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Introduction – Power Electronic Module

Ceramic substrate Ensures
I Electrical insulation
I Heat conduction

Direct Bonded Copper
I Ceramic:

I Heat conduction
I Electrical insulation

I Patterned Metal:
I Forms circuit
I Bonding to module
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Introduction – Manufacturing of a DBC substrate
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Source: J. Schulz-Harder, Curamic [1]

I Standard: Al2O3/Cu (AlN also possible, with separate oxidation)
I Bonding temperature very close to Cu melting point

Objective: modelling of the DBC for thermo-mechanical simulations
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Copper – Preparation of the samples

Note: the content of this presentation is detailed in [2] and [3]

Tests on 3 Copper states:
Cu3: Cu sheet prior to any process
Cu2: The same after DBC annealing (but

not bonded to ceramic)
I temperature history
I no external mechanical stress

Cu1: Full DBC process, followed by
etching of the ceramic
I temp. and mech. history

Preparation and test:
I Copper sheets supplied by Curamik
I samples formed by electro-erosion
I Uniaxial and cycling tensile tests
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Copper – Tensile test
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I Dramatic change caused by annealing (yield stress)
I Also, effect of mechanical stress on yield
Ü Further characterization on Cu1, more representative
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Copper – Cycling test

0.00 0.01 0.02 0.03 0.04 0.05
Log(strain)

0

20

40

60

80

100

120

Ca
uc

hy
 S

tre
ss

 [M
Pa

]

0.051 0.052 0.0530
25
50
75

100

I Tests on Cu1, repetitive stress 0–120 MPa
I No compressive stress to prevent sample from buckling

I Ratchet effect caused by kinematic hardening of copper
Ü Need for a suitable model (Armstrong-Fredericks [4])
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Copper – Modelling
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I Satisfying modelling of
I Elastic
I Plastic
I Hardening

Behaviours
I Parameters identification:

I E , ν, σy : uniaxial tests
I C and γ: cycling tests

10 / 29



Outline

Introduction

Characterization of the copper layers

Characterization of the Ceramic Layer

Characterization of the Metal-Ceramic Interface

Conclusion

11 / 29



Ceramic – Preparation of the samples

I 2 grades of Al2O3 tested:
I standard, thickness=635 µm
I “HPS” (Zr-reinforced),

thickness=250 µm
I Material supplied by Curamik
I Samples cut using a wafer saw
I Sample size: 4 mm×40 mm
I 3-point bending test.
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Ceramic – Bending Tests
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I E : Young’s Modulus
I F : maximum load
I w : sample width
I L: support span
I σ: deflection
I t : sample thickness

I good consistency in the results
I few defects caused by the sample preparation
I good quality of the base material
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Ceramic – Bending Tests (2)

Weibull Analysis
I Considers the sample as a series of elementary volumes
I Each volume has a statistical defect probability

I PSi : probability of
survival

I σw : Weibull stress
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Ceramic – Modelling

Model used
I Purely elastic behavior
I Considers rupture

Identification of model parameters:
I E : from bending test
I ν: from literature [5]
I m, σ0 and Veff : from Weibull analysis.

E ν m σ0 Veff
Al2O3 403 GPa 0,22 16.03 322 MPa 0.103 mm3

Zr-Al2O3 330 GPa 0.22 18.95 590 MPa 0.501 mm3
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Interface – Test Principle

I DBC sample with a notch in top Cu
I 4-point bending test
I Monitoring of fracture propagation
I Parameter identification with FE

simulation
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Interface – Preparation of the samples

I DBC configuration: 500 µm Cu / 250 µm Zr-Al2O3 / 500 µ Cu
I Chemical etching of copper patterns
I Ceramic cutting with a wafer saw
I Sample size: 10 × 80 mm2
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Interface – Bending Tests
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Interface – Fracture Observation

Ceramic Copper

Cross section (SEM)

I Crack length measurement
accuracy: ±50µm

I Crack occurs at interface
I No Al2O3 remaining on Cu
I ≈ 20µm bonding defects
Ü To be considered in

simulation
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Interface – Cohesive model

Cohesive model
I Once TMax has been reached,

degradation occurs
I Gradual reduction in stiffness
I Eventualy, separation at interface

Implementation [6]
I Simulation of the 4-point test
I Cohesive zone between Al2O3 and

bottom Cu
I Two parameters: TMax and ΦSep
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Interface – Model Identification

2 sources of data for model identification
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Crack length
I “Local” observation
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Interface – Model Identification (2)
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Interface – Model Identification (2)
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0 1 2 3 4
Displacement [mm]

4

6

8

10

12

Fo
rc

e 
[N

]

Sep = 32 J/m2

 no defect

Measurement
Tmax=350 MPa
Tmax=300 MPa
Tmax=250 MPa

2.0 2.5 3.0 3.5 4.0
Displacement [mm]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

cr
ac

k 
le

ng
th

 [m
m

]

Sep = 32 J/m2

 no defect
Measurement
Tmax=250 MPa
Tmax=300 MPa
Tmax=350 MPa

0 1 2 3 4
Displacement [mm]

4

6

8

10

12

Fo
rc

e 
[N

]

Sep = 10 J/m2

 20 µm defect

Measurement
Tmax=350 MPa
Tmax=400 MPa
Tmax=450 MPa
Tmax=500 MPa

2.0 2.5 3.0 3.5 4.0
Displacement [mm]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

cr
ac

k 
le

ng
th

 [m
m

]

Sep = 10 J/m2

 20 µm defect
Measurement
Tmax=350 MPa
Tmax=400 MPa
Tmax=450 MPa
Tmax=500 MPa

23 / 29



Interface – Model Identification (3)
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I Simulation for various:
I ΦSep (separation energy)
I TMax (crack initiation stress)
I With or without defects

I A suitable parameter set fits
I “Macro” measurements

(Force/Displacement)
I “Micro” measurements

(Crack length)
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Example of simulation results
Delaminated area after 100 cycles (-50/+250°C)
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Cu thickness=500 µm
Cu thickness=500 µm,
 with dimples

I Simulation predicts a strong effect of dimples
I Weakest configuration expected to be tCu = tCera

Ü Results compatible with existing data, especially for tCu >> tCera
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Simulation of the behaviour of a DBC structure

I We identified models for
I Copper: behaviour very specific because of bonding process
I Ceramic: must take into account material grades
I Interface: innovative approach with identifications at macro and

micro scales
I Theses models have been used for

I Evaluation of impact of stress-relaxation effects
I Identification of robust Cu/Al2O3/Cu configurations
I Evaluation of robustness to thermal cycling

Ü These simulations must be validated against measurements
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