Cédric Colas

Pierre Fournier

Olivier Sigaud

Mohamed Chetouani

Pierre-Yves Oudeyer

CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

In open-ended environments, autonomous learning agents must set their own goals and build their own curriculum through an intrinsically motivated exploration. They may consider a large diversity of goals, aiming to discover what is controllable in their environments, and what is not. Because some goals might prove easy and some impossible, agents must actively select which goal to practice at any moment, to maximize their overall mastery on the set of learnable goals. This paper proposes CURIOUS, an algorithm that leverages 1) a modular Universal Value Function Approximator with hindsight learning to achieve a diversity of goals of different kinds within a unique policy and 2) an automated curriculum learning mechanism that biases the attention of the agent towards goals maximizing the absolute learning progress. Agents focus sequentially on goals of increasing complexity, and focus back on goals that are being forgotten. Experiments conducted in a new modular-goal robotic environment show the resulting developmental self-organization of a learning curriculum, and demonstrate properties of robustness to distracting goals, forgetting and changes in body properties.

Introduction

In autonomous continual learning, agents aim to discover repertoires of skills in an ever-changing open-ended world, and without external rewards. In such realistic environments, the agent must be endowed with intrinsic motivations to explore the diversity of ways in which it can control its environment. One important form of intrinsic motivation system is the ability to autonomously set one's own goals and self-organize one's own curriculum. This challenge can be tackled within the framework of Intrinsically Motivated Goal Exploration Processes (IMGEP) [START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF][START_REF] Forestier | Intrinsically motivated goal exploration processes with automatic curriculum learning[END_REF], leveraging computational models of autonomous development in human infants.

Modular goal representation. In a same environment, an agent might want to 'put the cube in position x' or to 'reach position y' for any x or y. Here, describing the full goal space requires modular goal representations. Goals are organized by modules, where module refers to the pair of a reward function and a goal space M i = (R Mi,gi∈G M i , G Mi). The reward function describes a set of constraints that must be satisfied by the agent's state (e.g. Reach), given a continuous parameter (e.g. g i = y) evolving in the associated goal space (e.g. 3D Euclidean space), see Fig. 1.

While flat multi-goal problems with continuous [START_REF] Schaul | Universal value function approximators[END_REF][START_REF] Andrychowicz | Hindsight experience replay[END_REF][START_REF] Plappert | Multi-goal reinforcement learning: Challenging robotics environments and request for research[END_REF] or discrete goals [START_REF] Mankowitz | Unicorn: Continual learning with a universal, off-policy agent[END_REF][START_REF] Riedmiller | Learning by playing-solving sparse reward tasks from scratch[END_REF] have been explored in the past, only few works tackle the problem of modular multi-goal learning [START_REF] Forestier | Modular active curiositydriven discovery of tool use[END_REF], none in an RL setting. Here, we present CURIOUS 1 , a modular multi-goal reinforcement learning (RL) algorithm that uses intrinsic motivations to efficiently learn a continuous set of diverse goals using modular goal representations. To build an algorithm able to learn modular goals, one must answer the following questions: 1) How to choose the action policy architecture? 2) How to select the next module and goal to practice and learn about? 3) How to efficiently transfer knowledge between modules and goals? Related work. [START_REF] Kaelbling | Learning to achieve goals[END_REF] proposed the first algorithm able to leverage cross-goal learning to address a discrete set of goals. For each goal, the algorithm learned a specific value function using Q-learning (goal-experts approach). More recently, [START_REF] Schaul | Universal value function approximators[END_REF] proposed Universal Value Function Approximators (UVFA), a unique policy able to address an infinity of goals by concatenating the current state and goal to feed both the policy and the value function. In UNICORN, UVFA is used to address a discrete set of goals in parallel: reaching different objects in a visual world [START_REF] Mankowitz | Unicorn: Continual learning with a universal, off-policy agent[END_REF]. SAC-X implements multi-task RL where easy tasks are considered as auxiliary tasks to help learning about the hardest task (placing cubes inside a closed box) [START_REF] Riedmiller | Learning by playing-solving sparse reward tasks from scratch[END_REF]. Here, one network is trained for each task and the collected transitions are shared (goal-experts approach). In other works from multi-task RL [START_REF] Teh | Robust multitask reinforcement learning[END_REF][START_REF] Espeholt | Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures[END_REF][START_REF] Hessel | Multi-task deep reinforcement learning with popart[END_REF], agents do not represent explicitly the current task and aim at maximizing the overall reward. Finally, within the Intrinsically Motivated Goal Exploration Processes framework (IMGEP), [START_REF] Forestier | Modular active curiositydriven discovery of tool use[END_REF] proposed MACOB, an algorithm able to target modular goals using a population-based algorithm that mutates and replays controllers experienced in the past. MACOB maintains a population of solutions, one for each goal (modular goalexperts approach), see [START_REF] Nguyen | Active choice of teachers, learning strategies and goals for a socially guided intrinsic motivation learner[END_REF] for a similar approach. This enables efficient cross-goal learning in high-dimensional goal spaces, but is limited by the memory-based representation of policies.

Multi-goal approaches prove better than simply training a policy per goal because knowledge can be transferred between different goals using off-policy learning and hindsight learning [START_REF] Andrychowicz | Hindsight experience replay[END_REF]. Off-policy learning enables the use of any transition to improve the current policy: transitions collected from an older version of the current policy [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF], from a population of exploratory policies [START_REF] Colas | Decoupling exploration and exploitation in deep reinforcement learning algorithms[END_REF], or even from demonstrations [START_REF] Večerík | Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards[END_REF]. Transitions collected while aiming at a particular goal can be used to learn about any other. With finite sets of goals, each transition is generally used to update the policy on every other goal [START_REF] Mankowitz | Unicorn: Continual learning with a universal, off-policy agent[END_REF][START_REF] Kaelbling | Learning to achieve goals[END_REF]. With continuous sets of goals, imaginary goals are sampled from the goal space [START_REF] Andrychowicz | Hindsight experience replay[END_REF]. In the case of UVFA policies, this consists in the substitution of the goal that is part of the input by the imaginary one, a technique called goal replay or goal substitution. Building on UVFA, [START_REF] Andrychowicz | Hindsight experience replay[END_REF] proposed Hindsight Experience Replay (HER), a method leveraging hindsight for transferring knowledge between goals. The original goal of a transition can be substituted by any outcome experienced later in the trajectory (imaginary goal). This helps to increase the probability to observe rewards in reward-sparse environments.

In the literature, environments usually provide goals that the agent is asked to solve. In the IMGEP framework however, autonomous agents are intrinsically motivated to set their own, possibly learning their representation [START_REF] Laversanne-Finot | Curiosity driven exploration of learned disentangled goal spaces[END_REF]. [START_REF] Forestier | Modular active curiositydriven discovery of tool use[END_REF] in particular, biased the selection of the next goal to attempt towards modules showing high absolute measures of learning progress (LP). This mechanism helps the agent to focus on learnable goals and to disengage from goals that are currently too hard or already solved. [START_REF] Veeriah | Many-goals reinforcement learning[END_REF] uses LP computed from Bellman errors for goal selection, but this form of LP does not improve over random goal selection.

Additional background can be found in the supplementary document. Table 1 presents a classification of the multi-goal approaches most related to our work.

Contributions. The contributions of this paper are:

1. A modular encoding of goals to enable learning of continuous sets of diverse goals within a single policy using UVFA (Reach, Push, Pick and Place, Stack). This enables to tackle different kinds of goals, each with their own continuous parameterization, and facilitates transfer between modules and goals. See Sec. 2.1.

2. An active strategy for cross-module goal replay. Offpolicy learning enables to use any experience to learn about any goal from any module. We propose to guide the selection of module for replay using absolute learning progress measures (in addition to LP-based goal sampling to interact with environment). See Sec. 2.2.

3. From the IMGEP perspective, a single monolithic modular multi-goal action policy. This is an alternative to the population-based algorithms studied so far [START_REF] Forestier | Modular active curiositydriven discovery of tool use[END_REF][START_REF] Forestier | Intrinsically motivated goal exploration processes with automatic curriculum learning[END_REF] and provides the flexibility of RL methods.

4. An environment for modular goal RL. See Sec. 3.

Empirical comparisons to

CURIOUS

A Modular Multi-Goal Architecture using Universal Approximators

UVFA concatenates the goal of the agent with its current state to form the input of the policy and the value function implemented by deep neural networks [START_REF] Schaul | Universal value function approximators[END_REF].

With CURIOUS, we propose a new encoding of goals using modular representations. This enables to target a rich diversity of modular goals within a single network (modular multi-goal approach), see Fig. 2. Given G Mi the goal space of module M i , the current goal g is defined as a vec-

tor of dimension |G| = N i=1 |G Mi |
, where the G Mi can have different dimensionalities. g is set to 0 everywhere except in the indices corresponding to the current module M i , where it is set to g i ∈ G Mi . By masking the goal-inputs corresponding to unconsidered modules, the corresponding weights are frozen during backpropagation. In addition, a module descriptor m d of size N (one-hot encoding) encodes the current module. The overall input to the policy network is [s t , g, m d], see Fig. 2. We call this modular goal-parameterized architecture Modular-UVFA (M-UVFA).

In Fig. 2, we can see the underlying learning architecture (actor-critic). The actor implements the action policy and maps the input [s t , g, m d] to the next action a t . The action is then concatenated to a copy of the actor's input to feed the critic [s t , g, m d , a t]. The critic provides an estimate of the Q-value: Q(s t , g, m d , a t). The critic and the actor are then trained using DDPG [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF], although any other off-policy learning method could be used (e.g. TD3 [START_REF] Fujimoto | Addressing function approximation error in actor-critic methods[END_REF], or DQN for the discrete case [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF]). More details about DDPG can be found in the supplementary document or in [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF].

Module and Goal Selection, Cross-Module

Learning, Cross-Goal Learning

In UVFA, HER and UNICORN, the next goal to target is selected at random [START_REF] Schaul | Universal value function approximators[END_REF][START_REF] Andrychowicz | Hindsight experience replay[END_REF][START_REF] Mankowitz | Unicorn: Continual learning with a universal, off-policy agent[END_REF]. This is coherent with the common view that the agent must comply with the desires of an engineer and target the goal it is asked to target. Here on the other hand, agents have the capacity to select which goal to target next. Because goals are not equivalent, the agent can benefit from intrinsic motivations towards LP [START_REF] Schmidhuber | Curious model-building control systems[END_REF][START_REF] Kaplan | Maximizing learning progress: an internal reward system for development[END_REF]. This can be useful: 1) when there are distracting goals on which the agent cannot progress; 2) when some goals are already mastered. This idea comes from the IMGEP framework and was used in [START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF] to guide goal selection and in [START_REF] Forestier | Modular active curiositydriven discovery of tool use[END_REF] to guide module selection. The problem of selecting a module can be modeled as a non-stationary multi-armed bandit (MAB), where the value of each arm (module) is the current absolute LP. Learning progress (LP) is defined as the derivative of the agent's competence on a particular module:

LP Mi = dC M i
dt , where the competence C Mi : t → p success (t) is the probability of success at time t. Here, the agent focuses its attention on modules for which it is making the largest absolute progress, and pays little attention to modules that are already solved or unsolvable, i.e. for which |LP | stays small. Using the absolute value of LP also leads to the prioritization of modules for which the agent is showing decreasing performances. This helps to deal with forgetting: the agent reallocates learning resources to the modules being forgotten, Sec. 4.3. GOAL-EXPERTS: MULTI-GOAL: UVFA [START_REF] Schaul | Universal value function approximators[END_REF]) [START_REF] Kaelbling | Learning to achieve goals[END_REF] HER [START_REF] Andrychowicz | Hindsight experience replay[END_REF]) SAC-X [START_REF] Riedmiller | Learning by playing-solving sparse reward tasks from scratch[END_REF] UNICORN [START_REF] Mankowitz | Unicorn: Continual learning with a universal, off-policy agent[END_REF]) SAGG-RIAC* [START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF] MODULAR REPR. MOD-GOAL-EXPERTS: MACOB* [START_REF] Forestier | Modular active curiositydriven discovery of tool use[END_REF] MODULAR-MULTI-GOALS: MULTI-GOAL MODULE-EXPERTS: MG-ME M-UVFA, CURIOUS * Learning Progress Estimation. Since an autonomous agent is not externally provided its true competence or LP, it needs to approximate them for each module. To measure its competence, it uses some episodes (with p eval = 0.1) to evaluate itself on random modules and targets without exploration noise. The results (success 1 or failure 0) of these rollouts are stored in competence queues results (i) for all M i . In a similar way as [START_REF] Forestier | Modular active curiositydriven discovery of tool use[END_REF], the agent computes its subjective competence as

C Mi (n (i) eval) = 1 l l-1 j=0 results (i) (n (i) eval -j),
where n

(i)
eval is the number of self-evaluation rollouts performed by the agent in module M i . The subjective LP Mi after n (i) eval self-evaluation rollouts is then computed as:

LP Mi (n (i) eval) = C Mi (n (i) eval) -C Mi (n (i) eval -l).
Given the subjective LP measures, we tackle the multiarmed bandit problem by implementing a simple approach called proportional probability matching, with an additional -greedy strategy for exploration. More precisely, we compute the LP probabilities p LP (M i) as:

p LP (M i) = × 1 N + (1 -) × |LP Mi | N j=1 |LP Mj | ,
where N is the number of modules. The ratio implements a mixture between random exploration of modules (left term) and exploitation through a biased selection/replay of modules (right term). The random exploration term enables sampling modules that do not show any LP (i.e. already solved, too hard, or at a plateau). This way, the agent can check that it stays competent on modules that are already learned, or can insist on modules that are currently too hard.

Note that we use LP for two distinct purposes: 1) Before data collection, to select the module from which to draw the next goal to attempt in the environment; 2) Before training, to select the substitute module descriptor (module replay).

Recall that, once transitions are sampled from the replay buffer, they can be modified (replayed) by substituting the original module descriptor (or goal) by a new one. The substitute module is the one the agent is going to learn about. When replaying a particular module more than others, the agent allocates more resources to that module. While the use of LP for module selection is not new [START_REF] Forestier | Modular active curiositydriven discovery of tool use[END_REF], we are the first to consider its use for cross-module goal replay.

Module and Goal Selection. Before interacting with the environment, the agents selects the next goal to target by first sampling a module from M using p LP , and second, sampling the goal uniformly from the corresponding goal space G Mi .

Cross-Module and Cross-Goal Learning. In an example with three modules, an agent computed p LP = [0.6, 0.2, 0.2]. The agent uses these probabilities to guide learning towards modules with high absolute LP. If the size of the minibatch is N mb , the agent will sample N mb × 0.6 transitions relevant to module 1, N mb × 0.2 transitions relevant to module 2 etc. A transition that is relevant for module M i (e.g. Push module), means that it comes from an episode during which the corresponding outcome has changed (e.g. cube position). This sampling bias towards "eventful" transitions is similar to Energy-Based Prioritization [START_REF] Zhao | Energy-based hindsight experience prioritization[END_REF]) (see supp. doc.). In this minibatch, every transition has been sampled to train on a specific module (e.g. m * d), although it could have been collected while targeting another module (e.g. m d). To perform this cross-module learning, we simply substitute the latter by the former. Goal substitution is then performed using hindsight, which means the goal g of a transition is sometimes (p = 0.8) replaced by an outcome reached later in the same episode g * [START_REF] Andrychowicz | Hindsight experience replay[END_REF].

Internal Reward. After module descriptors and goals have been substituted, the agent computes an internal reward for each transition using a reward function parameterized by the new m * d and goal g * . Thus it answers: What would have been my reward for experiencing this transition, if I were aiming at that imagined goal from that imagined module? The reward is non-negative (0) when the outcome satisfies the constraints described by the imagined module m * d , relative to the imagined g * ; negative otherwise (-1). In a reaching module for instance (see Fig. 1), a positive reward is generated when the Euclidean distance between the 3D target (goal) and the gripper (outcome) falls below a precision parameter reach (reward constraint associated to the reaching module).

Combining Modular-UVFA and Intrinsically Motivated Goal Exploration

A schematic view of CURIOUS is given in Fig. 3. The detailed algorithm is given in the supplementary document.

1. Module and goal selection. The agent selects module M i and goal g i for the next rollout (blue), respectively sampled from the set of potential modules M using p LP (purple), and uniformly from the corresponding goal space G Mi .

2. Data collection. The agent interacts with the environment using its current M-UVFA policy (grey), collects transitions and stores them in memory (red).

3. LP update. If it was a self-evaluation rollout, the agent updates its measures of competence, LP and p LP given the new result (success or failure, purple).

4. Module and goal substitution. The agent decides on which modules and goals to train. To update the policy and critic, the algorithm first samples a minibatch from the replay buffers (red) using p LP and implements module and goal substitutions to perform cross-module and cross-goal learning (orange), see Sec. 2.2.

5. Internal reward. The agent computes its reward r for each transition, using R M,g parameterized by the substitute module m * d and goal g * (brown).

6. RL updates. The agent updates its policy and value function with DDPG using the modified minibatch (green).

Evaluation Methodology

The performance of the agents are evaluated offline in terms of success rates over sets of achievable goals (defined by the experimenter). Every point of a learning curve represents the success rate over 95 offline evaluation rollouts (5 × 19 actors), using random achievable goals. Evaluation is completely independent from training, i.e. agents cannot train on evaluation transitions. We use the non-parametric onetail Mann-Whitney U-test with confidence level α = 0.01 for all comparisons. More details and justifications can be found in the supplementary document.

A Modular Goal Environment

Modular Goal Fetch Arm is a new simulated environment adapted from the OpenAI Gym suite (Brockman et al., 2016). The agent is embodied by a robotic arm facing 2 cubes randomly positioned on a table. The agent controls the position of its gripper and the gripper opening (4D). It can target a diverse set of modular goals: (M 1) Reach a 3D target with the gripper; (M 2) Push cube 1 onto a 2D target on the table; (M 3) Pick and Place cube 1 on a 3D target; (M 4) Stack cube 1 over cube 2. Additional Push modules concerning additional out-of-reach and moving cubes can be defined (impossible, distracting goals). Further details can be found in the supplementary document.

Experiment and Results

In this section, we present ablative studies to assess the relative importance of: 1) the policy and value function architecture and 2) the use of intrinsically motivated module selection for practice and replay. We call M-UVFA the algorithm using a modular goal-parameterized policy and random module choices, while the intrinsically motivated version is called CURIOUS. We do not investigate the efficiency of HER or the efficiency of the sampling bias towards interesting transitions as they were already studied in [START_REF] Andrychowicz | Hindsight experience replay[END_REF]; [START_REF] Plappert | Multi-goal reinforcement learning: Challenging robotics environments and request for research[END_REF] and [START_REF] Zhao | Energy-based hindsight experience prioritization[END_REF] respectively. For fair comparisons, we apply both mechanisms to all the tested algorithms.

Impact of Policy and Value Function Architecture

Experiments. In this section, we investigate the impact of using an M-UVFA architecture for the policy and value function. The module-set is composed of four achievable modules and four distracting modules. We test this algorithm against two baselines:

1. A flat multi-goal architecture (HER). This algorithm does not represent goals in a modular fashion but in a linear way. The corresponding goal is selected uniformly inside G, a holistic goal space such that G = N i=1 G Mi . To generate a reward, the agent needs to satisfy the constraints described by all the modules at once. This goal-parameterized architecture is equivalent to UVFA, which makes the algorithm equivalent to HER +DDPG.

A multi-goal module-experts architecture (MG-ME)

where an expert multi-goal policy is trained for each of the N modules. Each policy is trained one epoch every N on its designated module and shares the collected transitions with other experts. When evaluated on a particular module, the algorithm uses the corresponding module-expert.

Results. Fig. 5 shows the evolution of the average success rate computed over achievable goals for M-UVFA and the two baselines described above. The learning curve of HER stays flat. This can be easily understood as none of the goals expressed in the complete goal space G corresponds to a real situation (e.g. the agent cannot reach a 3D target with its gripper while placing a cube at another). The agent cannot These figures demonstrate the existence of successive learning phases, that can be interpreted as developmental phases [START_REF] Oudeyer | How evolution may work through curiosity-driven developmental process[END_REF]. The robot first learns how to control its gripper (M 1), then to push objects on a desired target on the table (M 2) before it learns how to place the cube on a 3D target (M 3) and how to stack the two cubes (M 4). Fig. 4(b) shows that LP stays small for modules that are already solved (e.g. M 1 after 10 4 episodes) or too hard to solve (e.g. M 3 and M 4 before 35 • 10 3 episodes), and increases when a module is being learned. We further discuss the link between these learning phases, developmental learning and curriculum learning in the supplementary document.

Impact of the Intrinsic Motivation: Resilience to Forgetting and Sensor Perturbations

Experiments. During learning, the agent can forget about a previously mastered module. This can happen because is not targeting it often (catastrophic forgetting), because of environmental changes (e.g. icy floor) or because of body changes (e.g. sensor failure). Ideally, CURIOUS should be able to detect and react when such situations arise. This section investigates the resilience of our algorithm to such perturbations and compares it to the M-UVFA baseline.

We first look at a run where forgetting occurs and explain how CURIOUS detects the situation and reacts. Since forgetting cannot be triggered, we add more emphasis to a second experiment, where we simulate a time-locked sensory failure. We present the following setup to the agent: first, it learns about a set of 4 modules (Reach, Push, Pick and Place for cube 1, and Push for cube 2). Then, a sensory perturbation is triggered at a precise time (epoch = 250, episode = 237.5 • 10 3) such that the perception of cube 2 gets shifted by 0.05 (simulation units) until the end of the run. The performance on this module suddenly drops and we compare the recoveries of CURIOUS and M-UVFA.

Results -Forgetting. Looking at Fig. 4(a), we can observe a drop in the competence on M 3 around episode 80 • 10 3 . This phenomenon is usually described as catastrophic forgetting: because it is trained on other modules, the network can forget about the previously mastered mod- ule M 3 , without any obvious reason. The corresponding period of Fig. 4(b) shows an increase in LP for M 3 , which in turn triggers an additional focus of the agent towards that module (see the corresponding probability increase in Fig. 4(c)). Using LP to bias its attention, the agent monitors its competence on the modules and can react when it forgets about a previously mastered module. This mechanism helps to deal with the problem of forgetting and facilitates learning of multiple modules in parallel. To prove its efficiency, we need to compare CURIOUS to its baseline M-UVFA using a time-locked perturbation. Results -Sensor Perturbation. In Fig. 6, we can observe the drop in average success rate after the perturbation (around 240 • 10 3 episodes). This perturbation only affects one of the four modules (Push cube 2), which triggers a drop in the average performance of about 1/4 th . As described above, CURIOUS agents detect that perturbation and react by using more transitions to improve on the corresponding module. This translates into a significantly faster recovery when compared to M-UVFA. The agents recover 95% of their pre-perturbation performance in 78 and 43 • 10 3 episodes (random and active respectively), which translates in a 45% faster recovery for CURIOUS (p < 10 -4), see Fig. 6.

Impact of the Intrinsic Motivation: Resilience to Distracting Modules

Experiments. In this section, we investigate the resilience of our learning algorithm when the number of distracting modules increases (0, 4, 7). The agent faces four achievable modules in addition to the distracting modules. The distracting modules are all Push modules relative to the randomly moving and out-of-reach cubes. The agent receives extra noisy inputs corresponding to the random movements of these cubes.

Results. In Fig. 7, we see that the number of distracting modules faced by the agents highly impacts their learn- ing speed on achievable goals. In particular, M-UVFA random agents do not know that these goals are impossible to achieve and waste time and resources trying to improve on them. Since these agents sample distracting modules just like others, we can expect the learning speed to be scaled by #achievablemodules #modules

. On the other hand, CURIOUS agents try to learn which modules are too difficult at the moment to target them less often. Note that CURIOUS agents still need to choose them sporadically to keep updated measures of their LP: they sample a random module with probability . In Fig. 7, we see that the advantage of CURIOUS over its random counterpart increases as the number of distracting modules grows (see colored dots indicating significant differences). Although the addition of distracting modules might sound a bit ad-hoc here, it is important to note that autonomous agents evolving in the real world face numerous modules such as these. For humans, quantity of potential modules are impossible (predicting the movement of leaves on a tree, trying to walk on walls etc.). Just as humans, artificial agents need to discard them based on experience and LP.

Discussion

Leveraging Environment Modularity. In some environments, representing all the potential goals requires modular representations. Because Sec. 4.1 proved that a simple UVFA architecture could not deal with this situation, we proposed M-UVFA. Note that, although our Modular Goal Fetch-Arm environment only contains goals that can be represented in a modular way, M-UVFA can also target discrete sets of goals using flat representations (by setting the goal g i of module M i to the null vector and letting m d encode for the goal). In short, M-UVFA enables traditional UVFA to target a richer diversity of goals than what was possible with traditional UVFA implementations.

Pros and Cons of Monolithic Policies. As noted in [START_REF] Mankowitz | Unicorn: Continual learning with a universal, off-policy agent[END_REF], representations of the world state are learned in the first layers of a neural network policy/value function. A representation learned to achieve goals from one module could probably be useful for learning goals from another similar module. Our monolithic modular goal policy leverages that fact, by re-using subparts of the same network to learn different but similar modules and goals. This might explain why M-UVFA outperforms the multi-goal module-experts (MG-ME) policy architecture (Fig. 5). However, such monolithic policies are more prone to forgetting. Although this phenomenon is partially mitigated by the use of the absolute value of LP, it might still be an issue when the number of potential modules increases. To answer this problem, we could think of combining several M-UVFA policies for different subsets of modules.

A Monolithic IMGEP. Contrary to the vision shared by many multi-goal RL papers where agents must comply to the engineer desires (do goal 1, do goal 3 ...), our work takes the perspective of agents empowered by intrinsic motivations to choose their own goals (do whatever you want, but be curious.). This vision comes from the IMGEP framework which defines agents able to set their own parameterized problems to explore their surrounding and master their environment [START_REF] Forestier | Intrinsically motivated goal exploration processes with automatic curriculum learning[END_REF]. Contrary to previous IMGEP algorithms grounded on memory-based representations of policies, CURIOUS uses a single monolithic policy for all modules and goals (M-UVFA). Because it is memory-based, MACOB does not handle well the variety of initial states which limits its generalization capacity.

Active Learning using Learning Progress. Although LP-based module selection already brings significant advantages compared to random module selection, CURIOUS could benefit from a more advanced LP estimator. Our current estimator uses moving averages. It is fast and requires small amounts of memory, but could be more reactive to changes in true LP. This delay causes the agent to persevere on modules that are already mastered, or not to react quickly to newly learnable modules. These drawbacks could be mitigated with more advanced measures of competence or LP (e.g. approximate Bayesian methods like in [START_REF] Mathys | A bayesian foundation for individual learning under uncertainty[END_REF]).

Further Work

Hierarchical Extension. The idea of using a high-level policy to select goals for a lower-level policy was also studied in the field of hierarchical RL. Yet, while hierarchical RL agents choose their own subgoals, they usually do so to achieve higher-level goals imposed by the engineer [START_REF] Vezhnevets | Feudal networks for hierarchical reinforcement learning[END_REF][START_REF] Nachum | Data-efficient hierarchical reinforcement learning[END_REF][START_REF] Levy | Hierarchical reinforcement learning with hindsight[END_REF]. A natural extension of our work could be to replace our high-level MAB module selection policy by another CURI-OUS agent targeting self-generated higher-level goals, in a hierarchical manner.

Learning a Goal Selection Policy. In this work we provide the policy for goal sampling inside modules: sampling uniformly from a pre-defined (reachable) goal space. In the future, the agents could learn it autonomously using adaptations of existing algorithms such as SAGG-RIAC [START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF] or GOAL-GAN [START_REF] Held | Automatic goal generation for reinforcement learning agents[END_REF]. SAGG-RIAC enables to split recursively a wide continuous goal space and to focus on sub-regions where LP is higher, while GOAL-GAN proposes to generate goals of intermediate difficulty using a Generative Adversarial Network.

Learning Representations for Modules and Goals. Another assumption of our work, is that agents should already know a modular representation of goals and their modules. Although modules and goal spaces were hand-defined in the experiments of this paper, this was a scaffolding for the studies we presented. In a general IMGEP setting, autonomous agents must be able to construct their own set of modules and goal representations. The idea of autonomously learning modular goal representations from experience has been explored in [START_REF] Laversanne-Finot | Curiosity driven exploration of learned disentangled goal spaces[END_REF], using β-V AEs. This was used for goal exploration using a population-based IMGEP algorithm. Combining CURIOUS to this unsupervised learning of disentangled goal spaces is an interesting avenue to explore, in the quest of more autonomous learning agents.

Conclusion

This paper presents CURIOUS, a learning algorithm that combines an extension of UVFA to enable modular goal RL in a single policy (M-UVFA), and active mechanisms that bias the agent's attention towards modules where the absolute LP is maximized. This self-organizes distinct learning phases, some of which are shared across agents, others dependent on the agent experience. With this mechanism, agents spend less time on impossible modules and focus on achievable ones. It also helps to deal with forgetting, by refocusing learning on modules that are being forgotten because of model faults, changes in the environment or body changes (e.g. sensory failures). This mechanism is important for autonomous continual learning in the real world, where agents must set their own goals and might face goals with diverse levels of difficulty, some of which might be required to solve others later on.

Links. The environment, code and video of the CURIOUS agent are made available at https://github.com/ flowersteam/curious.

Figure 1 .

 1 Figure 1. The Modular Goal Fetch Arm environment. An intrinsically motivated agent can set its own (modular) goals (Reach, Push, Pick and Place, Stack), with multiple objects and distractors.

Figure 2 .

 2 Figure 2. Modular goal-parameterized actor-critic architecture (M-UVFA). Toy example with 2 modules, parameterized by g1 (2D) and g2 (1D) respectively. Here, the agent is attempting goal g1 in module M1, as specified by the one-hot module descriptor m d = 1, 0 . The actor (left) computes the action at. The critic (right) computes the Q-value.

Figure 3 .

 3 Figure 3. Schematic view of CURIOUS.

Results.

 Fig. 4(a) shows the evolution of the moduledependent competence measures as subjectively perceived by the agent, whileFig. 4(b) shows the evolution of the corresponding LP measures. Finally, Fig.4(c) shows the corresponding module selection probabilities p LP , a mixture of random selection with probability and active selection proportional to LP measures with probability 1 -.

Figure 4 .

 4 Figure 4. Visualization of a single run. a: Module-dependent subjective measures of competence for CURIOUS (1 run). b: Corresponding module-dependent subjective measures of absolute LP. c: Corresponding probabilities pLP to select modules to practice or to learn about.

Figure 6 .

 6 Figure 6. Impact of the intrinsic motivation towards LP for sensory failure recovery. Mean success rates over the four modules +/-std over 10 trials are plotted. The dashed line indicates the onset of the perturbation, while the dots indicate significance when testing CURIOUS against M-UVFA.

Table 1 .

 1 Classification of multi-goal approaches. Underlined: Algorithms internally generating goals (IMGEP), (*) using LP-based intrinsic motivations. Italic: Population-based algorithms (non-RL). Bold: Algorithms proposed in this paper.

	n GOALS, n POLICIES	n GOALS, 1 POLICY
	FLAT REPR.	

 Impact of the policy and value function architecture. Average success rates computed over achievable goals. Mean +/std over 10 trials are plotted, while dots indicate significance when testing M-UVFA against MG-ME.fulfill the constraints of all modules simultaneously, thus receives no reward. This motivates the use of a modular representation with separated modules. Comparing MG-ME and M-UVFA, we can see that the achievable goals are learned much faster in the multi-modular-goals approach (one, policy, ≈ 250 • 10 3 vs. ≈ 450 • 10 3 episodes). From now on, all experiments use the M-UVFA architecture.

		1.00					
	Success rate	0.25 0.50 0.75					M-UVFA MG-ME
							HER
		0 0.00	50	100	150 Episodes (x10 3) 200 250	300	350	400
	Figure 5. 4.2. Visualizing the Intrinsic Motivation towards
		Learning Progress		
	Experiments. This section aims at showing the inner
	working of CURIOUS's intrinsic motivation towards LP. Here
	we focus on a setting with four achievable modules (Reach,
	Push, Pick and Place, and Stack).		

Flowers Team, Inria and Ensta ParisTech, FR.

ISIR, Sorbonne Univ., Paris, FR.. Correspondence to: Cédric Colas <cedric.colas@inria.fr>.

CURIOUS stands for Continual Universal Reinforcement learning with Intrinsically mOtivated sUbstitutionS.

Acknowledgments

Cédric Colas is partly funded by the French Ministère des Armées -Direction Générale de lArmement. Olivier Sigaud is partly funded by the European Commission, within the DREAM project. The DREAM project has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement N o 640891.