Characterization of Materials and their Interfaces in a DBC Substrate for Power Electronics Applications ECPE Workshop "Future of Simulation"

Aymen BEN KABAAR¹, Cyril BUTTAY², Olivier DEZELLUS³, Rafaël ESTEVEZ¹, Anthony GRAVOUIL⁴, Laurent GREMILLARD⁵

¹SIMaP, UMR 5266, CNRS, Grenoble-INP, UJF, France
² Univ Lyon, INSA-Lyon, CNRS, Laboratoire Ampère UMR 5005, F-69621, Lyon
³Univ Lyon, Univ Lyon 1, CNRS, LMI, UMR 5615, F-69622, Lyon
⁴ Univ Lyon, INSA-Lyon, CNRS, LaMCoS, UMR 5259, F-69621, Lyon
⁵ Univ Lyon, INSA-Lyon, CNRS, MATEIS Laboratory, UMR 5510, F-69621, Lyon

21/11/18

Introduction

Characterization of the copper layers

Characterization of the Ceramic Layer

Characterization of the Metal-Ceramic Interface

Conclusion

Introduction

Characterization of the copper layers

Characterization of the Ceramic Layer

Characterization of the Metal-Ceramic Interface

Conclusion

Introduction – Power Electronic Module

Introduction – Power Electronic Module

Ceramic substrate Ensures

- Electrical insulation
- Heat conduction

Direct Bonded Copper

- ► Ceramic:
 - Heat conduction
 - Electrical insulation
- Patterned Metal:
 - Forms circuit
 - Bonding to module

Introduction – Manufacturing of a DBC substrate

Standard: Al₂O₃/Cu (AIN also possible, with separate oxidation)

Bonding temperature very close to Cu melting point

Introduction – Manufacturing of a DBC substrate

Standard: Al₂O₃/Cu (AIN also possible, with separate oxidation)

Bonding temperature very close to Cu melting point
Objective: modelling of the DBC for thermo-mechanical simulations

Introduction

Characterization of the copper layers

Characterization of the Ceramic Layer

Characterization of the Metal-Ceramic Interface

Conclusion

Note: the content of this presentation is detailed in [2] and [3]

cu 1

Tests on 3 Copper states:

Cu3: Cu sheet prior to any process

I2: The same after DBC annealing (but not bonded to ceramic)

- temperature history
- no external mechanical stress

11: Full DBC process, followed by etching of the ceramic

temp. and mech. history

Note: the content of this presentation is detailed in [2] and [3]

611

Tests on 3 Copper states:

Cu3: Cu sheet prior to any process Cu2: The same after DBC annealing (but not bonded to ceramic)

- temperature history
- no external mechanical stress

: Full DBC process, followed by etching of the ceramic

temp. and mech. history

Note: the content of this presentation is detailed in [2] and [3]

(n 1

Tests on 3 Copper states:

Cu3: Cu sheet prior to any process Cu2: The same after DBC annealing (but not bonded to ceramic)

- temperature history
- no external mechanical stress

Cu1: Full DBC process, followed by etching of the ceramic

temp. and mech. history

Note: the content of this presentation is detailed in [2] and [3]

The second secon

Tests on 3 Copper states:

- Cu3: Cu sheet prior to any process Cu2: The same after DBC annealing (but not bonded to ceramic)
 - temperature history
 - no external mechanical stress
- Cu1: Full DBC process, followed by etching of the ceramic
 - ► temp. and mech. history

Preparation and test:

- Copper sheets supplied by Curamik
- samples formed by electro-erosion
- Uniaxial and cycling tensile tests

Copper – Tensile test

- Dramatic change caused by annealing (yield stress)
- Also, effect of mechanical stress on yield
- ➔ Further characterization on Cu1, more representative

Copper – Cycling test

Tests on Cu1, repetitive stress 0–120 MPa

No compressive stress to prevent sample from buckling Databat effect equad by kinematic bardening of econor

- Ratchet effect caused by kinematic hardening of copper
- → Need for a suitable model (Armstrong-Fredericks [4])

Copper – Modelling

Introduction

Characterization of the copper layers

Characterization of the Ceramic Layer

Characterization of the Metal-Ceramic Interface

Conclusion

Ceramic - Preparation of the samples

2 grades of Al₂O₃ tested:

- ► standard, thickness=635 µm
- "HPS" (Zr-reinforced), thickness=250 μm
- Material supplied by Curamik
- Samples cut using a wafer saw
- Sample size: 4 mm×40 mm
- 3-point bending test.

Ceramic – Bending Tests

Ceramic – Bending Tests (2)

Weibull Analysis

- Considers the sample as a series of elementary volumes
- Each volume has a statistical defect probability

• σ_w : Weibull stress

Model used

- Purely elastic behavior
- Considers rupture

Identification of model parameters:

- E: from bending test
- ν: from literature [5]
- m, σ_0 and V_{eff} : from Weibull analysis.

	E	ν	m	σ_0	V _{eff}
Al ₂ O ₃	403 GPa	0,22	16.03	322 MPa	0.103 mm ³
$Zr-Al_2O_3$	330 GPa	0.22	18.95	590 MPa	0.501 mm ³

Introduction

Characterization of the copper layers

Characterization of the Ceramic Layer

Characterization of the Metal-Ceramic Interface

Conclusion

Interface - Test Principle

- DBC sample with a notch in top Cu
- 4-point bending test
- Monitoring of fracture propagation
- Parameter identification with FE simulation

Interface - Preparation of the samples

- **b** DBC configuration: 500 μ m Cu / 250 μ m Zr-Al₂O₃ / 500 μ Cu
- Chemical etching of copper patterns
- Ceramic cutting with a wafer saw
- Sample size: 10 × 80 mm²

Interface - Fracture Observation

Cross section (SEM)

- Crack length measurement accuracy: ±50µm
- Crack occurs at interface
- No Al₂O₃ remaining on Cu
- \approx 20 μ m bonding defects
- To be considered in simulation

Interface - Fracture Observation

Delaminated copper surface (SEM)

- Crack length measurement accuracy: ±50µm
- Crack occurs at interface
- ► No Al₂O₃ remaining on Cu
- ► \approx 20 μ m bonding defects
- ➔ To be considered in simulation

Interface – Cohesive model

Cohesive model

- ► Once *T_{Max}* has been reached, degradation occurs
- Gradual reduction in stiffness
- Eventualy, separation at interface

Interface – Cohesive model

Cohesive model

- Once T_{Max} has been reached, degradation occurs
- Gradual reduction in stiffness
- Eventualy, separation at interface

Implementation [6]

- Simulation of the 4-point test
- Cohesive zone between Al₂O₃ and bottom Cu
- Two parameters: T_{Max} and Φ_{Sep}

23/29

Simulation for various:

- Φ_{Sep} (separation energy)
- *T_{Max}* (crack initiation stress)
- With or without defects
- A suitable parameter set fits
 - "Macro" measurements (Force/Displacement)
 - "Micro" measurements (Crack length)

Introduction

Characterization of the copper layers

Characterization of the Ceramic Layer

Characterization of the Metal-Ceramic Interface

Conclusion

Example of simulation results

- Simulation predicts a strong effect of dimples
- Weakest configuration expected to be t_{Cu} = t_{Cera}
- → Results compatible with existing data, especially for $t_{Cu} >> t_{Cera}$

Simulation of the behaviour of a DBC structure

We identified models for

- Copper: behaviour very specific because of bonding process
- Ceramic: must take into account material grades
- Interface: innovative approach with identifications at macro and micro scales

Theses models have been used for

- Evaluation of impact of stress-relaxation effects
- Identification of robust Cu/Al₂O₃/Cu configurations
- Evaluation of robustness to thermal cycling
- These simulations must be validated against measurements

Simulation of the behaviour of a DBC structure

We identified models for

- Copper: behaviour very specific because of bonding process
- Ceramic: must take into account material grades
- Interface: innovative approach with identifications at macro and micro scales
- Theses models have been used for
 - Evaluation of impact of stress-relaxation effects
 - Identification of robust Cu/Al₂O₃/Cu configurations
 - Evaluation of robustness to thermal cycling

These simulations must be validated against measurements

Simulation of the behaviour of a DBC structure

We identified models for

- Copper: behaviour very specific because of bonding process
- Ceramic: must take into account material grades
- Interface: innovative approach with identifications at macro and micro scales
- Theses models have been used for
 - Evaluation of impact of stress-relaxation effects
 - Identification of robust Cu/Al₂O₃/Cu configurations
 - Evaluation of robustness to thermal cycling
- ➔ These simulations must be validated against measurements

Bibliography I

- - J. Schulz-Harder, "Ceramic substrates and micro channel cooler," in *ECPE* Seminar: High Temperature Electronics and Thermal Management, (Nürnberg), nov 2006.
- A. E
 - A. Ben Kabaar, C. Buttay, O. Dezellus, R. Estevez, A. Gravouil, and L. Gremillard, "Characterization of materials and their interfaces in a direct bonded copper substrate for power electronics applications," *Microelectronics Reliability*, 2017.
 - A. Ben Kaabar, *Durabilité des assemblages métal céramique employés en électronique de puissance.* PhD thesis, 2015.

- J. Lemaitre, J.-L. Chaboche, and J. Lemaitre, *Mechanics of Solid Materials*. CAMBRIDGE UNIV PR, 2002.
- T. J. Ahrens, *Mineral physics and crystallography: a handbook of physical constants.* American Geophysical Union, 1995.
- P. P. Camanho and C. G. Dávila, "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials," tech. rep., NASA, 2002.

Thank you for your attention.

This work was supported through the grant SuMeCe (Institut Carnot I@L, Lyon).

cyril.buttay@insa-lyon.fr