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Abstract. We translate the usual class of partial/primitive recursive functions to a pointer5

recursion framework, accessing actual input values via a pointer reading unit-cost function.6

These pointer recursive functions classes are proven equivalent to the usual partial/primitive7

recursive functions. Complexity-wise, this framework captures in a streamlined way most of8

the relevant sub-polynomial classes. Pointer recursion with the safe/normal tiering discipline9

of Bellantoni and Cook corresponds to polylogtime computation. We introduce a new,10

non-size increasing tiering discipline, called tropical tiering. Tropical tiering and pointer11

recursion, used with some of the most common recursion schemes, capture the classes logspace,12

logspace/polylogtime, ptime, and NC. Finally, in a fashion reminiscent of the safe recursive13

functions, tropical tiering is expressed directly in the syntax of the function algebras, yielding14

the tropical recursive function algebras.15

Introduction16

Characterizing complexity classes without explicit reference to the computational model17

used for defining these classes, and without explicit bounds on the resources allowed for the18

calculus, has been a long term goal of several lines of research in computer science. One19

rather successful such line of research is recursion theory. The foundational work here is the20

result of Cobham [7], who gave a characterization of polynomial time computable functions21

in terms of bounded recursion on notations - where, however, an explicit polynomial bound22

is used in the recursion scheme. Later on, Leivant [11] refined this approach with the notion23

of tiered recursion: explicit bounds are no longer needed in his recursion schemes. Instead,24

function arguments are annotated with a static, numeric denotation, a tier, and a tiering25

discipline is imposed upon the recursion scheme to enforce a polynomial time computation26

bound. A third important step in this line of research is the work of Bellantoni and Cook [2],27

whose safe recursion scheme uses only syntactical constraints akin to the use of only two tier28

values, to characterize, again, the class of polynomial time functions.29

Cobham’s approach has also later on been fruitfully extended to other, important com-30

plexity classes. Results relevant to our present work, using explicitly bounded recursion, are31

those of Lind [15] for logarithmic space, and Allen [1] and Clote [6] for small parallel classes.32

Later on, Bellantoni and Cook’s purely syntactical approach proved also useful for33

characterizing other complexity classes. Leivant and Marion [14, 13] used a predicative34

version of the safe recursion scheme to characterize alternating complexity classes, while35

Bloch [3], Bonfante et al [4] and Kuroda[10], gave characterizations of small, polylogtime,36

parallel complexity classes. An important feature of these results is that they use, either37

explicitly or not, a tree-recursion on the input. This tree-recursion is implicitly obtained38

in Bloch’s work by the use of an extended set of basic functions, allowing for a dichotomy39

recursion on the input string, while it is made explicit in the recursion scheme in the two40

latter works. As a consequence, these characterizations all rely on the use of non-trivial basic41

functions, and non-trivial data structures. Moreover, the use of distinct basic function sets42

and data structures make it harder to express these charcterizations in a uniform framework.43

Among all these previous works on sub-polynomial complexity classes, an identification44

is assumed between the argument of the functions of the algebra, on one hand, and the45

computation input on the other hand: an alternating, logspace computation on input x46

is denoted by a recursive function with argument x. While this seems very natural for47

complexity classes above linear time, it actually yields a fair amount of technical subtleties48
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and difficulties for sub-linear complexity classes. Indeed, following Chandra et al. [5] seminal49

paper, sub-polynomial complexity classes need to be defined with a proper, subtler model50

than the one-tape Turing machine: the random access Turing machine (RATM), where51

computation input is accessed via a unit-cost pointer reading instruction. RATM input is52

thus accessed via a read-only instruction, and left untouched during the computation - a53

feature quite different to that of a recursive function argument. Our proposal here is to use54

a similar construct for reading the input in the setting of recursive functions: our functions55

will take as input pointers on the computation input, and one-bit pointer reading will be56

assumed to have unit cost. Actual computation input are thus implicit in our function57

algebras: the fuel of the computational machinery is only pointer arithmetics. This proposal58

takes inspiration partially from the Rational Bitwise Equations of [4].59

Following this basic idea, we then introduce a new tiering discipline, called tropical60

tiering, to enforce a non-size increasing behavior on our recursive functions, with some61

inspirations taken from previous works of M. Hofmann [8, 9]. Tropical tiering induces a62

polynomial interpretation in the tropical ring of polynomials (hence its name), and yields63

a characterization of logarithmic space. The use of different, classical recursion schemes64

yield characterizations of other, sub-polynomial complexity classes such as polylogtime, NC,65

and the full polynomial time class. Following the approach of Bellantoni and Cook, we66

furthermore embed the tiering discipline directly in the syntax, with only finitely many67

different tier values - four tier values in our case, instead of only two tier values for the68

safe recursive functions, and provide purely syntactical characterizations of these complexity69

classes in a unified, simple framework. Compared to previous works, our framework uses a70

unique, and rather minimal set of unit-cost basic functions, computing indeed basic tasks,71

and a unique and also simple data structure. Furthermore, while the syntax of the tropical72

composition and recursion schemes may appear overwhelming at first sight, it has the nice73

feature, shared with the safe recursion functions of [2], of only adding a fine layer of syntactic74

sugar over the usual composition and primitive recursion schemes. Removing this sugar75

allows to retrieve the classical schemes. In that sense, we claim our approach to be simpler76

and than the previous ones of [3, 4, 10] .77

The paper is organized as follows. Section 1 introduces the notations, and the framework78

of pointer recursion. Section 2 applies this framework to primitive recursion. Pointer79

partial/primitive recursive functions are proven to coincide with their classical counterparts80

in Theorem 2. Section 3 applies this framework to safe recursion on notations. Pointer81

safe recursive functions are proven to coincide with polylogtime computable functions in82

Theorem 3. Tropical tiering is defined in Section 4. Proposition 4 establishes the tropical83

interpretation induced by tropical tiering. Tropical recursive functions are then introduced in84

Subsection 4.3. Section 5 gives a sub-algebra of the former, capturing logspace/polylogtime85

computable functions in Theorem 9. Finally, Section 6 explores tropical recursion with86

substitutions, and provides a characterization of P in Theorem 11 and of NC in Theorem 13.87

1 Recursion88

1.1 Notations, and Recursion on Notations89

Data structures considered in our paper are finite words over a finite alphabet. For the sake90

of simplicity, we consider the finite, boolean alphabet {0,1}. The set of finite words over91

{0,1} is denoted as {0,1}∗.92

Finite words over {0,1} are denoted with overlined variables names, as in x. Single93

values in {0,1} are denoted as plain variables names, as in x. The empty word is denoted94
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by ε, while the dot symbol "." denotes the concatenation of two words as in a.x, the finite95

word obtained by adding an a in front of the word x. Finally, finite arrays of boolean words96

are denoted with bold variable names, as in x = (x1, · · · , xn). When defining schemes, we97

will often omit the length of the arrays at hand, when clear from context, and use bold98

variable names to simplify notations. Similarly, for mutual recursion schemes, finite arrays of99

mutually recursive functions are denoted by a single bold function name. In this case, the100

width of this function name is the size of the array of the mutually recursive functions.101

Natural numbers are identified with finite words over {0,1} via the usual binary encoding.102

Yet, in most of our function algebras, recursion is not performed on the numerical value of an103

integer, as in classical primitive recursion, but rather on its boolean encoding, that is, on the104

finite word over {0,1} identified with it: this approach is denoted as recursion on notations.105

1.2 Turing Machines with Random Access106

When considering sub-polynomial complexity class, classical Turing Machines often fail to107

provide a suitable cost model. A crucial example is the class DLOGTIME: in logarithmic108

time, a classical Turing machine fails to read any further than the first k. log(n) input bits.109

In order to provide a suitable time complexity measure for sub-polynomial complexity classes,110

Chandra et al [5] introduced the Turing Machine with Random Access (RATM), whose111

definition follows.112

I Definition 1. RATM113

A Turing Machine with Random Access (RATM) is a Turing machine with no input head,114

one (or several) working tapes and a special pointer tape, of logarithmic size, over a binary115

alphabet. The Machine has a special Read state such that, when the binary number on the116

pointer tape is k, the transition from the Read state consists in writing the kth input symbol117

on the (first) working tape.118

1.3 Recursion on Pointers119

In usual recursion theory, a function computes a value on its input, which is given explicitly120

as an argument. This, again, is the case in classical primitive recursion. While this is suitable121

for describing explicit computation on the input, as, for instance for single tape Turing122

Machines, this is not so for describing input-read-only computation models, as, for instance,123

RATMs. In order to propose a suitable recursion framework for input-read-only computation,124

we propose the following pointer recursion scheme, whose underlying idea is pretty similar to125

that of the RATM.126

As above, recursion data is given by finite, binary words, and the usual recursion on127

notation techniques on these recursion data apply. The difference lies in the way the actual128

computation input is accessed: in our framework, we distinguish two notions, the computation129

input, and the function input: the former denotes the input of the RATM, while the latter130

denotes the input in the function algebra. For classical primitive recursive functions, the131

two coincide, up to the encoding of integer into binary strings. In our case, we assume an132

explicit encoding of the former into the latter, given by the two following constructs.133

Let w = w1. · · · .wn ∈ {0,1}∗ be a computation input. To w, we associate two constructs,134

the Offset: a finite word over {0,1}, encoding in binary the length n of w, and135

the Read construct, a 1-ary function, such that, for any binary encoding i of an integer136

0 < i ≤ n, Read(i) = wi, and, for any other value v, Read(v) = ε.137



XX:4 Pointers in Recursion: Exploring the Tropics

Then, for a given computation input w, we fix accordingly the semantics of the Read and138

Offset constructs as above, and a Pointer Recursive function over w is evaluated with sole139

input the Offset, accessing computation input bits via the Read construct. For instance,140

under these conventions, Read(hd(Offset)) outputs the first bit of the computational input141

w. In some sense, the two constructs depend on w, and can be understood as functions on w.142

However, in our approach, it is important to forbid w from appearing explicitly as a function143

argument in the syntax of the function algebras we will define, and from playing any role in144

the composition and recursion schemes. Since w plays no role at the syntactical level - its145

only role is at the semantical level- we chose to remove it completely w from the syntactical146

definition of our functions algebras.147

2 Pointers Primitive Recursion148

Let us first detail our pointer recursive framework for the classical case of primitive recursion149

on notations.150

2.0.0.1 Basic pointer functions.151

Basic pointer functions are the following kind of functions:152

1. Functions manipulating finite words over {0,1}. For any a ∈ {0,1}, x ∈ {0,1}∗,

hd(a.x) = a tl(a.x) = x s0(x) = 0.x
hd(ε) = ε tl(ε) = ε s1(x) = 1.x

2. Projections. For any n ∈ N, 1 ≤ i ≤ n,

Prn
i (x1, · · · , xn) = xi

3. and, finally, the Offset and Read constructs, as defined above.153

2.0.0.2 Composition.154

Given functions g, and h1, · · · , hn, we define f by composition as

f(x) = g(h1(x), · · · , hn(x)).

155

2.0.0.3 Primitive Recursion on Notations.156

Let ⊥ denote non-terminating computation. Given functions h, g0 and g1, we define f by157

primitive recursion on notations as158

f(ε,y) = h(y)159

f(sa(x),y) =
{

ga(x, f(x,y),y) if f(x,y) 6=⊥
⊥ otherwise.160
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2.0.0.4 Minimization.161

For a function s, denote by s(n) its nth iterate. Then, given a function h, we define f by
minimization on x as

µx(h(x,y)) =
{
⊥ if ∀t ∈ N, hd(h(s(t)

0 (ε),y)) 6= s1(ε)
s

(k)
0 (ε) where k = min{t : hd(h(s(t)

0 (ε),y)) = s1(ε)} otherwise.

In other words, a function f defined by minimization on h produces the shortest sequence of162

0 symbols satisfying a simple condition on h , if it exists.163

Let now PRpoint
not be the closure of basic pointer functions under composition and primitive164

recursion on notations, and RECpoint
not be the closure of basic pointer functions under165

composition, primitive recursion on notations, and minimization. Then, as expected,166

I Theorem 2. Modulo the binary encoding of natural integers, PRpoint
not is the classical class167

of primitive recursive functions, and RECpoint
not is the classical class of recursive functions.168

Proof. It is already well known that primitive recursive functions on notations are the169

classical primitive recursive functions, and recursive functions on notations are the classical170

recursive functions. Now, for one direction, it suffices to express the Read and Offset basic171

pointer functions as primitive recursive functions on the computation input. For the other172

direction, it suffices to reconstruct with pointer primitive recursion the computation input173

from the Read and Offset basic pointer functions.174

3 Pointer Safe Recursion175

We recall the tiering discipline of Bellantoni and Cook [2]: functions arguments are divided176

into two tiers, normal arguments and safe arguments. Notation-wise, both tiers are separated177

by a semicolon symbol in a block of arguments, the normal arguments being on the left,178

and the safe arguments on the right. We simply apply this tiering discipline to our pointer179

recursion framework.180

3.0.0.1 Basic Pointer Safe Functions.181

Basic pointer safe functions are the basic pointer functions of the previous section, all their182

arguments being considered safe.183

3.0.0.2 Safe Composition.184

Safe composition is somewhat similar to the previous composition scheme, with a tiering
discipline, ensuring that safe arguments cannot be moved to a normal position in a function
call. The reverse however is allowed.

f(x; y) = g(h1(x; ), · · · , hm(x; );hm+1(x; y), · · · , hm+n(x; y)).

Calls to functions hm+i, where safe arguments are used, are placed in safe position in the185

argument block of g. A special case of safe composition is f(x; y) = g(;x, y), where a normal186

argument x is used in safe position in a call. Hence, we liberally use normal arguments in187

safe position, when necessary.188
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3.0.0.3 Safe Recursion.189

The recursion argument is normal. The recursive call is placed in safe position, a feature190

that prevents nesting recursive calls exponentially.191

f(ε,y; z) = h(y; z)192

f(a.x,y; z) = ga(x,y; f(x,y; z), z).193

Let now SRpoint
not be the closure of the basic pointer safe functions under safe composition194

and safe recursion.195

I Theorem 3. SRpoint
not is the class DTIME(polylog) of functions computable in poly-196

logarithmic time.197

Proof. The proof is essentially the same as for the classical result by Bellantoni and198

Cook [2]. Here however, it is crucial to use the RATM as computation model. Simulating a199

polylogtime RATM with safe recursion on pointers is very similar to simulating a polytime200

TM with safe recursion - instead of explicitly using the machine input as recursion data,201

we use the size of the input as recursion data, and access the input values via the Read202

construct, exactly as is done by the RATM model. The other direction is also similar: the203

tiering discipline of the safe recursion on pointers enforces a polylog bound on the size of the204

strings (since the initial recursion data - the Offset - has size logarithmic in the size n of205

the computation input), and thus a polylog bound on the computation time.206

4 Tropical Tiering207

We present here another, stricter tiering discipline, that we call tropical Tiering. The adjective208

"tropical" refers to the fact that this tiering induces a polynomial interpretation in the tropical209

ring of polynomials. This tiering discipline takes some inspiration from Hofmann’s work on210

non-size increasing types [8], and pure pointer programs [9]. The idea however is to use here211

different tools than Hofmann’s to achieve a similar goal of bounding the size of the function212

outputs. We provide here a non-size increasing discipline via the use of tiering, and use it in213

the setting of pointer recursion to capture not only pure pointer programs (Hoffman’s class),214

but rather pointer programs with pointer arithmetics, which is in essence the whole class215

Logspace.216

4.0.0.1 Basic Pointer Functions.217

We add the following numerical successor basic function. Denote by E : N → {0,1}∗ the
usual binary encoding of integers, and D : {0,1}∗ → N the decoding of binary strings to
integers. Then,

s(x) = E(D(x) + 1)

denotes the numerical successor on binary encodings, and, by convention, ε is the binary218

encoding of the integer 0.219

4.0.0.2 Primitive Recursion on Values.220

Primitive recursion on values is the usual primitive recursion, encoded into binary strings:221

f(ε,y) = h(y)222

f(s(x),y) = g(x, f(x,y),y).223
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224

4.1 Tropical Tier225

As usual, tiering consists in assigning function variables to different classes, called tiers. In226

our setting, these tiers are identified by a numerical value, called tropical tier, or, shortly,227

tropic. The purpose of our tropical tiers is to enforce a strict control on the increase of the228

size of the binary strings during computation. Tropics take values in Z ∪ {−∞}. The tropic229

of the ith variable of a function f is denoted Ti(f). The intended meaning of the tropics is to230

provide an upper bound on the linear growth of the function output size with respect to the231

corresponding input size, as per Proposition 4. Tropics are inductively defined as follows.232

1. Basic pointer functions:

Tj 6=i(Prn
i ) = −∞ T1(hd) = −∞ T1(Read) = −∞

T1(tl) = −1
Ti(Prn

i ) = 0
T1(s0) = 1 T1(s1) = 1 T1(s) = 1

2. Composition:
Tt(f) = max

i
{Ti(g) + Tt(hi)}.

3. Primitive recursion on notations. Two cases arise:233

T2(g0) ≤ 0 and T2(g1) ≤ 0. In that case, we set234

a. T1(f) = max {T1(g0), T1(g1), T2(g0), T2(g1)}, and,235

b. for all t ≥ 1,236

Tt(f) = max{Tt+1(g0), Tt+1(g1), Tt−1(h), T2(g0), T2(g1)}.237

the previous case above does not hold, T2(g0) ≤ 1, and T2(g1) ≤ 1. In that case,238

we also require that T1(g0) ≤ 0, T1(g1) ≤ 0, and, for all t ≥ 2, Tt(g0) = Tt(g1) =239

Tt−2(h) = −∞. Then, we set T1(f) = max{T1(g0), T1(g1), T2(g0)− 1, T2(g1)− 1, ch},240

where ch is a constant for h given in Proposition 4 below, and, for t ≥ 1, Tt(f) = −∞.241

Other cases than the two above do not enjoy tropical tiering.242

4. Primitive recursion on values. Only one case arises:243

T2(g) ≤ 0 . In that case, we set244

a. T1(f) = max {T1(g), T2(g)}, and,245

b. for all t ≥ 1, Tt(f) = max{Tt+1(g), Tt−1(h), T2(g)}.246

Again, other cases than the one above do not enjoy tropical tiering.247

Furthermore, when using tropical tiering, we use mutual recursion schemes. For f =248

(f1, · · · , fn), mutual primitive recursion (on values) is classically defined as follows,249

f(ε,y) = h(y)250

f(s(x),y) =
{

g(x, f(x,y),y) if ∀i (fi(x,y) 6=⊥)
⊥ otherwise.251

and similarly for mutual primitive recursion on notations. Tropical tiering is then extended252

to mutual primitive recursion in a straightforward manner.253

We define the set of L-primitive pointer recursive functions as the closure of the basic254

pointer functions of Sections 2 and 4 under composition, (mutual) primitive recursion on255

notations and (mutual) primitive recursion on values, with tropical tiering.256
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4.2 Tropical Interpretation257

Tropical tiering induces a non-size increasing discipline. More formally,258

I Proposition 4. The tropical tiering of a L-primitive recursive function f induces a poly-259

nomial interpretation of f on the tropical ring of polynomials, as follows.260

For any L-primitve recursive function f with n arguments, there exists a constant cf ≥ 0
such that

|f(x1, · · · , xn) | ≤ max
t
{Tt(f) + |xt|, cf}.

Proof. The proof is given for non-mutual recursion schemes, by induction on the261

definition tree. Mutual recursion schemes follow the same pattern.262

1. For basic pointer functions, the result holds immediately.263

2. Let f be defined by composition, and assume that the result holds for the functions g,264

h1, · · · , hn . Then, for any i = 1, · · · , n, |hi(x) | ≤ maxt{Tt(hi) + |xt|, chi
}. Moreover,265

there exists by induction cg such that |g(h1(x), · · · , hn(x)) | ≤ maxi{Ti(g) + |hi(x) |, cg}.266

Composing the inequalities above yields |g(h1(x), · · · , hn(x)) | ≤ maxi{Ti(g)+maxt{Tt(hi)+267

|xi|, chi
}, cg} = maxt{Tt(f) + |xt|,maxi{cfi

, cg}}.268

3. Let f be defined by primitive recursion on notations, and assume that the first case holds.269

Let f(a.x,y) = ga(x, f(x,y),y), for a ∈ {0, 1}, and assume T2(g0) ≤ 0 and T2(g1) ≤ 0.270

We apply the tropical interpretation on g, and we show by induction the result for f on271

the length of a.x.272

a. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga
} = |x| + T1(ga):273

|f(a.x,y)| ≤ |x|+ T1(ga) ≤ |x|+ T1(f), and the result holds.274

b. If maxx,f(x,y),t{|x|+T1(ga), |f(x,y)|+T2(ga), |yt|+Tt+2(ga), cga
} = |f(x,y)|+T2(ga):275

Since T2(ga) ≤ 0, |f(a.x,y)| ≤ |f(x,y)|, and the induction hypothesis applies.276

c. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga
} = |yt| + Tt+2(ga)277

for some t: the result applies immediately by structural induction on ga.278

d. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga} = cga , the result279

holds immediately.280

e. The base case f(ε,y) is immediate.281

4. Let f be defined by primitive recursion on notations, and assume now that the second282

of the two corresponding cases holds. Let f(a.x,y) = ga(x, f(x,y),y), for a ∈ {0, 1}.283

Since the first case does not hold, T2(g0) = 1 or T2(g1) = 1: assume that T2(g0) = 1284

(the other case being symmetric). Assume also that, T1(g0) ≤ 0 and T1(g1) ≤ 0, and285

for all t ≥ 2, Tt(g0) = Tt(g1) = Tt−2(h) = −∞. Then, we set T1(f) = max{0, ch}. We286

apply the tropical interpretation on g, and prove by induction on the length of a.x that287

|f(a.x,y)| ≤ |a.x|+ max{cg1 , cg2 , ch}.288

a. If maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga} = |x| + T1(ga). Since289

T1(ga) ≤ 0 and T1(f) ≥ 0, |f(a.x,y)| ≤ |x| ≤ T1(f) + |x|, and the result holds.290

b. If maxt≥2{|x|+ T1(ga), |f(x,y)|+ T2(ga), |yt|+ Tt(ga), cga
} = |f(x)|+ T2(ga). Since291

T2(ga) ≤ 1, |f(a.x)| ≤ 1 + |f(x)|, and the induction hypothesis allows to conclude.292

c. If maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga
} = cga

, the result holds293

immediately.294

d. The case maxt≥2{|x|+ T1(ga), |f(x,y)|+ T2(ga), |yt|+ Tt(ga), cga
} = |yt|+ Tt(ga) is295

impossible since Tt(ga) = −∞ for t ≥ 2.296

e. The base case f(ε,y) is immediate.297

5. Let now assume f is define by primitive recursion on values. Then, the only possible case298

is similar to the first case of primitive recursion on notation.299
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The proof by induction above emphasizes the critical difference between recursion on
notation and recursion on values: the second case of the safe recursion on notations correspond
to the linear, non-size increasing scanning of the input, as in, for instance,

f(a.x) = sa(f(x)).

This, of course, is only possible in recursion on notation, where the height of the recursive300

calls stack is precisely the length of the scanned input. Recursion on values fails to perform301

this linear scanning, since, for a given recursive argument x, the number of recursive calls is302

then exponential in |x|.303

Proposition 4 proves that the tropical tiering of a function yields actually a tropical304

polynomial interpretation for the function symbols: The right hand side of the Lemma305

inequality is indeed a tropical interpretation. Moreover, this interpretation is directly given306

by the syntax.307

Furthermore, the proof also highlights why we use mutual recursion schemes instead of308

more simple, non-mutual ones: non-size increasing discipline forbids the use of multiplicative309

constants in the size of the strings. So, in order to capture a computational space of size310

k. log(n), we need to use k binary strings of length log(n), defined by mutual recursion.311

I Corollary 5. L-primitive pointer recursive functions are computable in logarithmic space.312

Proof.313

Proposition 4 ensures that the size of all binary strings is logarithmically bounded.314

A structural induction on the definition of f yields the result. The only critical case is315

that of a recursive construct. When evaluating a recursive construct, one needs simply316

to store all non-recursive arguments (the yi’s) in a shared memory, keep a shared counter317

for keeping track of the recursive argument x, and use a simple while loop to compute318

successively all intermediate recursive calls leading to f(x,y). All these shared values have319

logarithmic size. The induction hypothesis ensures then that, at each step in the while320

loop, all computations take logarithmic space. The two other cases, composition and basic321

functions, are straightforward.322

In the following section, we prove the converse: logarithmic space functions can be323

computed by a sub-algebra of the L-primitive pointer recursive functions.324

4.3 Tropical Recursion325

In this section we restrict our tropical tiering approach to only four possible tier values:
1, 0, −1 and −∞. While doing so, we still retrain the same expressiveness. The rules for
tiering are adapted accordingly. More importantly, the use of only four tier values allows us
to denote these tropics directly in the syntax, in an approach similar to that of Bellantoni
and Cook, by adding purely syntactical features to the composition and primitive recursion
schemes. Let us take as separator symbol the following o symbol, with leftmost variables
having the highest tier. As with safe recursive functions, we allow the use of a high tier
variable in a low tier position, as in, for instance,

f(x o y o z o t) = g( o y o x, z o t).

Our tropical recursive functions are then as follows.326
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4.3.0.1 Basic tropical pointer functions.327

Basic tropical pointer functions are the following.

hd( o o o a.x) = a tl( o o a.x o ) = x

hd( o o o ε) = ε tl( o o ε o ) = ε

s0(x o o o ) = 0.x s1(x o o o ) = 1.x
s(x o o o ) = E(D(x) + 1) Read( o o o x) = a ∈ {0, 1}

Prn
i ( o xi o o x1, · · · , xi−1, xi+1, · · · , xn) = xi

328

4.3.0.2 Tropical composition.329

Define t = t1, t2, t3, t4. The tropical composition scheme is then330

f(x o y o z o t) = g(h1( o x o y o t), · · · , ha( o x o y o t) o331

ha+1(x o y o z o t), · · · , hb(x o y o z o t) o332

hb+1(y o z o o t), · · · , hc(y o z o o t) o333

hc+1(t1 o t2 o t3 o t4), · · · , hd(t1 o t2 o t3 o t4))334

335

336

4.3.0.3 Tropical Recursion on Notations - case 1.337

f(x o ε,y o z o t) = h(x o y o z o t)338

f(x o sa(r o o o ),y o z o t) = ga(x o r, f(x o r,y o z o t),y o z o t)339

340

341

4.3.0.4 Tropical Recursion on Notations - case 2. (Linear scanning)342

f( o ε o o t) = ε343

f( o sa(r o o o ) o o t) = ga(f( o r o o t) o r o o t)344

345

4.3.0.5 Tropical Recursion on Values.346

f(x o ε,y o z o t) = h(x o y o z o t)347

f(x o s(r o o o ),y o z o t) = g(x o r, f(x o r,y o z o t),y o z o t)348

349

350

As above, we use the mutual version of these recursion schemes, with the same tiering351

discipline. Note that, unlike previous characterizations of sub-polynomial complexity classes [3,352

4, 10], our tropical composition and recursion schemes are only syntactical refinements of the353

usual composition and primitive recursion schemes - removing the syntactical sugar yields354

indeed the classical schemes.355
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I Definition 6. L-tropical functions356

The class of L-tropical functions is the closure of our basic tropical pointer functions, under357

tropical composition, tropical mutual recursion on notations, and tropical mutual recursion358

on values.359

The restriction of only four tier values suffices to capture the computational power of360

RATMs. More precisely,361

I Theorem 7. The class of L-tropical functions is the class of functions computable in362

logarithmic space, with logarithmic size output.363

Proof. L-tropical functions are L- primitive pointer recursive functions with tropics 1, 0,364

−1 and −∞. Following Corollary 5, they are computable in logspace. The converse follows365

from the simulation of a logarithmic space RATM, given in the Appendix. The simulation366

works as follows.367

4.3.0.6 Encoding the machine configurations.368

Assume the machine M works in space kdlog(n+ 1)e. A configuration of M is then encoded369

by 2k + 3 binary strings of length less than dlog(n+ 1)e:370

1. one string, of constant length, encodes the machine state,371

2. one string, of length dlog(n+ 1)e, encodes the pointer tape,372

3. one string, of length dlog(n + 1)e, encodes the head of the pointer tape. It contains 0373

symbols everywhere, but on the position of the head (where it contains a 1).374

4. k strings, of length dlog(n+ 1)e, encode the content of the work tape, and375

5. k strings, of length dlog(n+ 1)e, encode the position of the work tape head, with (as for376

the pointer tape) 0 everywhere but on the position of the head.377

4.3.0.7 Reading and Updating a configuration.378

Linear scanning of the recursive argument in tropical recursion, corresponding to case 2 of379

the definition of tropical recursion on notations, is used to read and to update the encoding380

of the configuration. In order to do so, one defines L-tropical functions for381

1. encoding boolean values true and false, boolean connectives, and if then else con-382

structs,383

2. scanning an input string until a 1 is found, and computing the corresponding prefix384

sequence,385

3. computing left and right extractions of sub-strings of a string, for a given prefix,386

4. replacing exactly one bit in a binary string, whose position is given by a prefix of the387

string.388

These functions are given in the Appendix. With all these simple bricks, and especially with389

the in-place one-bit replacement, one is then able to read a configuration, and to update it,390

with L-tropical functions. None of these L-tropical functions uses recursion on values.391

4.3.0.8 Computing the Transition map of the Machine.392

Given the functions above, the transition map Next of the machine is then computed by a393

simple L-tropical function of width (2k + 3): For a recursive argument s of size dlog(n+ 1)e,394

Next( o s, c o o ) computes the configuration reached from c in one transition step.395
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4.3.0.9 Simulating the RATM.396

The simulation of the RATM is then obtained by iterating its transition map a suitable397

number of times. The time upper bound is here obtained by nesting k tropical recursive398

functions on values: on an input of size dlog(n+ 1)e, the unfolding of these recursive calls399

takes time nk. At each recursive step, this function needs to apply the transition map. The400

transition map having width (2k + 3), we use here a mutual recursion scheme, of width401

(2k + 3). Again, for a recursive argument s of size dlog(n+ 1)e, we define402

Step1( o ε, s, c o o ) = c403

Step1( o s(t o o o ), s, c o o ) = Next( o s, Step1( o t,n, c o o ) o o )404

Step2( o ε, s, c o o ) = c405

Step2( o s(t o o o ), s, c o o ) = Step1( o s, s,Step2( o t, s, c o o ) o o )406

...407

Stepk( o ε, s, c o o ) = c408

Stepk( o s(t o o o ), s, c o o ) = Stepk−1( o s, s,Stepk( o t, s, c o o ) o o ).409

Replacing s by the Offset in the above gives the correct bounds. Finally, one simply needs410

to use simple L-tropical functions for computing the initial configuration, and reading the411

final configuration.412

5 Logarithmic Space, Polylogarithmic Time413

I Definition 8. LP-tropical functions414

The class of LP-tropical functions is the closure of our basic tropical pointer functions, under415

tropical composition and tropical mutual recursion on notations.416

I Theorem 9. The class of LP-tropical functions is the class of functions computable in417

logarithmic space, polylogarithmic time, with logarithmic size output.418

Proof. Mutual recursion on notations, with recursive arguments of logarithmic size, are419

computable in polylogarithmic time, following similar arguments as in the proof of Theorem 7.420

The converse follows from the simulation in the proof of Theorem 7 above, where mutual421

recursion on values for the functions Stepi is replaced by mutual recursion on notations.422

6 Alternation423

In this section we extend the approach of Leivant and Marion [12] to our setting. Let us424

define a similar tropical recursion on notations with substitutions. Note that the tropical425

tiering discipline prevents using substitutions in case 2 of the tropical recursion on notations.426

Substitutions are therefore only defined for case 1 of this recursion scheme.427

6.0.0.1 Tropical Recursion with substitutions on Notations.428

Given functions h, g0, g1, k1 and k2,

f(x o ε, u,y o z o t) = h(x o u,y o z o t)
f(x o sa(r o o o ),y o u, z o t) = ga(x o r, f(x o r, k1( o u o o ),y o z o t),

f(x o r, k2( o u o o ),y o z o t),y o z o t) .



Paulin Jacobé de Naurois XX:13

6.0.0.2 Tropical Recursion with substitutions on Values.429

Given functions h, g, k1 and k2,

f(x o ε, u,y o z o t) = h(x o u,y o z o t)
f(x o s(r o o o ),y o u, z o t) = g(x o r, f(x o r, k1( o u o o ),y o z o t),

f(x o r, k2( o u o o ),y o z o t),y o z o t) .

Again, as above, we assume these recursion schemes to be mutual.430

I Definition 10. P-tropical functions431

The class of P-tropical functions is the closure of our basic tropical pointer functions, under432

tropical composition, tropical recursion on notations and on values, and tropical recursion433

with substitutions on notations and on values.434

I Theorem 11. The class of P-tropical functions with binary output is the class P.435

Proof. The result follows from Alogspace = P [5], and Theorem 7. Substitutions in436

the tropical recursion scheme on notations amounts to alternation. Restriction to decision437

classes instead of function classes comes from the use of alternating Turing machines, which438

compute only decision problems.439

Let us first see how to simulate a logspace alternating machine with P-tropical functions.440

Recall the notations and functions of the proof of Theorem 7. Since we now need to simulate441

a non-deterministic, alternating machine, we assume without loss of generality that we now442

have two kinds of machine states:443

non-deterministic universal444

non-deterministic existential445

and that non-deterministic transitions have at most two branches. Therefore, we also446

assume that we have one predicate that determines the kind of a state in a configuration c:447

IsUniversal( o s, c o o ). This predicate is assumed to output false or true.448

We also assume that we have two transition maps, Next0( o s, c o o ), and Next1( o s, c o o ),449

for computing both branches of non-deterministic transitions. For deterministic transitions,450

we assume both branches are the same. Finally, we also assume we have a predicate451

isPositive( o s, c o o ), which returns true if the configuration c is final and accepting, and452

false otherwise.453

We define now, with substitutions, the following:

Accept( o ε, s, c o o ) = isPositive( o s, c o o )
Accept( o s(t), s, c o o )) = match IsUniversal( o s, c o o ) with
|true− > AND ( o Accept( o t, Next0( o s, c o o ), c o o ),

Accept( o t, Next1( o s, c o o )) o o )
|false− > OR ( o Accept( o t, Next0( o s, c o o )), c o o ),

Accept( o t, Next1( o s, c o o )) o o ) .

Then, for t and s large enough, and an initial configuration c, Accept( o t, s, c o o ) outputs454

the result of the computation of the machine. Finally, nesting up to k layers of such recursion455

on values schemes allows, as in the proof of Theorem 7, to simulate a polynomial computation456

time.457

The other direction is pretty straightforward: For any instance of a recursion scheme458

with substitutions, for any given values r, u, x, y and z, each bit of459

ga(x o r, f(x o r, k1( o u o o ),y o z o t), f(x o r, k2( o u o o ),y o z o t),y o z o t) is a boolean func-460

tion of the bits of f(x o r, k1( o u o o ),y o z o t) and f(x o r, k2( o u o o ),y o z o t). Hence, it461
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can be computed by an alternating procedure. The space bound follows from the bound on462

the size of the strings, provided by the tiering discipline.463

I Definition 12. NC-tropical functions464

The class of NC-tropical functions is the closure of our basic pointer tropical functions, under465

tropical composition, tropical recursion on notations and tropical recursion with substitutions466

on notations.467

I Theorem 13. The class of NC-tropical functions with binary output is NC.468

Proof. The result follows from A(logspace, polylogtime) = NC [16], and Theorem 7.469

Substitutions in the tropical recursion scheme on notations amounts to alternation. The470

proof is similar to that of Theorem 11, where additionally,471

The time bound on the computation of the machine needs only to be polylogarithmic,472

instead of polynomial. As in Theorem 9, tropical recursion on notations suffices to obtain473

this bound, and tropical recursion on values is no longer needed.474

For the other direction, any bit of475

ga(x o r, f(x o r, k1( o u o o ),y o z o t), f(x o r, k2( o u o o ),y o z o t),y o z o t) is again a boolean476

function of the bits of f(x o r, k1( o u o o ),y o z o t) and f(x o r, k2( o u o o ),y o z o t). Here,477

this boolean function can be computed by a boolean circuit of polylogarithmic depth,478

hence, by an alternating procedure in polylogarihtmic time. The arguments behind this479

remark are the same as the ones in the proof of A(logspace, polylogtime) = NC.480

7 Concluding Remarks481

Theorems 7, 9, 11, and 13 rely on mutual recursive schemes. As stated above, we use these482

mutual schemes to express a space computation of size k log(n) for any constant k, with483

binary strings of length at most log(n) + c. If we were to use only non-mutual recursion484

schemes, we would need to have longer binary strings. This can be achieved by taking as485

input to our functions, not simply the Offset, but some larger string #k(Offset), where486

#k is a function that appends k copies of its argument.487

It also remains to be checked wether one can refine Theorem 13 to provide characterizations488

of the classes NCi as in [13]. A first step in this direction is to define a recursion rank,489

accounting for the nesting of recursion schemes: then, check wether NC-tropical functions of490

rank i are computable in NCi. Conversely, check also whether the simulation of Theorem 7491

induces a fixed overhead, and wether NCi can be encoded by NC-tropical functions of rank492

i+ c for some constant c small enough.493

Finally, note that we characterize logarithmic space functions with logarithmically long494

output (Theorem 9), and NC functions with one-bit output (Theorem 13). As usual,495

polynomially long outputs for these classes can be retrieved via a pointer access: it suffices496

to parameterize these functions with an additional, logarithmically long input, denoting the497

output bit one wants to compute. In order to retrieve functions with polynomially long498

output, this approach could also be added to the syntax, with a Write construct similar to499

our Read construct, for writing the output.500
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The machine M uses one pointer tape, of size dlog(n+ 1)e, and exactly one computation553

tape.554

For every input x of length n, the machine uses exactly k.dlog(n + 1)e cells on the555

computation tape.556

At the start of the computation, the computation tape is as follows.557

1. The computation tape is on a cell containing the 0 symbol, followed by k.dlog(n+1)e−1558

0 cells on the right.559

2. The cells on the left of the computation head, and the cells on the right of the560

k.dlog(n+ 1)e 0 symbols, contain only blank symbols.561

Moreover, during the computation, the following holds.562

1. The computation head never goes on any cell on the left of its initial position.563

2. The machine never writes a blank symbol.564

The same assumptions are made for the pointer tape.565

It is easy to check that these assumptions are benign. They enable us to ignore the blank566

symbol in the simulation, and have a strict correspondence between the binary symbols of567

the RATM and those of the L-tropical algebra.568

Encoding Machine Configurations569

We need to encode the four following datas:570

1. Machine state. Assume M has S states, with initial state numbered 0 and final state571

numbered 1. A machine state t is encoded by a binary string of length dlog(S + 1)e,572

consisting in the binary encoding of t, padded with 0 symbols if necessary.573

2. Computation tape. We only need to encode the k.dlog(n+ 1)e cells on the right of the574

initial head position (including itself). These cells never contain a blank symbol during575

the computation, we can therefore encode them in binary. We encode them in a k-tuple576

of binary sequences of length dlog(n+ 1)e.577

3. Computation head. The position of the computation head is encoded by a binary string578

of length k.dlog(n + 1)e, with a 1 symbol on the position of the head, and 0 symbols579

everywhere else. This binary sequence is given by a k-tuple of binary strings of length580

dlog(n+ 1)e.581

4. Pointer tape. The pointer tape has size dlog(n+ 1)e: it is therefore encoded by a binary582

string of length dlog(n+ 1)e.583

5. Pointer tape head. The position of the pointer tape head is encoded by a binary string584

of length dlog(n + 1)e, with a 1 symbol on the position of the head, and 0 symbols585

everywhere else.586

The encoding of the machine configuration is then given by the (2k + 3)-tuple of the587

above binary strings.588

Notation-wise, in our simulation, we use the variable name s for recursion schemes on589

the size of the input: that is, such recursion schemes are meant to be initially called with590

an argument s = Offset of length L(n). Similarly, we use the variable name t for recursion591

schemes on the computation time.592
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L-tropical Functions for in-place Read/write Instructions593

7.0.0.1 Boolean values and connective594

We encode booleans false and true with s0(ε o o o ) and s1(ε o o o ) respectively. We define595

the following match construct596

match x with597

| s0(r o o o )− > A598

| s1(r o o o )− > B599

| ε− > C600

601

as the following degenerate tropical recursion on notations.602

match( o s0(r o o o ), a, b, c o o ) = a603

match( o s1(r o o o ), a, b, c o o ) = b604

match( o ε, a, b, c o o ) = c605

606

Then, if then esle, and AND and OR boolean functions are obtained by trivial applica-607

tions of the match construct above. We also use a function isempty, for testing if a string608

equals ε.609

7.0.0.2 1-bit concatenation610

Adding one-bit in first position.611

1BC(y o x o o ) = match x with612

| s0(t o o o )− > s0(y o o o )613

| s1(t o o o )− > s1(y o o o )614

| ε− > y615

616

For notational purposes we sometimes use hd( o o o x).y instead.617

7.0.0.3 Tail extraction618

Extracting the tail of a string, for a given prefix length.

Te( o sa(x o o o ) o e o ) = tl( o o Te( o x o e o ) o )
Te( o ε o e o ) = e

619

7.0.0.4 Bit extraction620

Extracting one bit of a string, for a given prefix length.

Be( o o o x, e) = hd( o o o Te( o x o e o ))

621
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7.0.0.5 Head extraction622

Extracting the head a string, for a given prefix length.623

He( o sa( o o o x) o o e) = Be( o o o sa( o o o x), e).He( o x o o e)624

He( o ε o o e) = ε625

626

7.0.0.6 Prefix length Computation627

Extract the initial subsequence of 0 only symbols, followed by the first 1. This function628

is used for computing the prefix length corresponding to the position of the head in our629

encoding of the tapes of the RATM.630

Prefix( o ε o o ) = ε631

Prefix( o s0( o o o x) o o ) = s0(Prefix( o x o o ) o o o )632

Prefix( o s1( o o o x) o o ) = s1(ε o o o )633

634

635

7.0.0.7 Length Comparison636

A predicate for comparing string lengths

SameLength( o x, y o o ) =

AND( o isempty( o Te( o x o o y) o o ), isempty( o Te( o y o o x) o o ) o o ).

637

7.0.0.8 One bit replacement638

Replacing exactly one bit in a string e by the first bit of b, for a given prefix length x.

Cb( o sa(x o o o ) o o y, e, b) =
if SameLength( o sa(x o o o ), y o o )

then hd( o o o b).Cb( o x o o y, e, b)
else Be( o o o Te( o sa(x o o o ) o e o ), e).Cb( o x o o y, e, b)

Cb( o ε o o y, e, b) = ε

and
ChBit( o s o o x, e, b) = Cb( o s o o Te( o x o o e), e, b)

for any s with |s| = |e|.639

Reading and Updating a Configuration640

The Prefix function above computes the prefix corresponding the position of the head of641

the pointer and of the computation heads in our encoding. Used in conjunction with the642

boolean constructs on the k strings encoding the computation tape, and in conjunction with643

the bit extraction function Be above, it allows to read the current symbol on the computation644
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tape, and on the pointer tape, of the encoding of the RATM. Updating these two symbols is645

performed with the ChBit in-place one-bit replacement function.646

Similarly, moving the heads of these two tapes can easily be performed with this ChBit,647

in conjunction with the tl and s1 basic tropical functions.648

Let us now describe how we can read and update the machine state: This machine state649

is encoded in binary by a string of length dlog(S + 1)e, where S is the number of the states650

of M . The length of this string is fixed, and does not depend on the input. Therefore, we651

can safely assume that we have a fixed decision tree of depth dlog(S + 1)e, for reading each652

bit of this string. The leaves of this decision tree are in one-to-one correspondence with the653

states of M . This decision tree can moreover be encoded with basic tropical functions and654

tropical composition only. Similarly, overwriting the machine state can be done with basic655

tropical functions and tropical composition only.656

Finally, when in an input reading state, the input tape symbol is obtained simply by657

using the basic tropical function Read, with the pointer tape as argument.658

The transition map Next of the RATM is then obtained by a boolean composition of the659

above functions. Similarly, computing an encoding of the initial configuration, and reading a660

final configuration, is simple.661


	Recursion
	Notations, and Recursion on Notations
	Turing Machines with Random Access
	Recursion on Pointers

	Pointers Primitive Recursion
	Pointer Safe Recursion
	Tropical Tiering
	Tropical Tier
	Tropical Interpretation
	Tropical Recursion

	Logarithmic Space, Polylogarithmic Time
	Alternation
	Concluding Remarks

