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Power electronics – Areas for Progress

Source: Kolar et al. [1]
Source: Kerachev et al. [2]

◮ Excellent active devices are now available (SiC, GaN)
◮ Many topologies introduced over the years;

◮ Recent changes: multicellular structures
◮ Integration and Packaging are the main areas for progress [1, 3, 4, 5]

◮ Reduce size and circuit parasitics, improve thermal management. . .
◮ Manage increased interconnection density
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PCB Technology

Surface-mount component

Via

Microvia

Wirebonds

External copper layer

Internal copper layers

Semiconductor die

Fiber/polymer 
laminate

Solder

Printed Circuit Board is

Mature ◮ Large range of available design software
◮ Can be manufactured in large quantities, low price
◮ Mainly oriented towards microelectronics and low power

Flexible ◮ Custom design
◮ Many possible configurations

Limited ◮ Poor thermal conductivity
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Why Embedding?

◮ Optimize thermal management
◮ Heat sources closer to heatsink
◮ Dual side cooling

◮ Improve performance
◮ Shorter interconnects
◮ Lower inductances

◮ Reduce size
◮ Use substrate volume

◮ Manage complex interconnects
◮ Batch process

Surface-mount component

Via

Microvia

Wirebonds

External copper layer

Internal copper layers

Semiconductor die

Fiber/polymer 
laminate

Solder
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Embedding of Power Dies

◮ Most embedding effort on power dies:
◮ Most power density
◮ Fastest voltage/current transients

◮ Requires special finish on dies
◮ 5-10 µm Cu (not standard)
◮ Buffer for UV laser
◮ Also for microetch in plating step

◮ Backside connection by sintering or vias
◮ Sintering compatible with standard dies
◮ Vias require Cu finish and adhesive

conductive chip attach

embedding by lamination

via drilling top, through-via

Cu plating and structuring

Left and above, source: Ostmann [6]
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Embedding of Formed Components – Inductors

Magnetic Layer

◮ Relies on magnetic/polymer film ➜ Low µr

◮ Limited to 10 – 100 W
Source: Waffenschmidt et al. [7]

Planar magnetic components

◮ Very common, but not really embedded
◮ High performance
◮ Compatible with low (W) or high power (kW)

Embedded core

◮ Strong industrial development (Murata, AT&S,
Würth)

◮ Currently limited to low power (W)

Source: Ali et al. [8]
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Embedding of Inserted Components

Soldered components:

◮ Suits most Surface-Mount Devices
◮ Connections with regular vias

Vias to components:

◮ Requires components with Cu finish
◮ More compact (vias on components)

Source: Ostmann [6]
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Embedding of Inserted Components

Soldered components:

◮ Suits most Surface-Mount Devices
◮ Connections with regular vias

Vias to components:

◮ Requires components with Cu finish
◮ More compact (vias on components)

Source: Ostmann [6]

For power electronics

◮ Embedding of “large” capacitors (1 µF range)
◮ Embedding of gate driver ICs and peripheral components, control
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Converter topology

CDM

LDM

LDM

EMI Filter

VDCVS

Is LPFC

PFC PPB

LCM

LCM

CCM

CCM

◮ Bidirectionnal, Power Factor Converter for 3 kW applications
◮ Designed through an optimization procedure [9, 10]

◮ Based on SiC power devices
◮ 180 kHz switching frequency
◮ 4 interleaved cells

◮ Discussed here: EMI filter and PFC

12 / 27



Physical Structure

Inductor PCB 

(4.5 mm-thick)

} Driver PCB

(4.5 mm-thick)

TIM

(0.2 mm-thick)

Dies PCB

(0.7 mm-thick)

Heatsink

(25 mm-thick)

}

}
}

TIM

(0.2 mm-thick)

TIM

(0.2 mm-thick)

HF Die

Magnetic Core

3-PCB structure

◮ Magnetic component on top
◮ Heatsink on bottom

( natural convection)
◮ Power chips close to heatsink
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Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
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Converter Cell Assembly

◮ PFC inductor (Thick)
◮ TIM
◮ Gate driver (thick)
◮ TIM
◮ Power devices PCB (thin)
◮ Thermal Interface Material (TIM)
◮ Heatsink

◮ Board-to-board interconnects using wires soldered in through-holes
◮ Final cell dimensions: 7 × 7 × 3.5 cm3
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Full converter assembly

◮ 4 PFC cells for a full
converter

◮ DC capacitor bank for
test only

◮ 4-stage EMC DM filter
◮ Very flat form factor

◮ PFC: 28x7x5 cm3

◮ Filter: 28x14x0.4cm3
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Test Coupons – power devices

For SiC dies

◮ good quality of microvias
◮ No damage to dies
◮ Uniform thickness

◮ Good alignment
◮ Gate contact

500×800 µm2

◮ Good electrical perf.
◮ Consistent RDSon

(80 mΩ)
◮ No change in Vth

◮ Low leakage current
(max 1.6 nA @ 1200 V)

◮ Very good yield
(97% on 44 dies)

SiC MOSFET

Microvias
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Test Coupons–2

Voltage (V)
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Example: 600V diodes for bootstrap driver

For SMD components:

◮ Test on:
◮ Ceramic capacitors

(3.3 µF, 25 V up to 330 nF,
500 V)

◮ Packaged diodes
(4.7 V Zener up to 600 V
rectifier)

◮ Characterization:
◮ No failure detected
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Embedded inductors

Large diffs in inductance values

◮ Some cores broken (3/8)
◮ No clear correlation between

elec. behav. and core condition
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Embedded inductors

Large diffs in inductance values

◮ Some cores broken (3/8)
◮ No clear correlation between

elec. behav. and core condition

Broken Core

Reduced air-gap
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improve yield and centering

21 / 27



Embedded inductors

Large diffs in inductance values

◮ Some cores broken (3/8)
◮ No clear correlation between

elec. behav. and core condition

Good perspectives on process

◮ Many cores intact
◮ Good cavity filling
◮ Reducing cavity size may

improve yield and centering

Unexpected increase in resistance

◮ RAC at 180 kHz is 10 ×RDC

◮ Analysis ongoing
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Operation of the PFC converter
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◮ 4 interleaved PFC cells (target power 4×750 W=3 kW)
◮ Operation at reduced power because of losses in inductors

◮ Current inbalance because of differences in inductor values
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Conclusions – Exploiting the PCB Embedding

◮ “All-embedded”, interleaved PFC designed
◮ includes dies, driver, inductors
◮ Very good production yield
◮ Only issue: embedded inductors

◮ Full power tests ongoing
◮ Tested at 400 V with planar inductors
◮ Resistance increase in embedded inductor

must be investigated
◮ Thermal validation not yet complete.

◮ Next step: better use of embedding
◮ Keep some components on the surface
◮ Improve design for manufacturing
◮ Improve design tools
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