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Flexible rockfall barriers are protection systems against risks of falling rocks. The behavior of the flexible barriers reveals strong geometric and material nonlinearities, so that their modelling is complex and that calculations are time consuming. The development of a modeling strategy that would allow for quick calculations and parametric studies would thus be of great help in the comprehension of their complex behavior and toward the development of new barriers. The key issue is the modeling of sliding cables which is addressed here, with a focus on stability condition with the dynamic relaxation method. Considering then the stability conditions of the DR method established by Papadrakakis, it was possible to estimate the best possible fictitious masses of nodes. Expressions are derived in the general case, but also for 4 nodes ring elements and monotonic cables. Finally, a case study is presented based on experiments conducted during the French national project C2ROP and the accuracy of the model is assessed.

Introduction 1.General context

The hazard of landslide, mainly in mountain areas, compromises the safety of inhabitants. The need to protect them, their properties and infrastructures against this risk requires the installation of protective structures. Rockfall barrier is an often used alternative because of its low weight and its high capacity to absorb energy. It can be installed, by specialized workers, on hardly accessible zones. These kits have complex structures which can be described schematically as follows: a wire net (intercepting the block) supported by cables connected by steel posts to the cliff. The dissipation of the rock kinetic energy is insured by the net itself and by brakes distributed along the cables. In this paper, we focus on the numerical modeling of support cables.

"Curtain effect" and sliding cable

When a block impacts the interception structure, the net slides along the support cables and tends to concentrate around the impacted zone. The geometric reorganization, created by the sliding of the net, allows to increase the deformation (in the vertical direction) of the complete structure. This phenomenon, illustrated on figure 1, is called "curtain effect" and is commonly modeled with a "sliding cable" (Grassl, Volkwein, Anderheggen, and Ammann [START_REF] Grassl | Steel-net rockfall protectionexperimental and numerical simulation[END_REF]). It is a cable, whose tension depends on the variation of its whole length. The tension is hence constant in the cable and doesn't depend on relative positions of successive nodes. We can find a few models in the literature. The list of works presented here is not exhaustive. B. Zhou developed in 2004 a 3 nodes sliding cable model for an application to parachute systems (Zhou, Accorsi, and Leonard [START_REF] Zhou | Finite element formulation for modeling sliding cable elements[END_REF]). A generalization is proposed by C. Chen for a
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Interfaces: architecture.engineering.science 2 digital implementation in a FEM software in the purpose of studying the resistance of a dome (Chen, Wu, and Shan [START_REF] Chen | Formulation and application of multi-node sliding cable element for the analysis of Suspen-Dome structures[END_REF]). One other model developed by H. Grassl, also includes friction efforts (Grassl et al [START_REF] Grassl | Steel-net rockfall protectionexperimental and numerical simulation[END_REF]). In this paper, the proposed model draws on the work achieved by L. Ghouddoub during her PhD (Ghoussoub [4]). Her Work is also a generalization of the sliding model of B. Zhou to n-nodes cable. In the first section, we will recall key results obtained by L. Ghoussoub, including the mathematical expression of the tangent stiffness matrix of n nodes sliding cable. Then we will study the stability conditions of the DR scheme applied to this model. Finally, theses analytical results will be illustrated by a numerical simulation, which reproduces a full scale experiment carried out in the framework of the French national project C2ROP.

A sliding cable model

Derivation of internal forces

In this part, the sliding cable model and the key steps to obtain its tangent stiffness matrix are presented.

The full development can be found in L. Ghoussoub's PhD. The general idea of this demonstration is to establish a relationship between internal forces and nodes displacements. To this end, the problem is written in a variational form by using the principle of virtual work applied to the sliding cable at the time t (2.1).

𝛿𝑊 = ∫ 𝜎 𝑡 𝛿𝜀 𝑡 𝑆𝑑𝑙 𝑙0 (2.1)
Where 𝜎 𝑡 is the Piola-Kirchoff tensor, 𝜀 𝑡 the Green-Lagrange deformation and 𝑆 the initial cross section of the cable. For a sliding cable without friction, these three quantities are constant all along the cable. Hence, assuming that the behavior of the cable is perfectly elastic and that it is given by Hooke's law, it may be written (by noting E the Young's modulus):

𝛿𝑊 = 𝐸𝜀 𝑡 𝛿𝜀 𝑡 𝑆𝑙 0 (2.2)
The positions of each node i on the cable are given at the time t by the three Cartesian coordinates (𝑥 𝑖 (𝑡), 𝑦 𝑖 (𝑡), 𝑧 𝑖 (𝑡)). We also note 𝑢 𝑖 (𝑡), 𝑣 𝑖 (t) and 𝑤 𝑖 (𝑡) the displacements in the three directions of space and 𝑋 𝑖 , 𝑌 𝑖 and 𝑍 𝑖 the coordinates of initial positions of node i, so that: To simplify the notations, it will be noted throughout the rest of this demonstration:

𝑥 𝑖 (𝑡) = 𝑋 𝑖 + 𝑢 𝑖 (𝑡) (2.3)
∆𝑥 𝑖 (𝑡) = 𝑥 𝑖+1 (𝑡) -𝑥 𝑖 (𝑡) , ∆𝑦 𝑖 (𝑡) = 𝑦 𝑖+1 (𝑡) -𝑦 𝑖 (𝑡) and ∆𝑧 𝑖 (𝑡) = 𝑧 𝑖+1 (𝑡) -𝑧 𝑖 (𝑡) (2.4)

The two following vectors are also introduced:

𝛿𝑈 = {𝛿𝑢 1 𝛿𝑣 1 𝛿𝑤 1 … 𝛿𝑢 𝑖 𝛿𝑣 𝑖 𝛿𝑤 𝑖 … 𝛿𝑢 𝑁 𝛿𝑣 𝑁 𝛿𝑤 𝑁 } 𝑇 (2.5)
Which is the vector of nodes displacements, and:

𝑁 𝑡 = {𝑁 𝑡 1 … 𝑁 𝑡 𝑖 … 𝑁 𝑡 𝑁 } 𝑇 (2.6)
With:

𝑁 𝑡 1 = {- ∆𝑥 1 𝑙 1 ; - ∆𝑦 1 𝑙 1 ; - ∆𝑧 1 𝑙 1 } 𝑇 (2.7) 𝑁 𝑡 𝑖 = { ∆𝑥 𝑖-1 𝑙 𝑖-1 - ∆𝑥 𝑖 𝑙 𝑖 ; ∆𝑦 𝑖-1 𝑙 𝑖-1 - ∆𝑦 𝑖 𝑙 𝑖 ; ∆𝑧 𝑖-1 𝑙 𝑖-1 - ∆𝑧 𝑖 𝑙 𝑖 } 𝑇 (2.8) 𝑁 𝑡 𝑁 = { ∆𝑥 𝑁-1 𝑙 𝑁-1 ; ∆𝑦 𝑁-1 𝑙 𝑁-1 ; ∆𝑧 𝑁-1 𝑙 𝑁-1 } 𝑇 (2.9)
Where 𝑙 𝑖 is the length of the cable section between the nodes 𝑖 and 𝑖 + 1.

We remark that the components of this second vector can be identified as the normal vector to the curve for the interior nodes and as the tangent vector for the two end nodes (see figure 2). By using the previous notations and after some manipulations, it may be shown that the expression (2.2) rewrites as follows:

𝛿𝑊 = 𝐸𝑆 𝑙 0 𝜀 𝑡 𝑙 𝑡 𝑁 𝑡 . 𝛿𝑈 (2.10)
First by noting ∆𝑙 𝑡 = 𝜀 𝑡 𝑙 𝑡 and 𝐾 0 = 𝐸𝑆/𝑙 0 , it is possible to define the tensile force in the cable at the time t by:

𝑇 𝑡 = 𝐾 0 ∆𝑙 𝑡 (2.11)
The incremental work 𝛿𝑊 can thus be written as the product of the vector of internal forces in the cable at the time t (𝐹 𝑡 ) and of the vector of nodes displacements (𝛿𝑈).

𝛿𝑊 = 𝐹 𝑡 . 𝛿𝑈 with 𝐹 𝑡 = 𝑇 𝑡 𝑁 𝑡 (2.12) 

Derivation of tangent stiffness

We have hence defined an expression of the vector of internal forces, which only depends on the tensile force in the cable and on its geometry. The tangent stiffness matrix can thus be rigorously identified from the following relationship:

𝐾 𝑡 = 𝜕𝐹 𝑡 𝜕𝑈 = 𝜕𝑇 𝑡 𝜕𝑈 ⊗ 𝑁 𝑡 + 𝑇 𝑡 𝜕𝑁 𝑡 𝜕𝑈 (2.13)
In the rest of this paper, we note 𝐾 1 the elastic stiffness matrix and 𝐾 2 the geometric stiffness matrix:

𝐾 1 = 𝜕𝑇 𝑡 𝜕𝑈 ⊗ 𝑁 𝑡 and 𝐾 2 = 𝑇 𝑡 𝜕𝑁 𝑡 𝜕𝑈 (2.14)
By developing the previous expression, it can be shown that the two parts of the tangent stiffness matrix are both square matrices of size (3𝑁 × 3𝑁):

𝐾 1 = 𝐾 0 (1 + 3𝜀 𝑡 )𝑁 𝑡 ⊗ 𝑁 𝑡 (2.15)
and:

𝐾 2 = 𝐾 0 𝜀 𝑡 𝑙 𝑡 ( 𝑎 1 -𝑎 1 𝑎 1 + 2 0 -𝑎 2 0 ⋯ 0 ⋯ 0 ⋱ 𝑎 𝑖-1 + 𝑎 𝑖 ⋱ ⋯ ⋮ -𝑎 𝑖 0 ⋯ 0 𝑠𝑦𝑚 ⋱ ⋱ ⋱ ⋮ ⋱ ⋱ 0 𝑎 𝑁-1 + 𝑎 𝑁 -𝑎 𝑁 𝑎 𝑁 ) (2.

16)

With:

𝑎 𝑖 = 1 𝑙 𝑡,𝑖 3 ( -∆𝑥 𝑖 2 + 𝑙 𝑡,𝑖 2 -∆𝑥 𝑖 ∆𝑦 𝑖 -∆𝑥 𝑖 ∆𝑧 𝑖 -∆𝑦 𝑖 2 + 𝑙 𝑡,𝑖 2 -∆𝑦 𝑖 ∆𝑧 𝑖 𝑠𝑦𝑚 -∆𝑧 𝑖 2 + 𝑙 𝑡,𝑖 2 
)
(2.17)

Stability of the numerical scheme 3.1 General Case

The stability conditions of a DR method using this sliding cable model are explored in this section. M. Barnes established a simple expression insuring the algorithm stability of centered finite differences scheme, between the fictitious masse of node 𝑖 (𝑚 𝑖 ) and the step time ∆𝑡 (2.18) (Barnes [START_REF] Barnes | Form Finding and Analysis of Tension Structures by Dynamic Relaxation[END_REF]).

𝑚 𝑖 ≥ ∆𝑡 2 2 𝐾 𝑖 𝑚𝑎𝑥 (2.18)
Where 𝐾 𝑖 𝑚𝑎𝑥 corresponds to the higher stiffness value of all elements connected with the node 𝑖. Considering that the tensile force in the sliding cable depends on its global deformation, 𝐾 𝑖 𝑚𝑎𝑥 must be calculated from displacements of all its nodes. M. Papadrakakis (Papadrakakis [START_REF] Papadrakakis | A method for the automatic evaluation of the dynamic relaxation parameters[END_REF]) established that

𝐾 𝑖

𝑚𝑎𝑥 can be correctly valued by considering the spectral radius of the tangent stiffness matrix. Here, 𝐾 𝑡 is the summation of two real symmetrical matrices. 𝐾 𝑡 is thus diagonalizable and all its eigenvalues are real. In order to establish a simple analytical expression of 𝐾 𝑖 𝑚𝑎𝑥 , the spectral radius of 𝐾 1 and 𝐾 2 are separately determined. In the rest of this section, we will note respectively 𝜇 1 𝑖 and 𝜇 2 𝑖 the 𝑖 th eigenvalue of 𝐾 1 and 𝐾 2 . The stability study is conducted for two sliding cable elements: a N-nodes sliding cable and a ring element. This last element is a 4-nodes sliding cable which loops on itself. It is used in this work to model the intercepting net.

N-nodes sliding cable

First, we establish that 𝐾 1 is a positive definite matrix. Let 𝑋 be a vector of size(3𝑁). We may write:

𝑋 𝑇 . 𝐾 1 . 𝑋 = 𝑋 𝑇 . [𝑁 𝑡 ⊗ 𝑁 𝑡 𝑇 ] . 𝑋 = [𝑋 𝑇 . 𝑁 𝑡 ] [𝑁 𝑡 𝑇 . 𝑋] =< 𝑁 𝑡 , 𝑋 > 2 (2.19)
Moreover 𝑁 𝑡 > 0, hence:

𝑋 𝑇 . 𝐾 1 . 𝑋 > 0 (2.20)
𝐾 1 is therefore real and positive definite. All its eigenvalues are positive. From this, we deduce the following upper bound:

𝜇 1 𝑚𝑎𝑥 < 𝑡𝑟 (𝐾 1 ) (2.21)
From the analytical expression of 𝑁 𝑡 𝑇 (2.6), we obtain:

𝑡𝑟 (𝑁 𝑡 ⊗ 𝑁 𝑡 𝑇 ) = 2 + ∑ [( ∆𝑥 𝑖-1 𝑙 𝑖-1 - ∆𝑥 𝑖 𝑙 𝑖 ) 2 + ( ∆𝑦 𝑖-1 𝑙 𝑖-1 - ∆𝑦 𝑖 𝑙 𝑖 ) 2 + ( ∆𝑧 𝑙 𝑖-1 - ∆𝑧 𝑖 𝑙 𝑖 ) 2 ] 𝑁-1 𝑖=2 (2.22)
After some manipulations and considering the series (𝜃 𝑛 ) 𝑛 of angles between two consecutive vectors along the cable (see figure 3), we may write the previous relationship as follows:

𝑡𝑟 (𝑁 𝑡 ⊗ 𝑁 𝑡 𝑇 ) ≤ 2 [1 + 2 ∑ |sin ( 𝜃 𝑖 2 )| 𝑁-1 𝑖=2 ] (2.23)
The expression (2.23) corresponds to the general case, where the nodes of the cable have three degrees of freedom in translation. And as it is, it can be implement in the algorithm. In order to reduce the computational time, it is also possible to make simplifying assumptions and therefore establish a simpler expression. From now on, we consider that the curvature of the cable is monotonic and its value is lower than 𝜋 (see figure 3). These two assumptions seems to be in correlation with the real behavior of sliding cables in a flexible rockfall barrier (the loading direction is generally orthogonal to the cable).

Considering these assumptions, we know that all values of 𝜃 𝑖 are in the range of 0 to 𝜋 and hence all values of sin 𝜃 𝑖 are positive. Moreover, a current upper bound for the sinus is its argument. The expression (2.23) becomes: Finally by grouping the upper bounds of the two spectral radius, we find the following inequation:

𝐾 𝑚𝑎𝑥 ≤ 2𝐾 0 [3𝜀 𝑡 𝑙 𝑡 𝑙 𝑚𝑖𝑛 + (1 + 𝜋)(3𝜀 𝑡 + 1)]
(2.30)

The ring cable

It is also possible to find an upper bound of 𝐾 𝑚𝑎𝑥 for a 4 nodes ring cable (see figure 4). The calculations are practically the same. The only difference is the expression of 𝑁 𝑡 , insofar as this ring element is looped. The expression of 𝑁 𝑡 therefore becomes:

𝑁 𝑡 = { ∆𝑥 𝑁 𝑙 𝑁 - ∆𝑥 1 𝑙 1 ⋯ ∆𝑦 𝑖-1 𝑙 𝑖-1 - ∆𝑦 𝑙 𝑖 ⋯ ∆𝑧 𝑁-1 𝑙 𝑁-1 - ∆𝑧 𝑁 𝑙 𝑁 } 𝑇 (2.

31)

With: The upper bound of 𝐾 2 spectral radius is the same as previously. However, due to changes in the expression of 𝑁 𝑡 , the calculation of the upper bound of 𝜇 1 𝑚𝑎𝑥 is a bit different. With the same notations as previously, the trace of 𝑁 𝑡 ⊗ 𝑁 𝑡 𝑇 may be written as follows:

𝑡𝑟 (𝑁 𝑡 ⊗ 𝑁 𝑡 𝑇 ) = 2 ∑(1 -cos 𝜃 𝑖 ) 𝑁-1 𝑖=2 (2.33)
It is difficult to make a simplifying assumption in the case of 4 nodes ring. In particular, the ring curvature may be not monotonic and the quadrangle convexity isn't ensured. Here, we may just write:

𝑡𝑟 (𝑁 𝑡 ⊗ 𝑁 𝑡 𝑇 ) ≤ 16 (2.34)
Therefore, as previously the spectral radius of the tangent stiffness matrix may be estimated by the following relationship:

𝐾 𝑚𝑎𝑥 ≤ 2𝐾 0 [3𝜀 𝑡 𝑙 𝑡 𝑙 𝑚𝑖𝑛 + 8(3𝜀 𝑡 + 1)] (2.35) 
Both estimations of the two stiffness coefficients, respectively for the sliding cable and for the ring element, have a suitable form for the purpose of an implementation in a computing code. 𝑙 𝑡 and 𝑙 𝑚𝑖𝑛 , the only terms requiring numerical computations, are previously valued for the calculation of internal efforts in the DR method. The calculation of fictitious masses do not hence require new digital operation.

A case Study: The numerical simulation of a full-scale experiment 4.1. Structure description and presentation of the experimental conditions

The French national project C2ROP gathered academics, private companies and project owners in the purpose of improving the protection structures against the risk of landslide. As part of this national project, several in situ experiments are carried out. In this section, we present the numerical simulation, achieved with a DR algorithm, of one of these experiments: a full scale test on a flexible rockfall barrier. The code, initially developed in the Navier Laboratory for elastic gridshells (Douthe [START_REF] Douthe | Etude des structures élancées précontraintes en matériaux composites, application à la comception des gridshells[END_REF]), works within the framework of Rhinoceros 3D and its plugin Grasshopper. A quasi-static loading is applied in the middle of the structure. A 700 kg reinforced polyhedral-shaped concrete block is maintained by a winch and slowly placed on the net. Then, another winch is hooked on the bottom part of the block and pulled orthogonally to the net. Its displacement is controlled and slowly increased so that the loading might be considered as quasi-static. Several load cells are put on the fence components and the resultant load applied to the winch is recorded. Displacement is retrieved by photogrammetry.

Comparison with the numerical simulation

The experimental loading being monotonic, the behavior of all the elements is considered reversible (elastic but not necessarily linear). The stiffnesses are identified from preliminary experiments on the components (brake, cable and net) separately. Sliding cables and brakes being set in series in the experiment, they are merged in the numerical model into a unique nonlinear element to simplify the number of settings. The block shape used for the numerical simulations is not polyhedral but spherical. Its diameter of 0,8 m corresponds to the real size. The simulations are carried out by imposing the block displacement (the convergence is quicker, than imposing the force on the block). The DR computation allows to determine a balance position of the structure. It is therefore necessary to carry out several computations with different block positions in the purpose of characterizing the complete force / block displacement curve. The comparison of the digital simulations with the experimental results and a picture giving the stress distribution in the net are respectively presented on the figures 6 and 7. As we can see the results of the computations are in good agreement with the experiemental test. A remarkable feature of this test is that the global behavior force / displacement is linear. These results are surprising, as the behaviors of a majority of fence components are nonlinear and as the large displacements in the structure and the sliding of the net along the cables, allowing to balance the vertical load, necessarily involve geometrical nonlinearities. Further analyses are currently under progress to better understand the influence of the various nonlinearities.

Conclusion

This paper proposed a simple estimation of the sliding cable masse parameters ensuring the stability of the dynamic relaxation method. This estimation is determined by evaluating an upper bound of the spectral radius of the tangent stiffness matrix for two specific cases: the multi-node sliding cable and the 4-nodes ring cable. The numerical simulation of a quasi-static loading test on a complete barrier is also proposed. In the interest of brevity, only one result of this simulation is presented. However, we observed a good agreement of the computation results with experimental measurements like the tensile forces in the support cables. 
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