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Khalid Karrouchi6*  and Smaail Radi1

Abstract 

Background: Nowadays, is emerging a new generation of highly promising inhibitors bearing the β-ketoenol func-
tionality. The present work relates to the first synthesis, the structure determination, the DFT studies and the use of a 
new biomolecule designed with a β-ketoenol group bounded to a pyrazolic moiety.

Result: A novel β-ketoenol-pyrazole has been synthesized, well characterized and its structure was confirmed by 
single crystal X-ray diffraction. The electron densities and the HOMO–LUMO gap have been calculated using the DFT 
method with BLYP, PW91, PWC functionals and 6-31G* basis set. An evaluation of the molecule stability is provided 
by a NBO analysis and the calculated Fukui and Parr functions have been used to locate the reactive electrophile and 
nucleophile centers in the molecule. The synthesized compound, screened for its in vitro antifungal behavior against 
the Fusarium oxysporum f.sp. albedinis FAO fungal strains, shows a moderate activity with an inhibition percentage 
of 46%. The product was also tested against three bacterial strains (Escherichia coli, Bacillus subtilis and Micrococcus 
luteus), but no significant effect was observed against these organisms.

Conclusions: Density functional calculations are used to evaluate the HOMO–LUMO energy gap, the molecular 
electrostatic potential and to provide a natural bond orbital analysis. The measured antimicrobial activities encourage 
us to continue searching for other structures, likely to be good antifungal candidates.

Keywords: β-Keto-enol-pyrazole, Single-crystal structure, NBO analysis, Reactivity indices, Fukui and Parr functions, 
Biological activity
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Introduction
Pyrazoles represent a class of compounds endowed 
with a great interest in many domains. They have been 
widely described in the literature as chelating ligands 
[1–6] and several works have been gathered in reviews 
[7–10]. According to numerous literature reports, 
these derivatives are also well-known as important 

heterocyclic biologically active compounds, acting as 
antitumor [11], antiviral [12], anti-inflammatory [13] 
anti-anxiety [14] or antimicrobial [15] agents.

On the other hand, β-ketoenols form an important 
class of compounds, with an interest both in medical 
and pharmaceutical fields, regarded as drugs against 
HIV [16–18], cancer [19–22] and influenza [23] but 
also as antioxidant [24] and anti-inflammatory [25] 
substances. The β-ketoenol derivatives play also an 
important role in the development of coordination 
chemistry, as they are able to easily form stable com-
plexes with most transition metals involving different 
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modes of coordination and different functionalities 
[26, 27].

The pyrazoles associated with β-ketoenol groups 
lead to compounds with promising properties in both 
medicinal and coordination chemistry fields. In our 
recent works, some heterocycles containing the β-keto-
enol functionality have been reported, that show sig-
nificant biological activity [28] as well as interesting 
coordination properties [29–33].

The intention of this work was to develop of a novel 
pyrazole-based compound bearing a β-ketoenol func-
tionality. Its crystal structure was solved from X-ray 
single crystal data and DFT studies were realized. The 
compound was also evaluated for its in  vitro antifun-
gal activity against Fusarium oxysporum f.sp. albedinis 
FAO fungal strains and against three bacterial strains 
(Escherichia coli, Bacillus subtilis and Micrococcus 
luteus).

Results and discussion
Chemistry
The target biomolecule based on β-ketoenol and pyra-
zole entities was prepared by a one-pot in  situ conden-
sation method which is similar to the procedures given 
in our previous works [28]. A solution of pyrazolic car-
boxylate was added to a suspension of sodium in tolu-
ene, then 1-(3-bromophenyl)ethanone was added at 0 °C 
(Scheme  1). After 2-days stirring at room temperature, 
the resulting precipitate has been treated and neutral-
ized. The extracted organic layer was concentrated, dried 
and purified by silica gel column chromatography (see 
“Experimental section” part for details).

The β-keto-enol form was confirmed by the 1H-NMR 
analysis of the compound whose spectrum (Additional 
file  1: Figure S1) shows a strong signal assigned to the 
=C–H group of the keto-enol form at 6.54 ppm, it rep-
resents 85% of the compound. The diketone form is also 
present in a maximal proportion of 15% and was detected 
by the weak signal at 4.54 ppm which was attributed to 
the  CH2 group of the diketone form. Traces of the keto 
form have also been detected in DEPTQ-135, which 
shows quaternary carbon atoms (C) and  CH2 group as 

very small negative signals (Additional file 1: Figures S2 
and S3). Good quality crystals of the major β-ketoenol 
structure were grown from methanolic solution by slow 
evaporation. The FT-IR spectrum confirms the formation 
of the ketoenol form with an enolic band at 1531  cm−1 
(Additional file 1: Figure S4). Also in good agreement, the 
mass spectrum shows a molecular peak at 320.97. (Addi-
tional file 1: Figure S5).

X‑ray crystal structure description
Single crystals of (Z)-3-(3-bromophenyl)-1-(1,5-dime-
thyl-1H-pyrazol-3-yl)-3-hydroxyprop-2-en-1-one (1) 
were analyzed by X-ray diffraction in order to determine 
the compound structure.

The main crystal data are given with principal refine-
ment parameters in Table  1 and the atom position and 
displacement parameters are listed in Table  2. The full 
CIF file deposited at the Cambridge Crystallographic 
Data Center (CCDC 1817604) is available at http://www.
ccdc.cam.ac.uk/conts /retri eving .html.

The asymmetric unit contains two independent mole-
cules. Each molecule is built with two rings, a bromophe-
nyl ring bonded (at meta position) to a dimethyl pyrazole 
ring through a central core unit –CO–C–COH– (Fig. 1). 
According to the root mean square deviations of the fit-
ted atoms in each group, ranging from 0.003 to 0.008, 
these three units are planar. The dihedral angles between 
the central core and the two rings, between 4.3 and 8.7°, 
indicate a slight deviation to flatness within each of the 
independent molecules. The two independent molecular 
units are almost coplanar, as shown by the angle of only 
1.96(3)° measured between their mean planes (calcu-
lated with all the non-H atoms). The bonds lengths and 
angles measured in the two molecules are very close and 
in range of values found in the literature for similar com-
pounds [34–38].

The molecular arrangement in the solid is such as one 
unit cell contains four molecules, two-by-two symme-
try-related. As a consequence of the co-planarity of the 
independent molecular units, the packing in the crystal 
results in a layered arrangement shown in Fig. 2. Within 
planes parallel to 

(

11̄1̄
)

 and separated by ~ 3.5  Å, each 

Scheme 1 Synthesis of the target compound 1 
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molecule is surrounded by six homologous units, this 
molecular organization is studied later in this work for 
evaluation of in-plane interactions. On the other hand, 
no π-stacking interaction must be expected because of 
relative position of the successive planes without ring 
overlapping.

DFT calculations
To investigate the molecular geometry and the electron 
distribution in the solid, density functional theory (DFT) 

calculations were carried out using the program  Dmol3 at 
three DFT levels: with PW91 or BLYP functional within 
the GGA (generalized gradient approximation) and with 
PWC functional within the LDA (local density approxi-
mation) [39–41]. Double numerical plus polarization 
DNP basis sets were taken in all calculations.

Full geometry optimization (LDA-PWC) by minimiza-
tion of the total energy was first carried out, both start-
ing from experimental geometry and from three planar 
geometries built by rotation of the rings around the C1–
C9 and C3–C4 bonds (Fig. 3).

The total energies calculated indicate a lower stability, 
by 0.16 and 0.17 eV, for the M2 and M3 models compared 
to experimental geometry. This potentially results from 

Table 1 Crystal data and  structure refinement for   C14  H13 
Br  N2  O2

CCDC deposit number 1817604

Formula, M, Z C14  H13 Br  N2  O2, 321.17, 4

Space group Triclinic, P1̄

Lattice a = 11.1458(7), b = 11.6337(3), c = 12.7221(9) Å,

α = 112.075(2), β = 105.637(2), γ = 103.793(2)

θ range 1.88 to 29.09°

Reflections 18,366 collected/6297 unique [R(int) = 0.0414]

Crystal colorless, 0.20 × 0.13 × 0.12 mm

Data/parameters 6297/357

R indices [I > 2σ(I)] R1 = 0.0451, wR2 = 0.0968

R indices (all data) R1 = 0.1012, wR2 = 0.1068

Δρ Fourier residuals 0.55/−0.33 e.Å−3

Table 2 Atomic coordinates (× 104) and equivalent isotropic displacement parameters (Å2 × 103) for  C14  H13 Br  N2  O2.  Ueq 
is defined as 1/3 of the trace of the orthogonalized  Uij tensor

Molecule 1 Molecule 2

x y z Ueq x y z Ueq

Br 56(1) 6869(1) 227(1) 66(1) 1104(1) 12,097(1) − 3397(1) 77(1)

O1 − 4056(2) 6644(2) − 3183(2) 56(1) 4307(2) 11,637(2) 182(2) 55(1)

O2 − 6166(2) 6129(2) − 4913(2) 55(1) 5549(2) 11,122(2) 1789(2) 57(1)

N1 − 10,238(2) 3242(2) − 5973(2) 38(1) 3715(3) 8399(2) 3102(2) 44(1)

N2 − 8973(2) 3673(3) − 5150(2) 40(1) 3306(3) 8867(3) 2305(2) 44(1)

C1 − 4761(3) 5719(3) − 3007(3) 40(1) 3195(3) 10,766(3) 28(3) 42(1)

C2 − 6118(3) 5006(3) − 3717(3) 42(1) 3209(4) 10,106(3) 720(3) 44(1)

C3 − 6786(3) 5265(3) − 4677(3) 42(1) 4436(3) 10,317(3) 1601(3) 42(1)

C4 − 8234(3) 4514(3) − 5421(3) 37(1) 4448(3) 9595(3) 2341(3) 40(1)

C5 − 9038(3) 4600(3) − 6420(3) 43(1) 5559(3) 9567(3) 3141(3) 46(1)

C6 − 10,317(3) 3787(3) − 6759(3) 39(1) 5077(3) 8798(3) 3630(3) 39(1)

C7 − 11,613(3) 3477(4) − 7736(3) 53(1) 5792(4) 8413(3) 4543(3) 55(1)

C8 − 11,320(3) 2284(3) − 5949(3) 50(1) 2700(3) 7551(4) 3293(3) 62(1)

C9 − 3978(3) 5493(3) − 2014(3) 41(1) 1964(3) 10,554(3) − 957(3) 42(1)

C10 − 4596(3) 4618(3) − 1630(3) 53(1) 700(3) 9632(3) − 1272(3) 51(1)

C11 − 3823(4) 4409(4) − 715(3) 61(1) − 430(4) 9417(4) − 2231(4) 61(1)

C12 − 2436(4) 5076(4) − 175(3) 59(1) − 292(4) 10,156(4) − 2853(3) 65(1)

C13 − 1844(3) 5938(3) − 548(3) 47(1) 950(4) 11,076(3) − 2530(3) 51(1)

C14 − 2599(3) 6146(3) − 1451(3) 43(1) 2073(3) 11,293(3) − 1593(3) 46(1)

Fig. 1 Ortep molecular representation of  C14  H13 Br  N2  O2 (30% 
probability ellipsoids)



Page 4 of 11Tighadouini et al. Chemistry Central Journal          (2018) 12:122 

the occurrence of some N···O repulsive interactions in 
these configurations. Instead, the M1 model is almost 
as stable (only differing by 0.001 eV) as the experimental 
molecule in which the central core and the rings are rig-
orously coplanar (dihedral angles lower than 2°).

Trying to evaluate intermolecular interactions within 
the solid, geometry was optimized for a large molecular 
fragment consisting of a molecule and its six surround-
ing neighbors. The three dimensional contour of the total 
density, drawn at the 0.04e−/Å3 isolevel and mapped with 
the electron deformation density, has been represented 
in Fig. 4. The deformation density, computed as the total 
electron density with the density of isolated atoms sub-
tracted, points outs the electron localization as positive 
regions and the electron losses as negative regions. Look-
ing at its representation, one can conclude that no strong 
intermolecular interaction exists in this compound. Nev-
ertheless, the positive domains (yellow zones in Fig.  4) 
indicate the occurrence of an interaction between the 
bromine atom of a molecule and the nitrogen N2 atom of 
a neighboring molecule.

As expected, the periodic calculations in the solid con-
firm the absence of any bonding density between the 
molecular planes separated by 3.5 Å. Selected bonds and 
angles given in Table 3 illustrate the structural, and rather 
weak, packing constraints onto the molecular geom-
etry. It is interesting to remark that the dihedral angle 
between mean planes of the two independent molecules 
in the unit cell is about 4° in the optimized structures, a 

value which is nearly twice the angle in the experimen-
tal crystal. On the other hand, the experimental torsion 
angles C4–C3–C2–C1 and C3–C2–C1–C9, which reflect 
the molecule flatness, range from 176.8 to 179.6° and do 
not differ much from the values in optimized molecular 
(177.8–179.9°) and 3D periodic (175.6–179.8°) models.

Within the overall context of the FMO theory, the ener-
getic level and the form of the frontier orbitals are rel-
evant parameters for analysis of the molecular reactivity 
[42]. Regardless of the DFT level of theory, an HOMO–
LUMO energy separation of about 2.3 eV has been calcu-
lated with  DMol3 for the molecule (2.7 eV in the crystal), 
this value should be compared with the gap of 3.46  eV 
measured experimentally from UV experiments (absorp-
tion peak at 358 nm) (Additional file 1: Figure S6). Both 
orbitals display a π-type character mainly localized on 
the central part of the molecule, which is bonding at the 
HOMO and antibonding at the LUMO levels.

Fukui and Parr functional analysis
Calculated electron deformation density is strongly 
related to molecular electrostatic potential and for this 
reason may be equally used to discuss the reactivity [43]. 
The latter is also seen as a useful tool in evaluation of the 
regiochemistry, especially in reactions that are domi-
nated by electrostatic effects. The electrophilic f(−) and 
nucleophilic f(+) Fukui functions, whose extreme values 
reflect the ability for an electrophilic or a nucleophilic 
attack, are defined as electron density derivatives with 

Fig. 2 Molecular packing in the triclinic lattice enhancing the peculiar layered arrangement of molecules in planes parallel to ( 11̄1̄)
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respect to the number of electrons at a constant poten-
tial. They can give a measure of the local reactivity and 
they have been considered suitable to rationalize the regi-
oselectivity [44–47].

Though, it has been stated that regioselectivity in polar 
reactions should be predictable alternately using the local 
electrophilicity [48]. Then electrophilic and nucleophilic 
Parr functions Pk

+ and Pk
− are powerful tools to study the 

molecular reactivity and they are well adapted to localize 

Exp M1

M3 M2
Fig. 3 Experimental molecule and hypothetical models built by changing the rings orientation

Fig. 4 Representation of the 3D isosurface electron density (volumic contour) mapped with the deformation density. Positive value (yellow 
domains) indicate electron localization
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the electrophile and nucleophile centers in an organic 
molecule [49, 50]. They have been computed from the 
atomic spin density (difference between α and β electron 
densities) for the radical anion and the radical cation hav-
ing the geometry optimized for the neutral molecule.

The spatial distribution of the atomic spin density 
mapped on the electrostatic potential provides a graphi-
cal view of the localization of electrophilic and nucleo-
philic centers (Fig.  5). In the present case, the Parr 
functions quite well validate the results predicted by 
Fukui functions with an electrophile center at C2 atom 
(and at a less extent at N2 and C10 atoms) while the 
nucleophile center is situated at the central core of the 
molecule mainly at O2 atom, most likely to undergo a 
nucleophilic attack.

The global electrophilicity index ω, expressed as μ2/2η 
[51], takes here the value of 2.28. It has been obtained 
from the electronic chemical potential μ (μ = 1/2 ×  (
EHOMO + ELUMO) = –4.37  eV) and the chemical hard-
ness η (η = ELUMO − EHOMO = 4.17  eV), both calculated 
with G03W code from the one-electron energies of the 
frontier orbitals. The maximal charge transfer (− μ/η) is 
found close to unity and the nucleophilicity index N close 
to 3. The latter is calculated comparatively to TCE taken 
as a reference from N = EHOMO − EHOMO(TCE) where 

 EHOMO(TCE) = 9.4083 eV is the energy calculated in the 
same conditions for tetracyanoethylene. Based on these 
calculated theoretical reactivity indices, the molecule is 
characterized with a moderate nucleophile and rather 
good electrophile character.

Natural bond orbital (NBO) analysis
The NBO analysis is a helpful way to study the interac-
tions among bonds and to examine the charge transfer 
resulting of conjugative interactions in a molecular sys-
tem [52, 53]. The hyperconjugative interaction energy 
is deduced from a second-order perturbation approach 
[53]. Considering a donor (i) and an acceptor (j), the 
stabilization energy E(2) associated with delocalization 
is estimated as qi × F(i, j)2/(εi − εj), where qi is the donor 
orbital occupancy, εi and εj are diagonal elements (orbital 
energies) and F(i, j) is the off-diagonal NBO Fock matrix 
element. The larger the stabilization energy, the stronger 
the donor-to-acceptor interaction, i.e. more important is 
the electron-donor trend towards acceptor and greater 
is the extent of conjugation on the whole system. Table 4 
summarizes the highest interactions between bond-
ing and antibonding (Lewis/non-Lewis) natural orbitals 
as for example between the π C1–C2 donor and the π* 
O2–C3 acceptor with a stabilizing energy of 32.54  kcal.

Table 3 Selected bond lengths [Å] and angles [°] for  C14  H13 Br  N2  O2

Experimental (bolditalic) values in the crystal are compared with values calculated (italic) in molecular or 3D models

Mole 1/mole 2 PW91 BLYP PWC Solid PWC Solid BLYP Solid PW91

Br–C13 1.900(3)/1.910(3) 1.928 1.955 1.899 1.913–1.916 1.950–1.957 1.928–1.935

O2–C3 1.260(4)/1.262(3) 1.275 1.276 1.280 1.282–1.283 1.281–1.280 1.280–1.277

N1–N2 1.345(3)/1.348(3) 1.344 1.358 1.326 1.328–1.330 1.353–1.357 1.341–1.345

N1–C6 1.365(4)/1.361(4) 1.378 1.386 1.365 1.364–1.365 1.379–1.381 1.373–1.375

N1–C8 1.450(4)/1.452(4) 1.451 1.464 1.431 1.434–1.435 1.461–1.463 1.449–1.451

N2–C4 1.333(4)/1.329(4) 1.353 1.336 1.338 1.342–1.341 1.356–1.354 1.351–1.350

O1–C1 1.304(4)/1.312(4) 1.328 1.343 1.297 1.303–1.301 1.342–1.342 1.328–1.328

N2–N1–C6 112.8(2)/113.5(2) 112.3 112.7 111.3 113.2–113.1 112.9–112.7 113.1–113.2

C4–N2–N1 104.3(2)/103.8(2) 104.7 104.7 104.8 104.9–105.0 104.6–104.8 104.8–104.7

mol1–mol2 angle 1.96 4.4 3.5 4.2

Fig. 5 Atomic spin density spatial distribution mapped onto the electrostatic potential showing the electrophilic (left image) and nucleophilic 
(right image) centers as red zones
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mol−1. The lone pair (LP) orbitals are also seen to have 
important stabilizing contributions as illustrated with 
interaction of the lone pair at O1 atom with the π* C1–
C2 acceptor (44.40 kcal.mol−1).

Biological activity
The in  vitro antibacterial and antifungal activities of 
compound 1 were tested by the agar diffusion technique 
[54–56] using fungal strains (Fusarium oxysporum f.sp. 
albedinis FAO) and bacterial strains (Escherichia coli, 
Bacillus subtilis, and Micrococcus luteus). Tests were also 
performed for comparison on several compounds already 
prepared in our former works (Fig. 6).

Results of the tests carried out towards bacterial strains 
for the new compound 1 and also for the other prod-
ucts 2–6 revealed no significant effect against these 
organisms.

On the contrary, the structure 1 led to a moderate 
inhibiting antifungal activity of 46% occurring at 500 μL 
of sample. This antifungal effect remains rather modest 
with regard to the benomyl fungicide (94%) as reported 
in Table 5.

Generally, the results obtained for this new struc-
ture are in agreement with activities of the similar com-
pounds 2–4 [28]. The inhibiting percentage of 46% 
found for 1 is in the range of values obtained for com-
pounds 2–4, between 36 and 54%. Instead, the antifungal 

performances found for structures 5 and 6, also belong-
ing to the same family, reach values very close to the ben-
omyl fungicide taken as reference. Such differences in the 
biological activity are obviously dependent on the radi-
cal group attached to the pyrazol ketoenol fragment. The 
best inhibiting activities are obtained with a methyl or a 
phenyl group while the presence of substituted phenyl 
groups (m-bromophenyl, p-methyl phenyl or p-metoxy 
phenyl) provide lower antifungal properties. These find-
ings push us to dig deeper to find much more interesting 
molecules. Of course, various structural modifications to 
bring to these compounds as antifungal candidates are 
currently in progress.

Experimental section
General information
All solvents and other chemicals (purity > 99.5%, Aldrich, 
Saint-Louis, MO, USA) of analytical grade were used 
without further purification. An Xcalibur four circle CCD 
diffractometer (Oxford Diffraction, Abingdon, Oxford-
shire, England) was used to collect the X-ray intensities 
diffracted by a parallelepiped colorless selected crystal 
(CNRS, ICGM, France). Elemental analyses were per-
formed by the Microanalysis Centre Service (CNRST, 
Rabat, Morocco). Melting points were measured using 
a Büchi 510  m.p. apparatus (LCAE, Oujda, Morocco). 
1H and 13C-NMR spectra were recorded using an AC 

Table 4 Second-order perturbation analysis interactions in  C14  H13 Br  N2  O2

E(2) is the hyper conjugative interaction energy, εi − εj the energy difference between i and j NBO orbitals and F(i, j) the Fock matrix element between i and j NBO 
orbital

LP lone pair

Donor (i) Acceptor (j) E(2) εi− εj F(i, j)

NBO type occupation NBO type occupation kcal.mol−1 a.u. a.u.

O1 LP 1.79161 C1–C2 π* 0.25875 44.40 0.36 0.114

N1 LP 1.52345 C5–C6 π* 0.32998 38.56 0.31 0.101

C1–C2 π 1.76788 O2–C3 π* 0.32146 32.54 0.28 0.087

N1 LP 1.52345 N2–C4 π* 0.46366 31.65 0.28 0.084

C5–C6 π 1.76975 N2–C4 π* 0.46366 29.85 0.27 0.085

C2–H2 σ 1.96995 C13–C14 π* 0.35711 22.20 4.36 0.304

C11–C12 π 1.65057 C9–C10 π* 0.37373 21.06 0.29 0.070

C9–C10 π 1.62726 C11–C12 π* 0.32589 20.12 0.28 0.068

C13–C14 σ 1.67945 C11–C12 π* 0.32589 20.03 0.30 0.070

C13–C14 σ 1.67945 C9–C10 π* 0.37373 17.75 0.30 0.067

O2 LP 1.90100 C3–C4 σ* 0.05429 16.30 0.75 0.100

N2–C4 π 1.83133 O2–C3 π* 0.32146 15.55 0.31 0.064

C9–C10 π 1.62726 C1–C2 π* 0.25875 14.87 0.29 0.060

N2–C4 π 1.83133 C5–C6 π* 0.32998 13.19 0.34 0.062

O2 LP 1.90100 O1–HO1 σ* 0.03204 12.68 1.12 0.108

O2 LP 1.90100 C2–C3 σ* 0.04207 12.25 0.80 0.090

C1–C2 π 1.76788 C9–C10 π* 0.37373 9.46 0.29 0.049
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300 spectrometer (CNRST) (Bruker, LLN, Belgium) 
(300 MHz for 1H and 75.47 MHz for 13C spectra). A JMS 
DX-300 mass spectrometer (JEOL, Rabat, Morocco) was 
used for the determination of molecular weights. Infra-
red (IR) spectra were recorded on a Shimadzu infrared 
spectrophotometer (LCAE, Oujda, Morocco) using the 
KBr disc technique. Geometry optimizations and DFT 
calculations were carried out using  Dmol3 and Gaussian 
G03W programs (CNRS, ICGM, France).

Procedure for the synthesis of pyrazole‑ketoenol
To a solution of toluene (20  mL) containing metallic 
sodium (15.21  mmol) was added the pyrazolic carboxy-
late (12.01  mmol) solubilized in toluene (20  mL); then 
3-bromophenyl methyl ketone (12.01  mmol) in toluene 
(10  mL) was added at 0  °C. The resulting mixture was 
stirred at room temperature for 2 days. The resulting pre-
cipitate was filtered, washed, dissolved in water, and neu-
tralized with acetic acid to pH 5. The  CH2Cl2 extracted 
fraction was dried over anhydrous sodium sulfate and 
concentrated to dry. The final product, as a white solid, 
was obtained after purification through silica gel col-
umn chromatography using  CH2Cl2/MeOH in 28% yield. 
The β-ketoenol form was recrystallized from methanol 
(95%) to obtain the (Z)-3-(3-bromophenyl)-1-(1,5-dime-
thyl-1H-pyrazol-3-yl)-3-hydroxyprop-2-en-1-one com-
pound which was confirmed by FT-IR, 1H-NMR, 13C 
NMR, and mass spectroscopy. yield: 28%; m.p. 124  °C; 
Rf = 0.52  (CH2Cl2/MeOH 9/1)/silica. IR (KBr,  cm−1): ν 
(OH) = 3431; ν (C=O) = 1676; ν (enolic C=C) = 1531; 
1H NMR  [CDCl3, δ(ppm)]: 2.24 (s, 3H, Pz-CH3); 3.78 
(s, 3H,  CH3–N); 4.54 (s, 0.1H, keto,  CH2); 6.54 (s, 0.9H, 
enol, C–H); 7.39 (m, 3H, Ar-2H, Pz–H); 7.91(m, 2H, 
Ar–H). 13C NMR  [CDCl3, δ(ppm)]: 11.29 (1C, Pz-CH3); 
36.88 (1C,  CH3–N); 49.39 (1C, keto  CH2); 93.24 (1C, 
enol C–H); 106.14 (1C, =CH, Pz); 127.01 (1C, Ar–C3); 
128.53 (1C, Ar–C6); 132.04 (1C, Ar–C5); 133.31(1C, 
Ar–C2); 134.97 (1C, Ar–C1); 140.37 (1C, Ar–C4); 147.72 
(2C, PzN=C, PzN–C=); 181.99 (1C, C–OH); 183.19 (1C, 
C=O). Anal. Calcd. for  C14H13BrN2O2: C 52.36, H 4.08, N 
8.72. Found: C 52.25, H 4.12, N 8.65. m/z: 320.97.

X‑ray data collection and treatment
Fairly regularly shaped crystals were selected using a 
stereomicroscope equipped with a polarizing filter. Dif-
fracted intensities were collected at room temperature 
within the complete diffraction sphere on the four-circle 
diffractometer (Mo-Kα radiation, λ = 0.71073 Å) and data 

Fig. 6 Molecular structures of compounds 1–6 

Table 5 Values of  antifungal activity of  the  pyrazole-keto 
enol compounds against Fusarium oxysporum f.sp.

Compounds Volume 
withdrawn 
(µL)

Diameter of the strain 
in the presence 
of the drug (cm)

Inhibition (%)

1 50 5 0

200 3.8 24

500 2.7 46

2 50 5 0

200 3.5 30

500 2.3 54

3 50 5 0

200 3.6 28

500 2.5 50

4 50 5 0

200 3.8 24

500 3.2 36

5 50 1.2 76

200 0.9 82

500 0.5 90

6 50 2.0 60

200 1.3 74

500 0.2 96

Benomyl 50 2.3 54

200 1.1 78

500 0.3 94
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reduction was carried out using CrysAlis software [57]. 
The lattice dimensions and corresponding standard devi-
ations were determined by least-squares method from 
the entire data set of reflections. Full-matrix least-squares 
refinements on  F2 used the complete data set of 18,366 
collected reflections (including symmetry equivalent and 
redundant) of which 6297 are unique and 3027 observed 
according to the criterion I > 2σ(I). The diffracted intensi-
ties were corrected for Lorentz and polarization effects. 
The structure solution and subsequent refinements were 
performed using SHELX-2013 program packages [58]. 
Atoms positions and anisotropic displacement parame-
ters were refined for all non-hydrogen atoms. The hydro-
gen atoms at the keto enol OH group were detected in 
the final Fourier difference and were treated as riding, 
following the HFIX/AFIX instructions, in the final refine-
ment (even if they could have been freely refined). The 
hydrogen atoms have been considered with an isotropic 
displacement parameter equal to 1.2 times (1.5 for ter-
minal –CH3) the Ueq of the parent atom. Molecular pic-
tures are drawn with ORTEP-3 for windows [59].

Full CIF file can be obtained free of charge via http://
www.ccdc.cam.ac.uk/conts /retri eving .html (or from the 
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: 
+44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Computation details
Calculations were performed within the framework of 
the density functional theory DFT using  DMol3 module 
[60, 61] provided in Materials Studio software. A DNP 
basis set (Double Numerical with extra Polarization func-
tion on all atoms) was used in these calculations, its size 
is equivalent to the Gaussian 6-31G*. All-electrons geom-
etry optimizations were performed at fine quality level, 
for both the molecule and the periodic crystal packing, 
with LDA-PWC, GGA-PW91 and GGA-BLYP function-
als. The Fukui and Parr functions have been computed to 
give a description of the global reactivity. Gaussian 03 W 
optimizations using the Berny analytical gradient method 
with B3LYP functional and 6.31G+(d,p) basis set have 
been done prior to calculate the reactivity indices and to 
perform the NBO analysis [53].

Anti‑fungal tests
In vitro antibacterial and antifungal activities were tested 
by the agar diffusion technique (ADT) [54, 55]. ADT has 
been investigated using susceptibility test of NCCLS 
(National Committee for Clinical Laboratory Standards) 
recommended by the WHO and the French standard 
NF-U-47-107 AFNOR 2004. The agar media were inoc-
ulated with test organisms and a solution of the tested 
compound in DMSO/EtOH (50/50) was added to differ-
ent concentrations in the culture media. The growth was 

followed by counting the bacteria or the yeast colonies 
and by measuring the mycelium diameter. The inhibition 
percentage of a molecule is equal to the ratio of the colo-
nies number (or the mycelium diameter of the culture) 
in the presence of a dose of the tested compound over 
the colonies number (or the mycelium diameter) of the 
reference culture, multiplied by 100. The minimum inhi-
bition concentration (MIC) is the least dose of the com-
pound which causes an inhibition of the micro-organism 
growth. Calculation of the concentration  IC50 was done 
using the same bacterial inocula mentioned above with 
decreasing concentration of the tested products. The  Do 
value was measured for each culture at 625 nm. The inhi-
bition percentage (%) is expressed as (D° − Dx)/D° × 100 
where D° is the diameter of the mycelial growth of the 
culture witness and Dx the diameter of the mycelial 
growth in the presence of the product to be tested.

Conclusion
A novel pyrazole-β-ketoenol compound has been syn-
thesized, it has been characterized by NMR and IR 
techniques and its XRD single crystal structure was 
determined. Density functional calculations are used to 
evaluate the HOMO–LUMO energy gap, the molecular 
electrostatic potential (MEP) and to provide a natural 
bond orbital (NBO) analysis. From reactivity indices, the 
present molecule displays a moderate electrophile char-
acter. Computed Parr functions quite well agree with 
Fukui functions, indicating the position of the nucleo-
phile and electrophile centers in the molecule. The title 
compound has been tested against Fusarium oxysporum 
f.sp. albedinis FAO fungal strains and three bacterial 
strains (Escherichia coli, Bacillus subtilis, and Micrococ-
cus luteus). The measured activities encourage us to con-
tinue searching for other structures, likely to be good 
antifungal candidates.

Additional file
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spectrum of 1.
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