Design of a 3kW power converter using PCB-embedding technology

From Nano to Micro Power Electronics And Packaging Workshop, Tours, France

Rémy Caillaud¹, Johan Le Lesle¹, Cyril Buttay², Florent MOREL², Roberto MRAD¹, Nicolas DEGRENNE¹, Stefan MOLLOV¹

¹Mitsubishi Electric Research Centre Europe, Rennes, France ²Laboratoire Ampère, Lyon, France

08/11/18

Outline

Introduction

PCB Embedding Technology

Design of an embedded converter

Manufacturing Process

Experimental Results

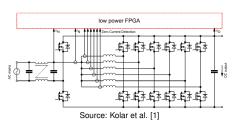
Conclusions

Outline

Introduction

PCB Embedding Technology

Design of an embedded converter


Manufacturing Process

Experimental Results

Power electronics – Areas for Progress

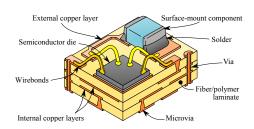
- Source: Kerachev et al. [2]
- Excellent active devices are now available (SiC, GaN)
- Many topologies introduced over the years;
 - ► Recent changes: multicellular structures
- ► Integration and Packaging are the main areas for progress [1, 3, 4, 5]
 - ► Reduce size and circuit parasitics, improve thermal management...
 - Manage increased interconnection density

Outline

Introduction

PCB Embedding Technology

Design of an embedded converter


Manufacturing Process

Experimental Results

PCB Technology

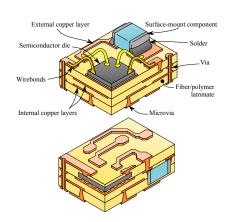
Printed Circuit Board is

Mature ► Large range of available design software

► Can be manufactured in large quantities, low price

► Mainly oriented towards microelectronics and low power

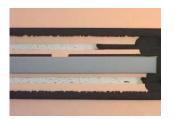
Flexible ► Custom design

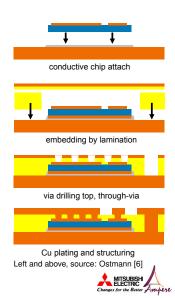

Many possible configurations

Limited ► Poor thermal conductivity

Why Embedding?

- Optimize thermal management
 - Heat sources closer to heatsink
 - ► Dual side cooling
- ► Improve performance
 - ► Shorter interconnects
 - ► Lower inductances
- ▶ Reduce size
 - Use substrate volume
- ► Manage complex interconnects
 - ► Batch process

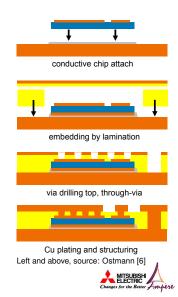




Embedding of Power Dies

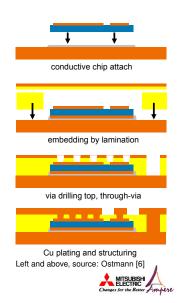
- ► Most embedding effort on power dies:
 - Most power density
 - ► Fastest voltage/current transients
- Requires special finish on dies

▶ Backside connection by sintering or vias



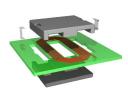
Embedding of Power Dies

- Most embedding effort on power dies:
 - Most power density
 - ► Fastest voltage/current transients
- Requires special finish on dies
 - 5-10 μm Cu (not standard)
 - ► Buffer for UV laser
 - Also for microetch in plating step
- Backside connection by sintering or vias



Embedding of Power Dies

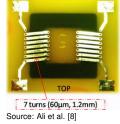
- Most embedding effort on power dies:
 - Most power density
 - Fastest voltage/current transients
- Requires special finish on dies
 - 5-10 μm Cu (not standard)
 - ▶ Buffer for UV laser
 - Also for microetch in plating step
- Backside connection by sintering or vias
 - Sintering compatible with standard dies
 - Vias require Cu finish and adhesive


Embedding of Formed Components – Inductors

Magnetic Layer

- ► Relies on magnetic/polymer film → Low μ_r
- ▶ Limited to 10 100 W

Source: Waffenschmidt et al. [7]

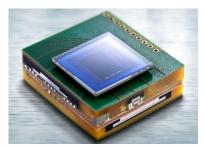


Planar magnetic components

- ► Very common, but not really embedded
- ▶ High performance
- ► Compatible with low (W) or high power (kW)

Embedded core

- Strong industrial development (Murata, AT&S, Würth)
- Currently limited to low power (W)


Embedding of Inserted Components

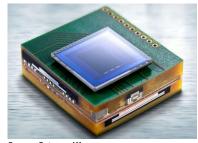
Soldered components:

- Suits most Surface-Mount Devices
- ► Connections with regular vias

Vias to components:

- ► Requires components with Cu finish
- ► More compact (vias on components)

Source: Ostmann [6]


Embedding of Inserted Components

Soldered components:

- Suits most Surface-Mount Devices
- Connections with regular vias

Vias to components:

- ► Requires components with Cu finish
- More compact (vias on components)

Source: Ostmann [6]

For power electronics

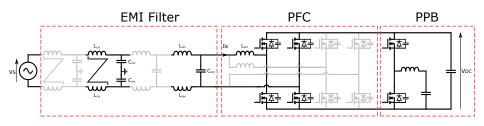
- Embedding of "large" capacitors (1 μF range)
- ► Embedding of gate driver ICs and peripheral components, control

Outline

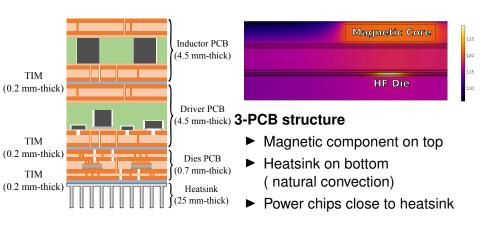
Introduction

PCB Embedding Technology

Design of an embedded converter


Manufacturing Process

Experimental Results


Converter topology

- ► Bidirectionnal, Power Factor Converter for 3 kW applications
- ▶ Designed through an optimization procedure [9, 10]
 - ► Based on SiC power devices
 - ► 180 kHz switching frequency
 - ► 4 interleaved cells
- ▶ Discussed here: EMI filter and PFC

Physical Structure

Outline

Introduction

PCB Embedding Technology

Design of an embedded converter

Manufacturing Process

Experimental Results

Two board structures are used:

Two board structures are used:

Two board structures are used:

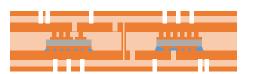
Two board structures are used:

Two board structures are used:

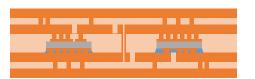
Two board structures are used:



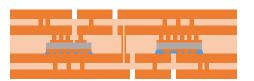
Two board structures are used:



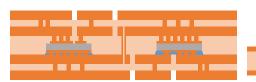
Two board structures are used:



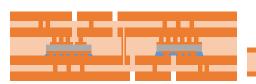
Two board structures are used:



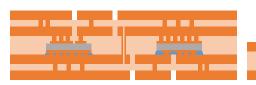
Two board structures are used:


Two board structures are used:

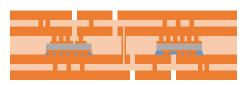
Two board structures are used:


Thin PBC (1 mm) for bare dies

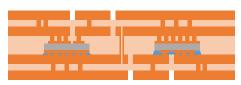
Two board structures are used:


Thin PBC (1 mm) for bare dies

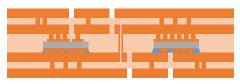
Two board structures are used:


Thin PBC (1 mm) for bare dies

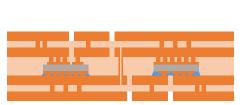
Two board structures are used:


Thin PBC (1 mm) for bare dies

Two board structures are used:

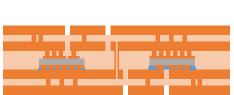

Thin PBC (1 mm) for bare dies

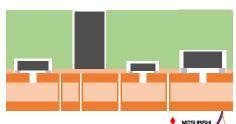
Two board structures are used:


Thin PBC (1 mm) for bare dies



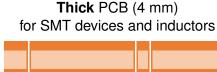
Two board structures are used:

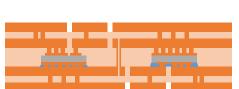

Thin PBC (1 mm) for bare dies



Two board structures are used:

Thin PBC (1 mm) for bare dies





Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm) for bare dies

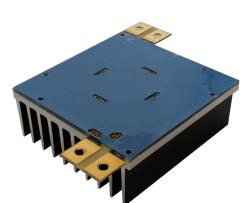
- ► PFC inductor (Thick)
- ► TIM
- ► Gate driver (thick)
- ► TIV
- ► Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- ► Heatsink

▶ Final cell dimensions: $7 \times 7 \times 3.5$ cm³

- ► PFC inductor (Thick)
- ▶ Gate driver (thick)
- ► Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- ▶ Heatsink

- ► PFC inductor (Thick)

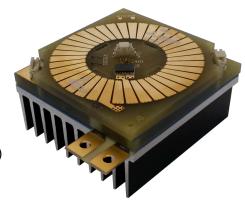
- ► Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- ▶ Heatsink



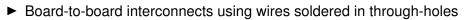
- ► PFC inductor (Thick)
- ► TIM
- ► Gate driver (thick)
- ► TIM
- ► Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- ► Heatsink

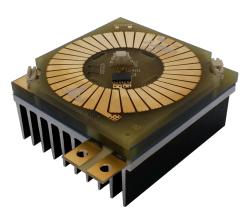
▶ Final cell dimensions: $7 \times 7 \times 3.5$ cm³

- ► PFC inductor (Thick)
- ► Gate driver (thick)
- ► TIM
- ► Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- ▶ Heatsink

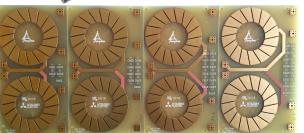


- ► PFC inductor (Thick)
- ► TIM
- ► Gate driver (thick)
- ► TIM
- ► Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- ▶ Heatsink


- ► PFC inductor (Thick)
- ► TIM
- ► Gate driver (thick)
- ► TIM
- ► Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- ► Heatsink


- ► Board-to-board interconnects using wires soldered in through-holes
- ► Final cell dimensions: $7 \times 7 \times 3.5$ cm³

- ► PFC inductor (Thick)
- ► TIM
- ► Gate driver (thick)
- ► TIM
- ► Power devices PCB (thin)
- ► Thermal Interface Material (TIM)
- ► Heatsink



▶ Final cell dimensions: $7 \times 7 \times 3.5$ cm³

Full converter assembly

- ▶ 4 PFC cells for a full converter
- ▶ DC capacitor bank for test only
- ► 4-stage EMC DM filter
- Very flat form factor
 - ▶ PFC: 28x7x5 cm³
 - ► Filter: 28x14x0.4cm³

Outline

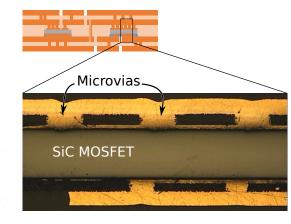
Introduction

PCB Embedding Technology

Design of an embedded converter

Manufacturing Process

Experimental Results

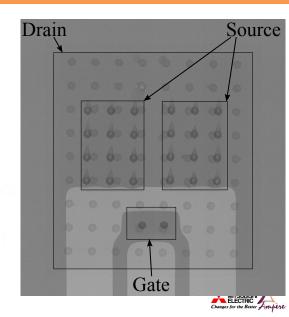


Test Coupons – power devices

For SiC dies

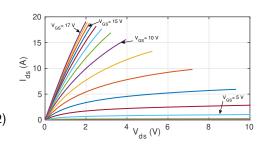
- good quality of microvias
 - ► No damage to dies
 - ► Uniform thickness
- Good alignment

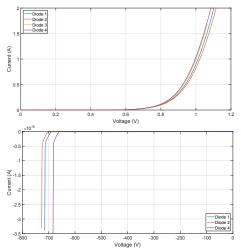
Good electrical perf.



Test Coupons – power devices

For SiC dies


- ▶ good quality of microvias
 - ▶ No damage to dies
 - ▶ Uniform thickness
- ▶ Good alignment
 - ► Gate contact 500×800 μm^2
- Good electrical perf.


Test Coupons – power devices

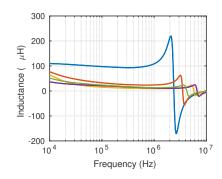
For SiC dies

- good quality of microvias
 - No damage to dies
 - ▶ Uniform thickness
- Good alignment
 - ► Gate contact 500×800 μm²
- ► Good electrical perf.
 - ► Consistent $R_{DS_{on}}$ (80 m Ω)
 - ► No change in V_{th}
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)

Test Coupons-2

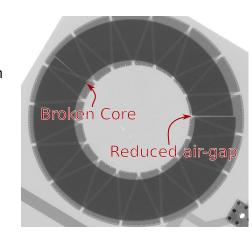
Example: 600V diodes for bootstrap driver

For SMD components:


- ► Test on:
 - Ceramic capacitors

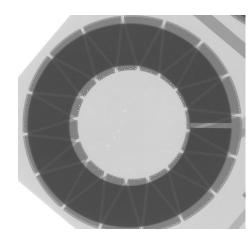
 (3.3 μF, 25 V up to 330 nF, 500 V)
 - Packaged diodes (4.7 V Zener up to 600 V rectifier)
- Characterization:
 - ► No failure detected

Large diffs in inductance values


- ► Some cores broken (3/8)
- No clear correlation between elec. behav. and core condition

Large diffs in inductance values

- ► Some cores broken (3/8)
- No clear correlation between elec. behav. and core condition



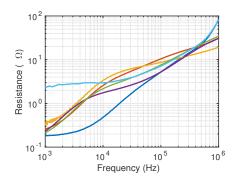
Large diffs in inductance values

- ► Some cores broken (3/8)
- No clear correlation between elec. behav. and core condition

Good perspectives on process

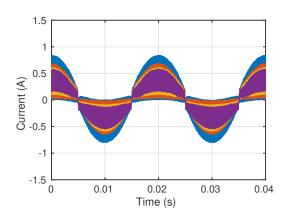
- ► Many cores intact
- Good cavity filling
- Reducing cavity size may improve yield and centering

Large diffs in inductance values


- ► Some cores broken (3/8)
- No clear correlation between elec. behav. and core condition

Good perspectives on process

- Many cores intact
- Good cavity filling
- Reducing cavity size may improve yield and centering


Unexpected increase in resistance

- $ightharpoonup R_{AC}$ at 180 kHz is 10 $\times R_{DC}$
- ► Analysis ongoing

Operation of the PFC converter

- ▶ 4 interleaved PFC cells (target power 4×750 W=3 kW)
- Operation at reduced power because of losses in inductors
 - ► Current inbalance because of differences in inductor values

Outline

Introduction

PCB Embedding Technology

Design of an embedded converter

Manufacturing Process

Experimental Results

Conclusions – Exploiting the PCB Embedding

- "All-embedded", interleaved PFC designed
 - ► includes dies, driver, inductors
 - Very good production yield
 - ► Only issue: embedded inductors
- ► Full power tests ongoing

- must be investigated

 Thermal validation not vet compa
- ► Next step: better use of embedding
- ▶ Keep some components on the surface
 - Improve design for manufacturing
 Improve design tools

Conclusions – Exploiting the PCB Embedding

- "All-embedded", interleaved PFC designed
 - ► includes dies, driver, inductors
 - ► Very good production yield
 - ► Only issue: embedded inductors
- ► Full power tests ongoing
 - ► Tested at 400 V with planar inductors
 - Resistance increase in embedded inductor must be investigated
 - ► Thermal validation not yet complete.
- Next step: better use of embedding

Conclusions – Exploiting the PCB Embedding

- "All-embedded", interleaved PFC designed
 - ► includes dies, driver, inductors
 - Very good production yield
 - ► Only issue: embedded inductors
- Full power tests ongoing
 - Tested at 400 V with planar inductors
 - Resistance increase in embedded inductor must be investigated
 - ► Thermal validation not yet complete.
- Next step: better use of embedding
 - Keep some components on the surface
 - Improve design for manufacturing
 - ► Improve design tools

Bibliography I

- [1] J. W. Kolar, F. Krismer, and H.-P. Nee, "What are the big challenges in power electronics?," in *Proceedings of CIPS*, (Nüremberg), 2014.
- [2] L. Kerachev, A. Andreta, Y. Lembeye, and J.-C. Crébier, "Generic approach for design, configuration and control of modular converters," in *International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management*, (Nuremberg), pp. 212 – 219, VDE Verlag, May 2017.
- [3] J. D. van Wyk and F. C. Lee, "On a future for power electronics," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 1, no. 2, pp. 59–72, 2013.
- [4] S. C. Ó Mathúna, P. Byrne, G. Duffy, W. Chen, M. Ludwig, T. O' Donnel, P. McCloskey, and M. Duffy, "Packaging and integration technologies for future high-frequency power supplies," *IEEE transactions on industrial Electronics*, vol. 51, no. 6, pp. 1305 – 1312, 2004.
- [5] S. Seal and H. A. Mantooth, "High performance silicon carbide power packaging—past trends, present practices, and future directions," *Energies*, vol. 10, no. 3, 2017.
- [6] A. Ostmann, "Evolution and future of embedding technology," in *IMAPS/NMI* workshop "disappearing die embed your chips", 2016.

Bibliography II

- [7] E. Waffenschmidt, B. Ackermann, and J. A. Ferreira, "Design Method and Material Technologies for Passives in Printed Circuit Board Embedded Circuits," *IEEE Transactions on Power Electronics*, vol. 20, pp. 576–584, May 2005.
- [8] M. Ali, E. Labouré, F. Costa, and B. Revol, "Design of a hybrid integrated EMC filter for a DC–DC power converter," *IEEE Transactions on Power Electronics*, vol. 27, no. 11, pp. 4380–4390, 2012.
- [9] J. Le Lesle, R. Caillaud, F. Morel, N. Degrenne, C. Buttay, R. Mrad, C. Vollaire, and S. Mollov, "Multi-objective optimisation of a bidirectional single-phase grid connected AC/DC converter (PFC) with two different modulation principles," in ECCE, Proc. of the IEEE Energy Conversion Congress and Exposition, (Cincinnati, OH, United States), Oct. 2017.
- [10] R. Caillaud, C. Buttay, R. Mrad, J. Le Lesle, F. Morel, N. Degrenne, and S. Mollov, "Comparison of planar and toroidal PCB integrated inductors for a multi-cellular 3.3 kW PFC," in *Integrated Power Packaging (IWIPP), 2017 IEEE International Workshop On*, (Delft, Netherlands), pp. 1–5, IEEE, Apr. 2017.

Thank you for your attention.

cyril.buttay@insa-lyon.fr

This work was funded by Mitsubishi Electric Research Centre Europe and the French Agency for Technology and Research (ANRT).

