy belongs
to it, hence T ′ also has a perfect matching. If v ∈ V (T ′), then Staller starts on y,
Dominator has to reply on x (otherwise Staller would win) and then Staller applies
her strategy on T ′ (by the induction hypothesis). If v ∈ {x, y}, then she applies her
strategy on T ′ with her last move on z, and then plays v in her last move. Note that
if Dominator plays on v while Staller is playing on T ′, then Staller wins the game as
she can prevent Dominator from playing on one pair of vertices from the matching
in T ′.

From the above strategy of Staller we conclude that the total number of Domi-
nator’s moves was n(T ′)

2
+ 1 = n(T )

2
. �

Note that by the strategy from the proof of lemma 4.3, unless Staller wants to
play on a leaf, she plays on the support vertex, forcing Dominator to reply on its
neighboring leaf and separating this P2 from the rest of the graph.

Theorem 4.4 Let R(G) be a residual graph of G and let H = G \ V (R(G)). Then
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(i) γ′MB(G) = n(H)
2

+ γ′MB(R(G)),

(ii) n(H)
2

+ γMB(R(G))− 1 ≤ γMB(G) ≤ n(H)
2

+ γMB(R(G)).

Proof. (i) H has a perfect matching and is a forest by Lemma 4.2(i). Let S-game
be played on G and consider the following strategy of Staller. By Lemma 4.3 she
can play on each tree of H and play last on the vertex of this tree adjacent to R(G).
Dominator has to reply on the matching (otherwise Staller wins the game). Thus,

Dominator makes (at least) n(H)
2

moves on H. Moreover, Staller plays on vertices
adjacent to R(G), hence no vertex in R(G) will be dominated by the time Staller
makes her first move in R(G). Next, Staller is the player to make the first move
on R(G) and she follows her optimal strategy there to ensure at least γ′MB(R(G))
moves of Dominator.

On the other hand, Dominator’s strategy is to then reply wherever Staller plays,
H or R(G), with its strategy on this graph. As H has a perfect matching, Dominator

makes no more than n(H)
2

moves on H. Moreover, he makes at most γ′MB(R(G))

moves on R(G). Hence, we have γ′MB(G) = n(H)
2

+ γ′MB(R(G)).
(ii) Suppose now that the D-game is played on G. To prove the upper bound,

Dominator’s strategy is to start on R(G) and then reply on R(G) or H if Staller

plays there. As H has a perfect matching, Dominator makes no more than n(H)
2

moves on H. Moreover, he makes at most γMB(R(G)) moves on R(G). Hence we

get the upper bound γMB(G) ≤ n(H)
2

+ γMB(R(G)).
To prove the lower bound, consider the following strategy of Staller depending

on the first move of Dominator. We will distinguish two cases, the second with two
subcases, which are schematically depicted in Fig. 3.

Case 1: The first move of Dominator is on R(G).

Staller first applies her strategy from Lemma 4.3 on each tree of H, playing
the vertex adjacent to R(G) as her last move on each of the trees. With this,

she forces Dominator to play (at least) n(H)
2

moves on H. After that we have
an ordinary D-game played on R(G), so at least γMB(R(G)) moves are made
on it by Dominator if Staller follows her strategy there.

Case 2: The first move of Dominator is on H.

Let d1 be the vertex Dominator plays in his first move, let T be the connected
component of H containing d1 (recall that T is a tree), let P be the shortest
path between d1 and R(G) in T , and let M be the unique perfect matching of
T (cf. Lemma 4.2(i)).

In this case, Staller first applies her strategy from Lemma 4.3 on all the other
trees of H, playing the vertex adjacent to R(G) as her last move on each tree.
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R(G)

d1

H

T1

T2
• •

•

Tk

G

Case 1

R(G)
d1

Case 2.1

R(G)
y2 y1 v x1 x2 d1

Case 2.2

Figure 3: Representations of the cases from the proof of Theorem 4.4

Next, Staller applies her strategy from Lemma 4.3 on the edges from M , which
are not incident with P . Additionally, she plays last on the vertices closest to
P . After that, only R(G), P , and maybe some vertices adjacent to P , remain
undominated.

Case 2.1: At least one vertex adjacent to P is still undominated (see Fig. 3).

Let u be an undominated vertex adjacent to P . Staller plays on its
neighbor on P , forcing Dominator to reply on u. Staller does so on each
such vertex. After that, the only undominated vertices lie on P , moreover,
up to now, at least one move of Dominator was played on each already
completely dominated edge from M .

As long as there are some more undominated edges from M on P , at least
one of them, say e ∈M , is adjacent to a vertex s of P already played by
Staller. Her strategy is to play on the vertex of e which is at distance 2
from s. Then Dominator has to reply on the other vertex of e, otherwise
Staller wins by playing it. Hence, Staller can force Dominator to reply
on all remaining edges.

Case 2.2: The only undominated vertices in H lie on P .

Staller’s strategy is to play on the vertex v of P at distance 3 from d1.
Dominator has to reply on a neighbor of v, otherwise one of the neighbors
of v is not dominated and Staller can win by playing that vertex and
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creating a double threat. Indeed, in this case, two undominated adjacent
vertices are played by Staller, and no matter where Dominator answers,
she can play another consecutive vertex and win the game.

Let xi be a vertex at distance i from v on P in the direction of d1, and
yi be a vertex at distance i from v on P in the direction of R(G) for all
possible i ≥ 1, see Fig. 3 again.

If Dominator replies on x1, then Staller’s next move is y2. Now, Domina-
tor has to reply on y1, otherwise Staller wins. Then Staller repeats this
strategy until P is dominated, i.e., she plays on the vertices y2k in the
increasing order, and Dominator is forced to reply on y2k−1.

If Dominator replies on y1, then Staller replies on x2. After that, Dom-
inator has to play x1. Next, Staller applies the same strategy as before,
taking y1 as the new d1.

In both cases, Dominator is forced to play at least one move on each edge of
the matching M , hence at least n(T )

2
moves are made on T . On H−T , at least

n(H−T )
2

moves are made by Lemma 4.3.

After T is completely dominated, Staller follows her optimal strategy on R(G),
but it might happen that one vertex u in R(G) is already dominated (by a
move of Dominator in H close to R(G)). As Staller’s strategy on H forces
Dominator to answer on H, Staller will be the first player to play on R(G).
But as she can imagine that Dominator’s move was u, we have

γ′MB(R(G)|u) ≥ γ′MB(R(G)|N [u]) ≥ γMB(R(G))− 1 ,

hence the total number of moves on R(G) is at least γMB(R(G))− 1.

In either case, Dominator played at least n(H)
2

+ γMB(R(G)) − 1 moves, which
proves the lower bound. �

Note that in the inequality γ′MB(G|u) ≥ γMB(G) − 1 from the above proof, the
equality can be attained. For example, consider the graph G on Fig. 4. Clearly,
γMB(G) = 2 and γ′MB(G|u) = 1.

u

Figure 4: The graph G with the property γ′MB(G|u) = γMB(G)− 1.
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Appending to G some trees with perfect matchings, where at least one of them
is attached to u, we get graphs that attain the lower bound from Theorem 4.4(ii).

To conclude the section we apply the residual construction to determine the
Maker-Breaker domination number of trees. This contrasts the domination game
where no such result is known, cf. [5, 17, 18].

Theorem 4.5 If T a tree, then

γMB(T ) =


n(T )
2

; T has a perfect matching,
n(T )−1

2
; R(T ) ∼= K1,

n(T )−k+1
2

; R(T ) ∼= K1,k for k ≥ 3,

∞; otherwise,

and

γ′MB(T ) =

{
n(T )
2

; T has a perfect matching,

∞; otherwise.

Proof. Let T be a tree. Note first that by Lemma 4.2 the cases in Theorem 4.5 are
disjoint.

If T admits a perfect matching, then γMB(T ) ≤ n(T )
2

since by playing once on

every edge of the matching, Dominator dominates T . By Lemma 4.3, γMB(T ) ≥ n(T )
2

.

Hence, γMB(T ) = n(T )
2

and by the same reasoning, γ′MB(T ) = n(T )
2

.
If R(T ) ∼= K1 and v is the remaining vertex, then T−v admits a perfect matching

by Lemma 4.3. In this case, Dominator first plays on a neighbor of v (which also
belongs to one edge of the matching in T −v) and then follows the perfect matching

in T −v. Thus he makes at most n(T )−1
2

moves. By Lemma 4.3, Staller can force him

to play on the perfect matching except for his first move, hence γMB(T ) = n(T )−1
2

.
If R(T ) ∼= K1,k for some k ≥ 3, then T − K1,k admits a perfect matching.

Dominator can start the game on the center vertex of the star K1,k and then follow

the matching in the remaining part. Thus he makes at most 1+ n(T )−k−1
2

= n(T )−k+1
2

moves. On the other hand, Staller can assure that he cannot win in less moves. If
his first move is indeed in the center of a star, then Lemma 4.3 assures that at least
1+ n(T )−k−1

2
Domintor’s moves are needed. If his first move is elsewhere, then Staller

can assure that Dominator follows her moves in the perfect matchings in subtrees
of T −K1,k while additionally she plays the last move on a vertex closest to K1,k in
all subtrees of at least two descendants of the star (again by Lemma 4.3). With this
she creates a double threat on these descendants, hence Dominator is forced to play
on the center of the star and Dominator makes at least 1 + n(T )−k−1

2
moves. This

proves that γMB(T ) = n(T )−k+1
2

.
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Otherwise, we know by [12] that Staller wins on T (no matter which player starts
the game), hence γMB(T ) = γ′MB(T ) =∞. �

Note that by Theorem 4.5, γMB and γ′MB of trees are polynomial.

5 Cycles

The D-game domination number and the S-game domination number of cycles are
given with the following formulas:

γg(Cn) =

{⌈
n
2

⌉
− 1; n ≡ 3 mod 4,⌈

n
2

⌉
; otherwise,

γ′g(Cn) =

{⌈
n−1
2

⌉
− 1; n ≡ 2 mod 4,⌈

n−1
2

⌉
; otherwise.

This fundamental result was first obtained in an unpublished manuscript [20]. The
result appeared for the first time in press in the paper [19], where an alternative
proof is given. For the total domination game, parallel results were obtain in [10].
The latter paper investigates the total domination game on paths and cycles only.
So the (total) game domination number of cycles is far from being straightforward.
Here we determine the Maker-Breaker domination number of cycles, a task that
turned out to be less involved.

Theorem 5.1 If n ≥ 3, then

γMB(Cn) = γ′MB(Cn) =
⌊n

2

⌋
.

Proof. We begin by showing that γMB(Cn) ≤
⌊
n
2

⌋
and γ′MB(Cn) ≤

⌊
n
2

⌋
. If n is

even, Cn has a perfect matching (which is also a dominating matching), thus by
Fact 2.2, it holds γMB(Cn) ≤ n

2
=
⌊
n
2

⌋
and γ′MB(Cn) ≤

⌊
n
2

⌋
. Now consider the

case when n is odd. In a D-game, let v be the first vertex played by Dominator.
Clearly, among undominated vertices, V (Cn) − N [v], there is a perfect matching.
Thus γMB(Cn) ≤ 1 + n−3

2
=
⌊
n
2

⌋
. In an S-game, suppose s′1 = u. Then Dominator

should reply on a neighbor v of the vertex u. Now there is a perfect matching among
V (Cn)−N [v], so γ′MB(Cn) ≤ 1 + n−3

2
=
⌊
n
2

⌋
. This proves the upper bounds.

To find the lower bounds we need to find an appropriate strategy for Staller.
Set for the rest of the proof that V (Cn) = {x1, . . . , xn}, where the adjacencies are
natural.

We first show the lower bound for the S-game: γ′MB(Cn) ≥
⌊
n
2

⌋
. Suppose, without

loss of generality, that s′1 = x1. Notice that Dominator has to reply on a neighbor
of x1, for otherwise Staller plays as s′2 the not yet dominated neighbor of x1. Then
Dominator cannot in one move dominate s′1 and s′2. Say he leaves s′2 undominated.
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Then Staller can play the other neighbor of s′2 and win the game as Dominator cannot
dominate s′2. So without loss of generality, Dominator replies with d′1 = xn. Staller’s
next move is s′2 = x3. In order to prevent Staller from winning, Dominator has to
play d′2 = x2. Then Staller continues with the same strategy, forcing Dominator to
play on (almost) every second move.

If n is even, the game ends after Staller plays xn−1 and Dominator replies on xn−2.
So in this case, Dominator plays all even labeled vertices, hence γ′MB(Cn) ≥ n

2
=
⌊
n
2

⌋
.

If n is odd, the game ends after Staller plays xn−2 and Dominator replies on xn−3
(as xn−1 is already dominated by d′1). So Dominator again plays all even labeled
vertices, thus γ′MB(Cn) ≥ n−1

2
=
⌊
n
2

⌋
.

It remains to prove that γMB(Cn) ≥
⌊
n
2

⌋
. Assume without loss of generality that

d1 = x1. Staller replies on s1 = x4 (so at distance 3 from d1). Again, Dominator has
to reply on a neighbor of s1. If he replies on x3, then Staller can apply the above
strategy by playing x6 next, and then every second vertex along the cycle to ensure
at least

⌊
n
2

⌋
moves.

If Dominator replies on d2 = x5, then Staller plays s2 = x8 (again at distance
3 from d2 in the same direction as before). But observe that at some point of the
game Dominator will have to play on {x2, x3} to dominate the whole graph.

By repeating this strategy, Staller ensures that among every four consecutive
vertices of the cycle, Dominator makes at least two moves (except maybe in the last
one, two or three remaining vertices). We now distinguish four different cases.

• If n ≡ 0 mod 4, then no vertex remains and γMB(Cn) ≥ 2n
4

=
⌊
n
2

⌋
.

• If n ≡ 1 mod 4, then only one vertex remains, which is already dominated by
d1, so γMB(Cn) ≥ 2(n−1)

4
=
⌊
n
2

⌋
.

• If n ≡ 2 mod 4, then among the remaining two vertices, one is dominated
by d1 but the other is not. So Dominator has to make another move, thus
γMB(Cn) ≥ 2(n−2)

4
+ 1 =

⌊
n
2

⌋
.

• If n ≡ 3 mod 4, then two of the remaining three vertices are not yet dominated,
so Dominator still has to make just one more move. So γMB(Cn) ≥ 2(n−3)

4
=⌊

n
2

⌋
. �

6 Union of graphs

The Maker-Breaker domination game was in [12] studied on disjoint unions on
graphs, the obtained results were in particular applied to cographs. In this sec-
tion we complement their investigation with the following result.

16



Theorem 6.1 If G and H are graphs, then

(i) γMB(G) +γMB(H) ≤ γMB(G∪H) ≤ min{γ′MB(G) +γMB(H), γMB(G) +γ′MB(H)} ,

(ii) max{γ′MB(G)+γMB(H), γMB(G)+γ′MB(H)} ≤ γ′MB(G∪H) ≤ γ′MB(G)+γ′MB(H) .

Moreover, all the bounds are sharp.

Proof. (i) It follows directly from the results from [12] that if γMB(G) = ∞ or
γMB(H) =∞, then γMB(G∪H) =∞. Suppose then that both γMB(G) and γMB(H)
are finite. We give a strategy for Staller such that when a D-game is played on
G∪H, she can assure that Dominator will select at least γMB(G)+γMB(H) vertices.
The strategy of Staller is the following: each time Dominator selects a vertex from G
or from H, she answers optimally in G or H (with an optimal strategy restricted to
G or H), respectively, as long as this is possible. Suppose without loss of generality
that Dominator has first dominated G. Then Staller can reply either in G, provided
she has a legal move in G available, or in H. In the first case a usual D-game will
be played on H. In the second case we have a game on H in which Dominator has
passed one move. By the No-Skip Lemma, Dominator will need to select at least
γMB(H) vertices from H. In any case, γMB(G ∪H) ≥ γMB(G) + γMB(H).

To prove the upper bound, suppose first that Dominator starts by playing his
optimal move on G and then follows Staller in G or in H whenever she plays in G
or in H. In this way (having in mind the No-Skip Lemma) Dominator achieves at
most γMB(G) moves in G and at most γ′MB(H) moves in H, hence at most γMB(G)+
γ′MB(H) vertices for G ∪ H. If instead he starts by playing his optimal move on
H, then he can guarantee to play at most γ′MB(G) + γMB(H) vertices. By choosing
the smaller of the two values, Dominator has a strategy such that he dominates
G∪H with no more than min{γ′MB(G) + γMB(H), γMB(G) + γ′MB(H)} moves and so
γMB(G ∪H) ≤ min{γ′MB(G) + γMB(H), γMB(G) + γ′MB(H)}.

(ii) This is done using similar arguments as in (i).
To demonstrate the sharpness of the bounds, consider the graphs Xn,m, 1 ≤ m ≤

n, and Yk, k ≥ 1, as depicted in Fig. 5.
Observe first that γMB(Xn,m) = m + 1, γ′MB(Xn,m) = n + 1, γMB(Yk) = 1, and

γ′MB(Yk) = k. Consider next the union Xn,m ∪ Yk, where k ≤ m, and the union
Yk1 ∪Yk2 , where k1 ≤ k2. Then in the D-game as well in the S-game played in either
of the unions, an optimal first move is to play a vertex of highest degree. Moreover,
an optimal reply to this move is to play a vertex of second highest degree. Therefore,

• γMB(Xn,m ∪ Yk) = 1 +m+ 1, reaching the lower bound of (i),

• γ′MB(Xn,m ∪ Yk) = n+ 1 + k, reaching the upper bound of (ii),

• γMB(Yk1 ∪ Yk2) = k1 + 1, reaching the upper bound of (i), and
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Xn,m

···

···n m

Yk

··· k

Figure 5: Representation of graphs Xn,m and Yk

• γ′MB(Yk1 ∪ Yk2) = 1 + k2, reaching the lower bound of (ii). �

7 Concluding remarks

To conclude the paper we list several problems and directions for further investiga-
tion of the Maker-Breaker domination number.

1. For the upper bound in (1) we have provided examples of graphs that attain
the equality. These examples are not connected and it is not difficult to achieve
the equality with connected graphs of even order. However, we do not know
of any connected graph of odd order (different from K1) for which the equality
in (1) is achieved. More generally, we ask for a characterization of the extremal
graphs with respect to (1) and (2).

2. As we already mentioned, it would be interesting to find a structural charac-
terization of the graphs G for which γMB(G) = γ(G) = k holds, where k ≥ 2
is a fixed integer.

3. It would also be interesting to investigate γMB(G�H) and γ′MB(G�H), where
G and H are arbitrary graphs and G�H is the Cartesian product of G and
H. In particular, it would be interesting to determine γMB(Pn�Pm) (and
γ′MB(Pn�Pm)), as well as γMB(G�K2) (and γ′MB(G�K2)) for an arbitrary
graph G.

4. If G is a cograph, then it is not difficult to determine whether Dominator or
Staller wins the Maker-Breaker domination game [12]. On the other hand,
it does not seem straightforward to determine the Maker-Breaker domination
numbers of co-graphs.

5. In this paper we have considered the Maker-Breaker domination number which
is an optimization problem from Dominator’s point of view. It would likewise
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be of interest to consider the Staller’s point of view, that is, assuming that
Staller wins on a graph G, what is the minimum number of moves with which
she can achieve the goal?
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