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Abstract. Process calculi provide a language in which the structure of terms
represents the structure of processes together with an operational semantics to
represent computational steps. This paper uses rewriting logic for specifying and
analyzing a process calculus for concurrent constraint programming (ccp), com-
bining spatial and real-time behavior. In these systems, agents can run processes
in different computational spaces (e.g., containers) while subject to real-time re-
quirements (e.g., upper bounds in the execution time of a given operation), which
can be specified with both discrete and dense linear time. The real-time rewriting
logic semantics is fully executable in Maude with the help of rewriting modulo
SMT: partial information (i.e., constraints) in the specification is represented by
quantifier-free formulas on the shared variables of the system that are under the
control of SMT decision procedures. The approach is used to symbolically ana-
lyze existential real-time reachability properties of process calculi in the presence
of spatial hierarchies for sharing information and knowledge.

1 Introduction

Concurrent constraint programming (ccp) [26] is a well-established process model for
concurrency based upon the shared-variables communication model. Its basic intuitions
arise mostly from logic; in fact, ccp processes can be interpreted both as concurrent
computational entities and logic specifications (e.g., process composition can be seen
as parallel execution and as conjunction). In ccp, agents can interact by posting (or
telling) partial information in a medium such as a centralized store. Partial information
is represented by constraints (e.g., x > 42) on the shared variables of the system. The
other way in which agents can interact is by querying (or asking) about partial informa-
tion entailed by the store. This provides the synchronization mechanism of the model:
asking agents are suspended until there is enough information in the store to answer
their query. As other mature models of concurrency, ccp has been extended to capture
aspects such as mobility [4, 9, 12], stochastic behavior [10], and —most prominently—
temporal behavior [6, 11, 16, 23, 25] for timed and reactive computations, where pro-
cesses can be constrained also by unit delays and time-out conditions.

However, due to their centralised notion of store, all the previously-mentioned ex-
tensions are unsuitable for today’s systems where information and processes can be
spatially distributed among certain groups of agents. Examples of these systems in-
clude agents posting and querying information in the presence of spatial hierarchies



for sharing information and knowledge, such as friend circles and shared albums in so-
cial networks, or shared folders in cloud storage. Recently, the authors of [13] enhanced
and generalized the theory of ccp for systems with spatial distribution of information
in the novel spatial concurrent constraint programming (sccp), where computational
hierarchical spaces can be assigned to belong to agents. In sccp, each space may have
ccp processes and other (sub) spaces, processes can post and query information in their
given space (i.e., locally), and may as well move from one space to another.

As an example, consider the tree-like structures depicted in Figure 1. They corre-
spond to hierarchical computational spaces of, e.g., virtual containerization (i.e., virtual
machines inside other virtual machines). Each one of these spaces is endowed with an
agent identifier (either root or a natural number) and a local store (i.e., a constraint),
and the processes can be executed and spawned concurrently inside any space, with the
potential to traverse the structure, querying and posting information locally, and even
creating new spaces. The sccp calculus enables the formal modeling of such scenarios
and of transitions that can lead from an initial system state (e.g., Figure 1a) to a final
state (e.g., Figure 1b) by means of an operational semantics [13].
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(a) Initial state of the system.
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(b) Final state of the system.

Fig. 1: A containerization example.

This paper presents the real-time sccp calculus (rtsccp), a generalization of sccp
with timing constraints. The intended models of rtsccp are spatially-distributed multi-
agent reactive systems that may have different computing capabilities (e.g., virtual con-
tainers with heterogeneous bandwidth and main memory configurations) and be subject
to real-time requirements (e.g., upper bounds in the execution time of a given opera-
tion). The formal semantics of rtsccp is given in the form of a real-time rewriting logic
semantics that is executable in the Maude system [5]. As such, the real-time rewriting
logic specification can be subject to automatic reachability analysis and LTL model-
checking, and thus enables the formal analysis of timing behavior for agents distributed
in hierarchical spaces, such as fault-tolerance and consistency.

In the rtsccp real-time rewriting logic semantics, flat configurations of object-like
terms encode the hierarchical structure of spaces, and equational and rewrite rules both
axiomatize the concurrent computational steps of processes. Time attributes are associ-



ated to process-store interaction, as well as to process mobility in the space structure,
by means of maps from agents to non-negative real quantities; these choices can be in-
terpreted to denote, as previously mentioned, upper bounds in the execution time of the
given operations. The underlying constraint system of sccp is materialized with the help
of the rewriting modulo SMT [21] approach, with constraints being quantifier-free for-
mulas over Boolean and integer shared variables, and information entailment queried
as semantic inference and automatically delivered by the SMT-based decision proce-
dures. The main contribution of this work can also be seen as yet another interesting
use of rewriting logic as a semantic framework: the support in rewriting logic for real-
time systems [18] and open systems [21], make of the rtsccp real-time rewriting logic
semantics a symbolic and fully executable specification in Maude, that is both sound
and complete (relative to initial semantics) for reachability analysis in spatial constraint
systems with discrete and dense linear timing constraints.

Outline. Section 2 summarizes some preliminaries on constraint systems and rewriting
logic. The real-time rewriting logic semantics for rtsccp is presented in Section 3. The
use of the semantics for symbolic reachability analysis is illustrated with some examples
in Section 4. Additional related work and concluding remarks are included in Section 5.
The rewriting logic specification for rtsccp and the examples are available at

http://escher.javerianacali.edu.co/rtsccpe/index.html

2 Preliminaries

This section briefly explains the basics of constraint and spatial constraint systems with
extrusion. It also presents a summary of order-sorted rewriting logic [14], a semantic
framework that unifies a wide range of models of concurrency.

A constraint system (cs) C is a complete algebraic lattice C = (Con,v), where the
elements in Con are called constraints and the order v entailment of information: d v c
(or, c w d) asserts that the constraint c contains at least as much information as the
constraint d. The symbols t, true, and false denote the least upper bound (lub) opera-
tion, the bottom, and the top element of C, respectively. An n-agent spatial constraint
system (n-scs) [13] C is a cs (Con,v) equipped with n self-maps [·]1, . . . , [·]n over its
set of constraints Con satisfying, for each function [·]i : Con→ Con: [true]i = true and
[c t d]i = [c]i t [d]i, for each c, d ∈ Con. An n-agent spatial constraint system with
extrusion (n-scse) [12] is an n-scs C equipped with n self-maps ↑1, . . . , ↑n over Con,
written (C, ↑1, . . . , ↑n), such that each ↑i is the right inverse of [·]i.

A rewrite theory is a tuple R = (Σ, E ] B,R) with: (i) (Σ, E ] B) an order-sorted
equational theory with signature Σ, E a set of equations over TΣ , and B a set of struc-
tural axioms – disjoint from the set of equations E – over TΣ for which there is a finitary
matching algorithm (e.g., associativity, commutativity, and identity, or combinations of
them); and (ii) R a finite set of (possibly conditional) rewrite rules over TΣ(X). Intu-
itively, R specifies a concurrent system whose states are elements of the set TΣ/E]B of
Σ-terms modulo E ] B and whose concurrent transitions are axiomatized by the rules
R according to the inference rules of rewriting logic [3]. In particular, for t, u ∈ TΣ
representing states of the concurrent system described by R, a transition from t to u is

http://escher.javerianacali.edu.co/rtsccpe/index.html


captured by a formula of the form t −→R u; the symbol −→R denotes the binary rewrite
relation induced by R over TΣ/E]B and TR = (TΣ/E]B,→R) denotes the initial reacha-
bility model of R.

The rewriting logic semantics of a language L is a rewrite theory RL = (ΣL, EL ]
BL,RL) where→RL provides a step-by-step formal description of L’s observable run-
to-completion mechanisms. The conceptual distinction between equations and rules
in RL has important consequences that are captured by rewriting logic’s abstraction
dial [15]. Setting the level of abstraction in which all the interleaving behavior of eval-
uations in L is observable, corresponds to the special case in which the dial is turned
down to its minimum position by having EL ] BL = ∅. The abstraction dial can also be
turned up to its maximal position as the special case in which RL = ∅, thus obtaining an
equational semantics of L without observable transitions. The rewriting logic seman-
tics presented in this paper is faithful in the sense that such an abstraction dial is set at
a position that exactly captures the interleaving behavior of the concurrency model.

The real-time rewrite theory presented in this work is time-robust, namely: (i) in
any given state, time can advance either any amount up to a specific instant in time or
not at all; and (ii) instantaneous rules (i.e., those that are not tick rules and are supposed
to take zero time) can only be applied when the system has advanced the maximal
possible amount of time before any timed action can become enabled. Under these two
assumptions and by using the maximal time sampling strategy, unbounded and time-
bounded search and model checking are sound and complete with respect to timed fair
paths [19]. They exclude paths with an infinite sequence of tick steps where, at each
step, time could have advanced to time r (the duration of the first step in a path) or
beyond, but with a total path duration less than r. Also are excluded those ‘unfair’ paths
containing an infinite and consecutive sequence of 0-time ticks over a state on which
an instantaneous rule can be applied. Note that a time-robust system may have Zeno
paths, where the sum of the durations of an infinite number of tick steps is bounded. By
restricting the computations to time-bounded prefixes only a finite set of states can be
reached from an initial state, so that the target real-time specification does not exhibit
any Zeno behavior and temporal properties can be model checked.

Satisfiability Modulo Theories (SMT) studies methods for checking satisfiability of
first-order formulas in specific models. In this work, the representation of the constraint
system is based on SMT solving technology. Given an many-sorted equational theory
E0 = (Σ0, E0) and a set of variables X0 ⊆ X over the sorts in Σ0, the formulas under
consideration are in the set QFΣ0

(X0) of quantifier-free Σ0-formulas: each formula being
a Boolean combination of Σ0-equation with variables in X0 (i.e., atoms). The terms in
TΣ0/E0 (X) are called built-ins and represent the portion of the specification that will be
handled by the SMT solver (i.e., they are semantic data types). In this setting, an SMT
instance is a formula φ ∈ QFΣ0

(X0) and the initial algebra TE+
0
, where E+

0 is a decidable
extension of E0 such that φ is satisfiable in TE+

0
iff there exists σ : X0 −→ TΣ0 such that

TE0 |= φσ.
Maude [5] is a language and tool supporting the formal specification, execution, and

analysis of concurrent systems specified as rewrite theories, including those with real-
time semantics (see [19]) and those with built-ins as proposed in the rewriting modulo
SMT approach (see [21]).



3 Rewriting Logic Semantics

This section introduces the rtsccp real-time rewriting logic semantics in the form of a
real-time rewrite theory R, detailing some aspects of to its syntax and transitions.

Figure 2 depicts the module structure of R, where a triple-line arrow (V) represents
module importation by protecting and a single-line arrow (→) module importation by
inclusion. The difference between these two importing modes is that the former allows
surjectivity (junk) and injectivity (confusion) [5].

SCCP

SCCP-STATE

SCCP-SYNTAX CONFIGURATION 2-TUPLELEFTIST-HEAP POSRAT-TIME-DOMAIN

POSTIVE-RAT

LTIME

TIME

AGENT-ID

EXT-BOOL
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BOOL-OPS

TRUTH-VALUE

NAT

RAT

SMT-UTIL

INTEGER

BOOLEAN

META-LEVEL

Fig. 2: Module hierarchy of rtsccp

3.1 System States

The tree-like structure of the hierarchical spaces is represented as a flat configuration
of object-like terms encoding the state of execution of the agents. The hierarchical re-
lationships among spaces are specified by common prefixes as part of an agent’s name.
In an observable state, each agent’s space is represented by a set of object-like terms:
some encoding the state of execution of all its processes and exactly one object repre-
senting its local store. The object-based system is represented using Maude’s predefined
module CONFIGURATION imported in SCCP-STATE. The object and class identifiers are:

subsorts Nat Aid < Oid .
ops agent process Simulation : -> Cid .
op {_} : Configuration -> Sys .

The system states are represented by the topsort Sys with argument a configuration
of objects containing the setup of each one of the agents in the system. A Configuration



is a multiset of objects with set union denoted by juxtaposition and identity none. There
are two types of object identifiers: agent identifiers (Aid) for identifying agents and
their hierarchical structure, and natural numbers (Nat) for some additional identifica-
tion used internally in R. There are three types of class identifiers, namely, for agents,
processes, and a simulation object. A simulation object specifies the attributes required
for the real-time simulation of the system, such as the global time and the scheduler.

Each agent has one attribute, namely, its a store, and each process has two attributes:
an universal identifier (used internally for execution purposes) and the command (i.e.,
process) it is executing:

op store :_ : Boolean -> Attribute [ctor] .
op Uid :_ : Nat -> Attribute [ctor] .
op command :_ : SCCPCmd -> Attribute [ctor] .

The syntax of commands is presented in Section 3.2. Section 3.3 explains how quan-
tifier free formulas are used to represent constraints (as Boolean) and the entailment
relation is encoded with the help of SMT-based decisions procedures.

Finally, the attributes of the simulation object include the global time (attribute
gtime); the priority queue of the system commands to be processed, ordered by time-
to-execution (attribute pqueue); the collection of pending commands, i.e., ask com-
mands that are waiting for its guarding constraint to become activate (attribute pend);
the counter for assigning the next internal identifier when spawning a new process (at-
tribute nextID); a flag that is on whenever a tick rule needs to be applied (attribute
flg); and a collection of maps containing the time it takes to process certain commands
relative to the space where they are executed (attributes MAsk, MTell, MSp, and MExt).
The sort Time, as it is often the case in Real-time Maude [18], can be used to represent
either discrete or dense linear time, while Ttime is the name of the Maude view that is
used to instantiate parameterized sorts with time:

op gtime :_ : Time -> Attribute [ctor] .
op pqueue :_ : Heap{Tuple} -> Attribute [ctor] .
op pend :_ : Heap{Tuple} -> Attribute [ctor] .
op nextID :_ : Nat -> Attribute [ctor] .
op flg :_ : Bool -> Attribute [ctor] .
op MAsk :_ : Map{Aid, Ttime} -> Attribute [ctor] .
op MTell :_ : Map{Aid, Ttime} -> Attribute [ctor] .
op MSP :_ : Map{Aid, Ttime} -> Attribute [ctor] .
op MExt :_ : Map{Aid, Ttime} -> Attribute [ctor] .

As mentioned before, the qualified identifiers of agents are used to encode the hier-
archical structure of spaces (sort Aid). The root of any tree is denoted by constant root
and any other qualified name corresponds to a dot-separated list natural numbers (sort
Nat), organized from left to right:

op root : -> Aid .
op _._ : Nat Aid -> Aid .

Example 1. In this syntax, the container system depicted in Figure 1a can be specified
as follows:



< root : agent | store : (W:Integer === (9).Integer) >
< 0 . root : agent | store : (X:Integer >= 11) >
< 0 . 1 . root : agent | store : (Y:Integer > 5) >
< 1 . root : agent | store : true >
< 2 . root : agent | store : true >

3.2 Commands

The following EBNF-like notation defines the process-like syntax of commands:

P ::= 0 | tell(c) | ask(c)→ P | P ‖ P | [P]i | ↑i (P)

where c is a constraint and i an agent identifier. The tell(c) command posts the con-
straint c to the local store (once a constraint is added, it cannot be removed from the
store so that the store grows monotonically). The command ask(c) → P queries if c
can be deduced from the information in the local store; if so, the agent behaves like P,
otherwise, it remains blocked until more information is added to the store. A basic ccp
process like-language usually adds parallel composition (P ‖ Q) combining processes
P and Q concurrently. The command [P]i indicates that command P must be executed
inside the agent i’s space: any information that P produces is available to other com-
mands that execute within the same space. The command ↑i (P) denotes that P is to be
run outside the space of agent i and the information posted by P is going to be stored
in the parent of agent i. The SCCP-SYNTAXmodule includes the syntax of commands in
rtsccp:

op 0 : -> SCCPCmd .
op tell : Boolean -> SCCPCmd .
op ask_->_ : Boolean SCCPCmd -> SCCPCmd .
op _||_ : SCCPCmd SCCPCmd -> SCCPCmd [assoc comm gather (e E) ] .
op _in_ : SCCPCmd Nat -> SCCPCmd .
op _out_ : SCCPCmd Nat -> SCCPCmd .

3.3 Time Scaffolding

The real-time behavior in R associates timing behavior to those commands that interact
with stores (i.e., tell and ask commands) and to commands that involve mobility among
the space structure of the system (i.e., [_]_ and ↑_(_)). More precisely, tell and ask
commands can take time when posting and querying, respectively, from a store. Moving
the execution of a command inside an agent and extruding from a space can also take
up time. Such times are given by the time maps MTell (for tell), MAsk (for ask), MSp
(for [_]_), and MExt (for ↑_(_)), and can be consulted using the getTimeCmd function.
For example, MTell(i) denotes the time it takes to execute a tell command inside the
agent’s i space.

op fTime : Map{Aid, Ttime} Aid -> Time .
eq fTime(M:Map{Aid, Ttime}, L1)
= if $hasMapping(M, L1) then M[L1] else 0 fi .



op getTimeCmd : Attribute Attribute Attribute Attribute
SCCPCmd Aid -> Time .

eq getTimeCmd(MTell: MT, MAsk: MA, MIn: MI, MOut: MO, tell(B1), L1)
= fTime(MT, L1) .
eq getTimeCmd(MTell: MT, MAsk: MA, MIn: MI, MOut: MO, C1 in I1, L1)
= fTime(MI, L1) .
eq getTimeCmd(MTell: MT, MAsk: MA, MIn: MI, MOut: MO, C1 out I1, L1)
= fTime(MO, L1) .
eq getTimeCmd(MTell: MT, MAsk: MA, MIn: MI, MOut: MO, C1, L1)
= 0 [owise] .

The run-to-completion time of commands is simulated with the help of a leftist
heap that keeps track of all the active commands that are waiting for the global timer
to advance. One motivation to use leftist heaps is that insertion, removal, and query-
ing are defined without the need of structural axioms, which may result in performance
gains during execution. A leftist heap [17] is a heap-ordered binary tree that satisfies
the leftist property: the rank (i.e., the length of its rightmost path to a leaf) of any left
child is at least as large as the rank of its right sibling. Each entry in the heap is a
pair (i, t) where i is an unique identifier of a process and t the time it needs to start
executing. At the beginning, all the processes belong to the heap and they are ordered
with respect to their execution time. A process is executed when its execution time is
the minimum time of all the processes that are pending to complete their transitions.
The leftist heap is implemented as a parameterized container in the functional mod-
ule LEFTIST-HEAP{X :: STRICT-TOTAL-ORDER}, with admissible parameters only
being strict total orders:

sort Heap{X} NeHeap{X} .
subsort NeHeap{X} < Heap{X} .
op empty : -> Heap{X} [ctor] .
op T(_,_,_,_) : Nat X$Elt Heap{X} Heap{X} -> NeHeap{X} [ctor] .
op isEmpty : Heap{X} -> Bool .
eq isEmpty(empty) = true .
eq isEmpty(T(Ra,E,L,R)) = false .
op rank : Heap{X} -> Nat .
eq rank(empty) = 0 .
eq rank(T(Ra,E,L,R)) = Ra .
op makeT : X$Elt Heap{X} Heap{X} -> NeHeap{X} .
eq makeT(E,L,R)
= if rank(L) >= rank(R)
then T(rank(R) + 1,E,L,R)
else T(rank(L) + 1,E,R,L)
fi .

Heaps are constructed from the constant empty and the T(_,_,_,) function symbol:
the first argument is the rank of the tree (sort Nat), the second one the label (sort X$Elt),
and the third and fourth ones the left and right children (sort Heap{X}), respectively. In
the semantics of rtsccp, the sort X$Elt is instantiated with the sort of pairs of the form
(I,T ), where I is an internal process identifier and T is the run-completion time of such



a process. Auxiliary operations include isEmpty, rank, and makeT, which are used to
verify whether a heap is empty, compute the rank of a given heap, and create a heap out
of two heaps, respectively. Other key operations on leftist heaps are the merging of two
heaps (function merge), inserting an element in a heap (function insert), removing
an element from a heap (function deleteMin), and finding the element at the top of a
non-empty heap (function findMin).

op merge : Heap{X} Heap{X} -> Heap{X} .
eq merge(empty, L) = L .
eq merge(L, empty) = L .
eq merge(T(Ra,E,L,R),T(Ra’,E’,L’,R’))
= if (E < E’ or E == E’)
then makeT(E,L,merge(R,T(Ra’,E’,L’,R’)))
else makeT(E’,L’,merge(T(Ra,E,L,R),R’))
fi .

op insert : X$Elt Heap{X} -> NeHeap{X} .
eq insert(E,L) = merge(T(1,E,empty,empty),L) .
op deleteMin : NeHeap{X} -> Heap{X} .
eq deleteMin(T(Ra,E,L,R)) = merge(L,R) .
op findMin : NeHeap{X} -> X$Elt .
eq findMin(T(Ra,E,L,R)) = E .

3.4 The Constraint System

In this rewriting logic semantics, the sort Boolean (available in the current version
of Maude from the INTEGER module) defines the data type used to represent rtsccp’s
constraints. Terms of sort Boolean are quantifier-free formulas built from variables
ranging over the Booleans and integers, and the usual function symbols. The current
version of Maude is integrated with the CVC4 [2] and Yices2 [8] SMT solvers, which
can be queried via the meta-level. In this semantics, queries to the SMT solvers are
encapsulated by functions check-sat and check-unsat:

op check-sat : Boolean -> Bool .
eq check-sat(B) = metaCheck([’INTEGER], upTerm(B)) .
op check-unsat : Boolean -> Bool .
eq check-unsat(B) = not(check-sat(B)) .

The function invocation check-sat(B) returns true only if B is satisfiable. Otherwise, it
returns false if it is unsatisfiable or undefined if the SMT solver cannot decide. Note that
function invocation check-unsat(B) returns true only if B is unsatisfiable. Therefore,
the rewriting logic semantics of rtsccp instantiates the constraint system C = (Con,v)
by having quantifier-free formulas, modulo the semantic equivalence in TE+

0
(i.e., the

model implemented in the SMT solver extending the initial model TE0 ), as the con-
straints Con and semantic validity relative to TE+

0
as the entailment relation v. More

precisely, if Γ is a finite set of terms of sort Boolean and φ is term of sort Boolean, the
following equivalence holds: Γ v φ iff check-unsat

((∧
γ∈Γ γ

)
∧ ¬φ

)
. In order to make

a direct relation between the entailment relation v and the Maude syntax, the operator
entails is defined as follows:



op entails : Boolean Boolean -> Bool .
eq entails(C1:Boolean, C2:Boolean)
= check-unsat(C1:Boolean and not(C2:Boolean)) .

3.5 System Transitions

The tick rule models time elapse in the system [18]:

crl [tick] :
{ X < I : Simulation | pqueue : P, gtime : T, flg : true,

pend : P0, Atts > }
=> { X < I : Simulation | pqueue : merge(delta(deleteMin(P),T0),P0),

gtime : (T plus T0), flg : false, pend : empty, Atts > }
if T0 := p2(findMin(P)) .

where the the auxiliary operation delta reduce T0 units the execution time of every
command in the heap P:

op delta : Heap{Tuple} Time -> Heap{Tuple} .
eq delta(empty,T’) = empty .
eq delta(T(N,((I,T)),P,P0),T’)
= T(N,((I,T monus T’)),delta(P,T’),delta(P0,T’)) .

When the [tick] rule is fired, the global time is incremented in T0 units, where T0 is
the minimum time present in the priority queue P, which is modified by removing the
process with the minimum execution time. It also adds the pending commands to the
priority queue. The pending commands are ask commands that, although they have been
activated already for execution, have not been able to execute because their guard has
not been met by the state of the corresponding local stores. The tick rule puts all these
pending process back in the main queue, so that their guards can be checked again and
be executed or put back in the pending queue. Figure 3 depicts the possible transitions
an ask command can take between being in the priority queue, in the pending queue,
and finally executing. The rules [ask] and [delay] are introduced below.

pqueuepending

[tick]

[delay]

exec
[ask]

Fig. 3: Possible transitions for ask commands.

The invisible transitions of the semantics are specified with the help of equational
rules. Namely, one for removing a 0 command from a configuration and another one to
join the contents of two stores of the same space (i.e., two stores with the same Aid).
The latter type of transition is important because when a new process is spawned in a



agent’s space, a store with the empty constraint (i.e., true) is created for that space. If
such a space existed before, then the idea is that the newly created store is subsumed by
the existing one. Note that neither of the invisible transitions takes time, i.e., they are
really instantaneous, and they axiomatize structural properties of commands.

eq { < L0: process | command: 0, Atts > X }
= { none X } .
eq < L0: agent | store: B0 > < L0: agent | store: B1 >
= < L0: agent | store: (B0 and B1) > .

The following six rules capture the concurrent observable behavior in R:

crl [tell]:
{ < L0: agent | store: B0 >
< L0: process | UID: I0, command: tell (B1) >
< I: Simulation | pqueue: H, flg: false, pend: P, Atts > X }

=> { < L0: agent | store: (B0 and B1) >
< I: Simulation | pqueue: H, flg: true, pend: P, Atts > X }

if I0 == p1(findMin(H)) .

crl [parallel]:
{ < L0: process | UID: I0, command: (C0 || C1) >
< I: Simulation | pqueue: H, nextID: N, flg: false, pend: P,
MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

=> { < L0: process | UID: N, command: C0 >
< L0: process | UID: (N + 1), command: C1 >
< I: Simulation | pqueue: H, nextID: (N + 2), flg: true,
pend: H0, MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

if I0 == p1(findMin(H))
/\ H0 := insert(((N, getTimeCmd(MTell: MT, MAsk: MA, MIn: MI,

MOut: MO, C0, L0))),
insert(((N + 1, getTimeCmd(MTell: MT, MAsk: MA, MIn: MI,

MOut: MO, C1, L0))), P)) .

crl [space]:
{ < L0: process | UID: I0, command: (C0 in N0) >
< I: Simulation | pqueue: H, nextID: N, flg: false, pend: P,
MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

=> { < N0 . L0: agent | store: true >
< N0 . L0: process | UID: N, command: C0 >
< I: Simulation | pqueue: H, flg: true, pend: H0, nextID: (N+1),
MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

if I0 == p1(findMin(H))
/\ H0:= insert(((N, getTimeCmd(MTell: MT,

MAsk: MA, MIn: MI, MOut: MO, C0, L0))), P) .

crl [extrussion]:
{ < N0 . L0: process | UID: I0, command: (C0 out N0) >
< I: Simulation | pqueue: H, nextID: N, flg: false, pend: P,
MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }



=> { < L0: process | UID: N, command: C0 >
< I: Simulation | pqueue: H, flg: true, pend: H0, nextID: (N+1),
MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

if I0 == p1(findMin(H))
/\ H0:= insert(((N, getTimeCmd(MTell: MT,

MAsk: MA, MIn: MI, MOut: MO, C0, N0 . L0))), P) .

crl [ask]:
{ < L0: agent | store: B0 >
< L0: process | UID: I0, command: (ask B1 -> C1) >
< I: Simulation | pqueue: H, flg: false, pend: P, nextID: N,
MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

=> { < L0: agent | store: B0 >
< L0: process | UID: N, command: C1 >
< I: Simulation | pqueue: H, flg: true, pend: H0, nextID: (N+1),
MTell: MT, MAsk: MA, MIn: MI, MOut: MO, Atts > X }

if I0 == p1(findMin(H))
/\ entails(B0,B1)
/\ H0:= insert(((N,getTimeCmd(MTell: MT, MAsk: MA, MIn: MI,

MOut: MO, C1, L0) plus alpha(MA, L0))), P) .

crl [delay]:
{ < L0: agent | store: B0 >
< L0: process | UID: I0, command: (ask B1 -> C1) >
< I: Simulation | pqueue: H, pend: P, Atts > X }

=> { < L0: agent | store: B0 >
< L0: process | UID: I0, command: (ask B1 -> C1) >
< I: Simulation | pqueue: deleteMin(H),

pend: insert(((I0,T1)),P),Atts > X }
if I0 == p1(findMin(H))
/\ not(entails(B0,B1))
/\ T1:= (p2(findMin(H))) .

The [tell] rule implements the execution semantics of a tell command by posting
the given constraint in the local store and by removing such a command from the con-
figuration. The [parallel] rule implements the semantics for parallel composition of
process by spawning the two process in the current space. Rule [space] creates a new
agent’s space denoted by N0.L0, with an empty store (i.e., true), beside the execution
of program C0 within the new agent’s space. The [extrusion] rule executes C0 in
the parent’s space L0. The [ask] rule executes a command C1 when the guard B1 in
ask B1 -> C1 holds: that is, when B1 is a semantic consequence of the contents B0
of the local store. Note that the semantic consequence relation of the constraint system
is queried by asking the SMT solver. The [delay] rule represents the negative answer
for the ask rule: whenever B0 does not entail B1 or B1 is not a semantic consequence of
the contents B0 of the store. The [delay] rule moves an ask command into the pending
heap, where it will remain until the tick rule executes again.



4 Reachability Analysis

The goal of this section is to explain how the rewriting logic semantics R of rtsccp and
rewriting modulo SMT can be used as an automatic mechanism for solving existential
reachability goals in the initial model TR. This approach can be useful for symbolically
proving or disproving real-time safety properties of TR. The approach presented in this
section mainly relies on Maude’s search command, but it can be easily extended to be
useful in the more general setting of Maude’s LTL Model Checker.

The examples presented in this section use the following time functions for the
processes:

MAsk : root |-> 1/20, (0 . root) |-> 1/10, (0 . 1 . root) |-> 3/20,
(1 . root) |-> 1/10, (2 . root) |-> 1/10

MTell : root |-> 1/10, (0 . root) |-> 3/20, (0 . 1 . root) |-> 1/5,
(1 . root) |-> 3/20, (2 . root) |-> 3/20

MSP : root |-> 1/2, (0 . root) |-> 7/10, (0 . 1 . root) |-> 4/5,
(1 . root) |-> 13/20, (2 . root) |-> 3/5

MExt : root |-> 1/2, (0 . root) |-> 13/20, (0 . 1 . root) |-> 1,
(1 . root) |-> 1/2, (2 . root) |-> 3/5

For example, querying the store at the root agent takes 1/20 time units.
Fault tolerance is the property that ensures a system to continue operating properly

in the event of the failure; consistency means that a local failure does not propagate to
the entire system. In R, this means that if a store becomes inconsistent, it is not the case
that such an inconsistency spreads to the entire system. Of course, inconsistencies can
appear in other stores due to some unrelated reasons.

Searching an inconsistent store can be easily implemented with the help of R and
Maude’s search command. The answer of this command in the positive would mean
that from some initial state, there is a state in which a store becomes inconsistent at
some point of execution within a given time interval. Taking advantage of R and the
rewriting modulo SMT approach, also is possible to know when a store is inconsistent.
As an example, consider the container system in Figure 1a and the following search
command with a the time interval [0, 1.5):

search in SCCP :
{ < root : agent | store : (W:Integer === (9).Integer) >
< 0 . root : agent | store : (X:Integer >= 11) >
< 0 . 1 . root : agent | store : (Y:Integer > 5) >
< 1 . root: agent | store: true > < 2 . root: agent | store: true >
< root : process | UID : 1, command : ((((ask X:Integer > 2 ->
(tell(Y:Integer < 10) in 0 in 1 out 0)) in 0)
|| ((tell(Z:Integer =/== (10).Integer)
|| (tell(T:Integer === 1) in 3)) in 2))
|| (tell(X:Integer <= 10) in 0)) >

< 1 : Simulation | gtime : 0,pqueue : T(1,((1,0)),empty,empty),
pend : empty,nextID : 19, flg : false, ... (time maps)}

=>* { < 1 : Simulation | gtime : T:Time, Atts:AttributeSet >
< A:Aid : agent | store : B0:Boolean > C:Configuration }

such that check-unsat(B0:Boolean) and T < 3/2 .



Note that a store is inconsistent if it is unsatisfiable, thereby checking whether a store
is inconsistent is accomplished with the function check-unsat. The aforementioned
command searches for an inconsistent store during the first 1.5 units of time of the
system’s execution. This command does not find an inconsistent store between the first
1.5 units of time in any of the 56 reachable states. However, it is possible to make a store
inconsistent by adding inconsistent information, for example by adding the process
tell(X <= 10) in 0. The output for the search command is:

Solution 1 (state 159)
states: 160 rewrites: 16666 in 876ms cpu (875ms real)

(19025 rewrites/second)
C:Configuration --> < root:agent | store:(W:Integer === (9).Integer) >
< 0 . 1 . root : agent | store : (Y:Integer > 5) >
< 1 . root:agent | store:true > < 2 . root:agent | store:true >
< 2 . root:process | UID: 28,

command: tell(Z:Integer =/== (10).Integer) >
< 2 . root:process | UID: 27,

command: (tell(T:Integer === (1).Integer) in 3) >
< 0 . root:process | UID : 24,

command: (tell(Y:Integer < 10) in 0 in 1 out 0) >
A:Aid --> 0 . root
B0 --> X:Integer >= (11).Integer and X:Integer <= (10).Integer
Atts --> pqueue : T(2,(25,1/20),T(1,(24,4/5),empty,empty),T(1,(28,1/10),
T(1,(27,3/5),empty,empty),empty)),pend : empty,nextID : 29,
flg : true, ... (time maps)

T --> 1/2

There are 238 reachable states (from the initial state) and 74 of them have an inconsis-
tent store between the first 1.5 units of time. The first inconsistency appears in 0.5 time
units, and the last one in 1.3 times units. Note that, the system continues evolving even
though there is an inconsistency. It is possible to verify that there are states with con-
sistent and inconsistent stores at the same time by slightly modifying the above search
command.

Knowledge inference refers to acquiring new knowledge from existing facts. In the
setting of R, this means that from a given initial state an agent, at some point, has gained
enough information to infer new facts. A positive answer to such a query, means that
from some initial state, at some moment during execution, there is at least one agent
that has gained enough information to infer the given facts. As an example, consider
the container system in Figure 1a and the following search command:

search in SCCP :
{ < root : agent | store : (W:Integer === (9).Integer) >
< 0 . root : agent | store : (X:Integer >= 11) >
< 0 . 1 . root : agent | store : (Y:Integer > 5) >
< 1 . root : agent | store : true >
< 2 . root : agent | store : true >
< root : process | UID : 1, command : (((ask X:Integer > 2 ->



(tell(Y:Integer < 10) in 0 in 1 out 0)) in 0)
|| ((tell(Z:Integer =/== (10).Integer)
|| (tell(T:Integer === 1) in 3)) in 2)) >

< 1 : Simulation | gtime : 0,pqueue : T(1,((1,0)),empty,empty),
pend : empty, nextID : 19, flg : false, ... (time maps) > }

=>* { < 1 : Simulation | gtime : T:Time, Atts:AttributeSet >
< A:Aid : agent | store : B0:Boolean > C:Configuration }

such that entails(B0:Boolean, Y:Integer < 15) and T:Time > 0
and T:Time < 2 .

It checks if there is a state, reachable from the given initial state, in which some store
logically implies Y < 15 in the time interval (0, 2). This command does not find a
container with enough information in such time interval in any of the 56 reachable
states. However, if the time interval in the command is changed to (2, 3) the query finds
two solutions:

Solution 1 (state 54)
states: 55 rewrites: 7466 in 360ms cpu (358ms real)

(20738 rewrites/second)
C:Configuration --> < root:agent | store:(W:Integer === (9).Integer) >
< 0 . root : agent | store : (X:Integer >= 11) >
< 1 . root : agent | store : true >
< 2 . root : agent | store : (Z:Integer =/== (10).Integer) >
< 3 . 2 . root : agent | store : (T:Integer === (1).Integer) >

A:Aid --> 0 . 1 . root
B0:Boolean --> Y:Integer > (5).Integer and Y:Integer < (10).Integer
Atts:AttributeSet --> pqueue : T(1,(29,1/10),empty,empty),pend : empty,
nextID : 30,flg : true, ... (time maps)

T:Time --> 5/2

Solution 2 (state 55)
states: 56 rewrites: 7601 in 368ms cpu (366ms real)

(20654 rewrites/second)
C:Configuration --> < root:agent | store:(W:Integer === (9).Integer) >
< 0 . root : agent | store : (X:Integer >= 11) >
< 1 . root : agent | store : true >
< 2 . root : agent | store : (Z:Integer =/== (10).Integer) >
< 3 . 2 . root : agent | store : (T:Integer === (1).Integer) >

A:Aid --> 0 . 1 . root
B0:Boolean --> Y:Integer > (5).Integer and Y:Integer < (10).Integer
Atts:AttributeSet --> pqueue : empty,pend : empty,nextID : 30,
flg : false, ... (time maps)

T:Time --> 13/5
...

The webpage at

http://escher.javerianacali.edu.co/rtsccpe/index.html

contains more details about this example and other examples about reachability analysis
with R, including knowledge inference and equivalence of knowledge.

http://escher.javerianacali.edu.co/rtsccpe/index.html


5 Related Work and Concluding Remarks

In addition to the related work included in Section 1, it is important to mention other
related research in the area of timing semantics for concurrent constraint program-
ming. An extension of concurrent constraint programming in [24] presents a timed
asynchronous computation model and propose an implementation using loop-free de-
terministic finite automata, a declarative framework for reactive systems where time is
represented as discrete time units. More recently, J. A. Pérez and C. Rueda [20] pro-
pose an operational semantics based on probabilistic automaton, extending the work
in [24], with probabilistic and non-deterministic choices for processes. The inclusion
of stochastic information for processes proposed by J. Aranda et al. in [1] associates
to each computation a random variable determining its time duration: given a set of
competing actions, the fastest action is executed, that is, the one with the shortest du-
ration. Finally, G. Sarria and C. Rueda [27] present a real-time extension of ccp with
application to music interaction.

In the realm of rewriting logic, Degano et al. [7] provide a rewriting logic semantics
for Milner’s CCS with interleaving behavior. Additionally, a set of axioms is defined
for a logical characterization of the concurrency of CCS processes. In [28], the authors
use rewriting logic to represent the semantics of CCS and a modal logic for describing
local capabilities of CCS processes. In particular, they study how to make executable
the SOS semantics of CSS and present a fully executable specification of the semantics.
More recently, M. Romero and C. Rocha [22] have proposed a symbolic rewriting logic
semantics of the spatial modality of ccp with extrusion.

This paper has presented a real-time rewriting logic semantics for spatial concurrent
constraint programming (rtsccp) that is fully executable in the Maude system. The in-
tended models of rtsccp are spatially-distributed multi-agent reactive systems that may
have different computing capabilities and be subject to real-time requirements. In this
setting, time attributes are associated to process-store interaction, as well as to process
mobility in the space structure, by means of maps from agents to non-negative real
quantities. Details about the underlying constraint system have been given as materi-
alized with the help of rewriting modulo SMT. Furthermore, examples of reachability
analysis performed on this semantics have been given to illustrate certain aspects of the
timing behavior of agents distributed across hierarchical spaces, such as fault-tolerance
and consistency.

Future work can span in two directions. One interesting direction to follow is to
pursue challenging case studies in which, with the help of the real-time rewriting logic
semantics for rtsccp presented in this work, other key aspects of spatially distributed
concurrent processes such as privacy can be analyzed. The other direction, is to pursue
a more general and fully symbolic rewriting logic semantics for rtsccp where time
information can also be modeled as shared variables under the control of the SMT
decision procedures. In such a setting, interesting properties of real-time systems such
as missed deadlines and deadlocks could be fully analyzed, e.g., for infinitely many
initial states in a system.
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