
HAL Id: hal-01934791
https://hal.science/hal-01934791v1

Preprint submitted on 26 Nov 2018 (v1), last revised 16 Dec 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pointers in Recursion: Exploring the Tropics
Paulin Jacobé de Naurois

To cite this version:

Paulin Jacobé de Naurois. Pointers in Recursion: Exploring the Tropics. 2018. �hal-01934791v1�

https://hal.science/hal-01934791v1
https://hal.archives-ouvertes.fr

Pointers in Recursion: Exploring the Tropics ?

Paulin Jacobé de Naurois

CNRS, Université Paris 13, Sorbonne Paris Cité, LIPN, UMR 7030, F-93430
Villetaneuse, France. denaurois@lipn.univ-paris13.fr

Abstract. We translate the usual class of partial/primitive recursive functions
to a pointer recursion framework, accessing actual input values via a pointer
reading unit-cost function. These pointer recursive functions classes are proven
equivalent to the usual partial/primitive recursive functions. Complexity-wise,
this framework captures in a streamlined way most of the relevant sub-
polynomial classes. Pointer recursion with the safe/normal tiering discipline of
Bellantoni and Cook corresponds to polylogtime computation. We introduce
a new, non-size increasing tiering discipline, called tropical tiering. Tropical
tiering and pointer recursion, used with some of the most common recursion
schemes, capture the classes logspace, logspace/polylogtime, ptime, and NC.
Finally, in a fashion reminiscent of the safe recursive functions, tropical tier-
ing is expressed directly in the syntax of the function algebras, yielding the
tropical recursive function algebras.

Introduction

Characterizing complexity classes without explicit reference to the computa-
tional model used for defining these classes, and without explicit bounds on the
resources allowed for the calculus, has been a long term goal of several lines of
research in computer science. One rather successful such line of research is recur-
sion theory. The foundational work here is the result of Cobham [7], who gave a
characterization of polynomial time computable functions in terms of bounded
recursion on notations - where, however, an explicit polynomial bound is used
in the recursion scheme. Later on, Leivant [11] refined this approach with the
notion of tiered recursion: explicit bounds are no longer needed in his recursion
schemes. Instead, function arguments are annotated with a static, numeric de-
notation, a tier, and a tiering discipline is imposed upon the recursion scheme
to enforce a polynomial time computation bound. A third important step in
this line of research is the work of Bellantoni and Cook [2], whose safe recursion
scheme uses only syntactical constraints akin to the use of only two tier values,
to characterize, again, the class of polynomial time functions.

Cobham’s approach has also later on been fruitfully extended to other, im-
portant complexity classes. Results relevant to our present work, using explicitly
bounded recursion, are those of Lind [15] for logarithmic space, and Allen [1]
and Clote [6] for small parallel classes.

Later on, Bellantoni and Cook’s purely syntactical approach proved also use-
ful for characterizing other complexity classes. Leivant and Marion [14, 13] used a

? Work partially supported by ANR project ELICA - ANR-14-CE25-0005

predicative version of the safe recursion scheme to characterize alternating com-
plexity classes, while Bloch [3], Bonfante et al [4] and Kuroda[10], gave character-
izations of small, polylogtime, parallel complexity classes. An important feature
of these results is that they use, either explicitly or not, a tree-recursion on the
input. This tree-recursion is implicitly obtained in Bloch’s work by the use of an
extended set of basic functions, allowing for a dichotomy recursion on the input
string, while it is made explicit in the recursion scheme in the two latter works.
As a consequence, these characterizations all rely on the use of non-trivial basic
functions, and non-trivial data structures, whose unit-cost assumption is ques-
tionable. Moreover, the use of distinct basic function sets and data structures
make it harder to express these charcterizations in a uniform framework.

Among all these previous works on sub-polynomial complexity classes, an
identification is assumed between the argument of the functions of the algebra,
on one hand, and the computation input on the other hand: an alternating,
logspace computation on input x is denoted by a recursive function with ar-
gument x. While this seems very natural for complexity classes above linear
time, it actually yields a fair amount of technical subtleties and difficulties for
sub-linear complexity classes. Indeed, following Chandra et al. [5] seminal pa-
per, sub-polynomial complexity classes need to be defined with a proper, subtler
model than the one-tape Turing machine: the random access Turing machine
(RATM), where computation input is accessed via a unit-cost pointer reading
instruction. RATM input is thus accessed via a read-only instruction, and left
untouched during the computation - a feature quite different to that of a re-
cursive function argument. Our proposal here is to use a similar construct for
reading the input in the setting of recursive functions: our functions will take
as input pointers on the computation input, and one-bit pointer reading will
be assumed to have unit cost. Actual computation input are thus implicit in
our function algebras: the fuel of the computational machinery is only pointer
arithmetics. This proposal takes inspiration partially from the Rational Bitwise
Equations of [4].

Following this basic idea, we then introduce a new tiering discipline, called
tropical tiering, to enforce a non-size increasing behavior on our recursive func-
tions, with inspirations taken from previous works of M. Hofmann [8, 9]. Tropical
tiering induces a polynomial interpretation in the tropical ring of polynomials
(hence its name), and yields a characterization of logarithmic space. The use
of different, classical recursion schemes yield characterizations of other, sub-
polynomial complexity classes such as polylogtime, NC, and the full polynomial
time class. Following the approach of Bellantoni and Cook, we furthermore em-
bed the tiering discipline directly in the syntax, with only finitely many different
tier values - Four in our case, instead of only two for the safe recursive functions,
and provide purely syntactical characterizations of these complexity classes in a
unified, simple framework. Compared to previous works, our framework uses a
unique, and rather minimal set of unit-cost basic functions, computing indeed
basic tasks, and a unique and also simple data structure.

The paper is organized as follows. Section 1 introduces the notations, and
the framework of pointer recursion. Section 2 applies this framework to prim-
itive recursion. Pointer partial/primitive recursive functions are proven to co-
incide with their classical counterparts in Theorem 1. Section 3 applies this
framework to safe recursion on notations. Pointer safe recursive functions are
proven to coincide with polylogtime computable functions in Theorem 2. Tropi-
cal tiering is defined in Section 4. Proposition 1 establishes the tropical interpre-
tation induced by tropical tiering. Tropical recursive functions are then intro-
duced in Subsection 4.3. Section 5 gives a sub-algebra of the former, capturing
logspace/polylogtime computable functions in Theorem 4. Finally, Section 6 ex-
plores tropical recursion with substitutions, and provides a characterization of
P in Theorem 5 and of NC in Theorem 6.

1 Recursion

1.1 Notations, and Recursion on Notations

Data structures considered in our paper are finite words over a finite alphabet.
For the sake of simplicity, we consider the finite, boolean alphabet {0,1}. The
set of finite words over {0,1} is denoted as {0,1}∗.

Finite words over {0,1} are denoted with overlined variables names, as in x.
Single values in {0,1} are denoted as plain variables names, as in x. The empty
word is denoted by ε, while the dot symbol ”.” denotes the concatenation of two
words as in a.x, the finite word obtained by adding an a in front of the word
x. Finally, finite arrays of boolean words are denoted with bold variable names,
as in x = (x1, · · · , xn). When defining schemes, we will often omit the length
of the arrays at hand, when clear from context, and use bold variable names
to simplify notations. Similarly, for mutual recursion schemes, finite arrays of
mutually recursive functions are denoted by a single bold function name. In this
case, the width of this function name is the size of the array of the mutually
recursive functions.

Natural numbers are identified with finite words over {0,1} via the usual
binary encoding. Yet, in most of our function algebras, recursion is not performed
on the numerical value of an integer, as in classical primitive recursion, but rather
on its boolean encoding, that is, on the finite word over {0,1} identified with it:
this approach is denoted as recursion on notations.

1.2 Turing Machines with Random Access

When considering sub-polynomial complexity class, classical Turing Machines
often fail to provide a suitable cost model. A crucial example is the class DLOG-
TIME: in logarithmic time, a classical Turing machine fails to read any further
than the first k. log(n) input bits. In order to provide a suitable time complexity
measure for sub-polynomial complexity classes, Chandra et al [5] introduced the
Turing Machine with Random Access (RATM), whose definition follows.

Definition 1. RATM
A Turing Machine with Random Access (RATM) is a Turing machine with no
input head, one (or several) working tapes and a special pointer tape, of loga-
rithmic size, over a binary alphabet. The Machine has a special Read state such
that, when the binary number on the pointer tape is k, the transition from the
Read state consists in writing the kth input symbol on the (first) working tape.

1.3 Recursion on Pointers

In usual recursion theory, a function computes a value on its input, which is given
explicitly as an argument. This, again, is the case in classical primitive recursion.
While this is suitable for describing explicit computation on the input, as, for
instance for single tape Turing Machines, this is not so for describing input-
read-only computation models, as, for instance, RATMs. In order to propose a
suitable recursion framework for input-read-only computation, we propose the
following pointer recursion scheme, whose underlying idea is pretty similar to
that of the RATM.

As above, recursion data is given by finite, binary words, and the usual
recursion on notation techniques on these recursion data apply. The difference
lies in the way the actual computation input is accessed: in our framework,
we distinguish two notions, the computation input, and the function input. For
pointer recursion, the function input is a pointer on the computation input, and
a unit-cost Read construct, taking a pointer as argument, allows to read actual
computation input bits:

Let w = w1. · · · .wn ∈ {0,1}∗ be a computation input. To w, we associate
two constructs,

– the Offset: a finite word over {0,1}, encoding in binary the length n of w,
and

– the Read construct, a 1-ary function, such that, for any binary encoding i of
an integer 0 < i ≤ n, Read(i) = wi, and, for any other value v, Read(v) = ε.

Pointer Recursive functions will be given the Offset as input, and will access
to their actual input bits only via the unit-cost Read construct.

2 Pointers Primitive Recursion

Let us first detail our pointer recursive framework for the classical case of prim-
itive recursion on notations.

Basic pointer functions. Basic pointer functions are the following kind of func-
tions:

1. Functions manipulating finite words over {0,1}. For any a ∈ {0,1}, x ∈
{0,1}∗,

hd(a.x) = a tl(a.x) = x s0(x) = 0.x
hd(ε) = ε tl(ε) = ε s1(x) = 1.x

2. Projections. For any n ∈ N, 1 ≤ i ≤ n,

Prni (x1, · · · , xn) = xi

3. and, finally, the Offset and Read constructs, as defined above.

Composition. Given functions g, and h1, · · · , hn, we define f by composition as

f(x) = g(h1(x), · · · , hn(x)).

Primitive Recursion on Notations. Let ⊥ denote non-terminating computation.
Given functions h, g0 and g1, we define f by primitive recursion on notations as

f(ε,y) = h(y)

f(sa(x),y) =

{
ga(x, f(x,y),y) if f(x,y) 6=⊥
⊥ otherwise.

Minimization. Given a function h, we define f by minimization on x as

µx(h(x,y)) =

{
⊥ if ∀t ∈ N, hd(h(s

(t)
0 (ε),y)) 6= s1(ε)

s
(k)
0 (ε) where k = min{t : hd(h(s

(t)
0 (ε),y)) = s1(ε)} otherwise.

Let now PRpoint
not be the closure of basic pointer functions under composi-

tion and primitive recursion on notations, and RECpoint
not be the closure of basic

pointer functions under composition, primitive recursion on notations, and min-
imization. Then, as expected,

Theorem 1. Modulo the binary encoding of natural integers, PRpoint
not is the

classical class of primitive recursive functions, and RECpoint
not is the classical

class of recursive functions.

Proof. It is already well known that primitive recursive functions on nota-
tions are the classical primitive recursive functions, and recursive functions on
notations are the classical recursive functions. Now, for one direction, it suffices
to express the Read and Offset basic pointer functions as primitive recursive
functions on the computation input. For the other direction, it suffices to re-
construct with pointer primitive recursion the computation input from the Read

and Offset basic pointer functions. ut

3 Pointer Safe Recursion

We recall the tiering discipline of Bellantoni and Cook [2]: functions arguments
are divided into two tiers, normal arguments and safe arguments. Notation-
wise, both tiers are separated by a semicolon symbol in a block of arguments,
the normal arguments being on the left, and the safe arguments on the right.
We simply apply this tiering discipline to our pointer recursion framework.

Basic Pointer Safe Functions. Basic pointer safe functions are the basic pointer
functions of the previous section, all their arguments being considered safe.

Safe Composition. Safe composition is somewhat similar to the previous compo-
sition scheme, with a tiering discipline, ensuring that safe arguments cannot be
moved to a normal position in a function call. The reverse however is allowed.

f(x; y) = g(h1(x;), · · · , hm(x;);hm+1(x; y), · · · , hm+n(x; y)).

Calls to functions hm+i, where safe arguments are used, are placed in safe
position in the argument block of g. A special case of safe composition is f(x; y) =
g(;x, y), where a normal argument x is used in safe position in a call. Hence, we
liberally use normal arguments in safe position, when necessary.

Safe Recursion. The recursion argument is normal. The recursive call is placed
in safe position, a feature that prevents nesting recursive calls exponentially.

f(ε,y; z) = h(y; z)

f(a.x,y; z) = ga(x,y; f(x,y; z), z).

Let now SRpoint
not be the closure of the basic pointer safe functions under safe

composition and safe recursion.

Theorem 2. SRpoint
not is the class DTIME(polylog) of functions computable in

poly-logarithmic time.

Proof. The proof is essentially the same as for the classical result by Bellan-
toni and Cook [2]. Here however, it is crucial to use the RATM as computation
model. Simulating a polylogtime RATM with safe recursion on pointers is very
similar to simulating a polytime TM with safe recursion - instead of explicitly
using the machine input as recursion data, we use the size of the input as recur-
sion data, and access the input values via the Read construct, exactly as is done
by the RATM model. The other direction is also similar: the tiering discipline
of the safe recursion on pointers enforces a polylog bound on the size of the
strings (since the initial recursion data - the Offset - has size logarithmic in the
size n of the computation input), and thus a polylog bound on the computation
time. ut

4 Tropical Tiering

We present here another, stricter tiering discipline, that we call tropical Tiering.
This tiering discipline is inspired by Hofmann’s work on non-size increasing
types [8], and pure pointer programs [9]. Our goal here is to provide a non-
size increasing discipline via the use of tiering, and to use it in the setting of
pointer recursion to capture not only pure pointer programs, but rather pointer
programs with pointer arithmetics, which is in essence the whole class Logspace.

Basic Pointer Functions. We add the following numerical successor basic func-
tion. Denote by E : N → {0,1}∗ the usual binary encoding of integers, and
D : {0,1}∗ → N the decoding of binary strings to integers. Then,

s(x) = E(D(x) + 1)

denotes the numerical successor on binary encodings, and, by convention, ε
is the binary encoding of the integer 0.

Primitive Recursion on Values. Primitive recursion on values is the usual prim-
itive recursion, encoded into binary strings:

f(ε,y) = h(y)

f(s(x),y) = g(x, f(x,y),y).

4.1 Tropical Tier

As usual, tiering consists in assigning function variables to different classes, called
tiers. In our setting, these tiers are identified by a numerical value, called tropical
tier, or, shortly, tropic. The purpose of our tropical tiers is to enforce a strict
control on the increase of the size of the binary strings during computation.
Tropics take values in Z ∪ {−∞}. The tropic of the ith variable of a function f
is denoted Ti(f). Tropics are inductively defined as follows.

1. Basic pointer functions:

Tj 6=i(Pr
n
i) = −∞ T1(hd) = −∞ T1(Read) = −∞

T1(tl) = −1
Ti(Pr

n
i) = 0

T1(s0) = 1 T1(s1) = 1 T1(s) = 1

2. Composition:
Tt(f) = max

i
{Ti(g) + Tt(hi)}.

3. Primitive recursion on notations. Two cases arise:
– T2(g0) ≤ 0 and T2(g1) ≤ 0. In that case, we set

(a) T1(f) = max {T1(g0), T1(g1), T2(g0), T2(g1)}, and,
(b) for all t ≥ 1,

Tt(f) = max{Tt+1(g0), Tt+1(g1), Tt−1(h), T2(g0), T2(g1)}.
– the previous case above does not hold, T2(g0) ≤ 1, and T2(g1) ≤ 1.

In that case, we also require that T1(g0) ≤ 0, T1(g1) ≤ 0, and, for
all t ≥ 2, Tt(g0) = Tt(g1) = Tt−2(h) = −∞. Then, we set T1(f) =
max{T1(g0), T1(g1), T2(g0)−1, T2(g1)−1, ch}, where ch is a constant for
h given in Proposition 1 below, and, for t ≥ 1, Tt(f) = −∞.

Other cases than the two above do not enjoy tropical tiering.
4. Primitive recursion on values. Only one case arises:

– T2(g) ≤ 0 . In that case, we set
(a) T1(f) = max {T1(g), T2(g)}, and,
(b) for all t ≥ 1, Tt(f) = max{Tt+1(g), Tt−1(h), T2(g)}.

Again, other cases than the one above do not enjoy tropical tiering.

Furthermore, when using tropical tiering, we use mutual recursion schemes.
For f = (f1, · · · , fn), mutual primitive recursion (on values) is classically defined
as follows,

f(ε,y) = h(y)

f(s(x),y) =

{
g(x, f(x,y),y) if ∀i (fi(x,y) 6=⊥)
⊥ otherwise.

and similarly for mutual primitive recursion on notations. Tropical tiering is then
extended to mutual primitive recursion in a straightforward manner.

We define the set of L-primitive pointer recursive functions as the closure
of the basic pointer functions of Sections 2 and 4 under composition, (mutual)
primitive recursion on notations and (mutual) primitive recursion on values, with
tropical tiering.

4.2 Tropical Interpretation

Tropical tiering induces a non-size increasing discipline. More formally,

Proposition 1. The tropical tiering of a L-primitive recursive function f in-
duces a polynomial interpretation of f on the tropical ring of polynomials, as
follows.

For any L-primitve recursive function f with n arguments, there exists a
constant cf ≥ 0 such that

|f(x1, · · · , xn)| ≤ max
t
{Tt(f) + |xt|, cf}.

Proof. The proof is given for non-mutual recursion schemes, by induction
on the definition tree. Mutual recursion schemes follow the same pattern.

1. For basic pointer functions, the result holds immediately.
2. Let f be defined by composition, and assume that the result holds for

the functions g, h1, · · · , hn . Then, for any i = 1, · · · , n, |hi(x)| ≤
maxt{Tt(hi) + |xt|, chi

}. Moreover, there exists by induction cg such that
|g(h1(x), · · · , hn(x))| ≤ maxi{Ti(g) + |hi(x)|, cg}. Composing the inequal-
ities above yields |g(h1(x), · · · , hn(x))| ≤ maxi{Ti(g) + maxt{Tt(hi) +
|xi|, chi}, cg} = maxt{Tt(f) + |xt|,maxi{cfi , cg}}.

3. Let f be defined by primitive recursion on notations, and assume that the
first case holds. Let f(a.x,y) = ga(x, f(x,y),y), for a ∈ {0, 1}, and assume
T2(g0) ≤ 0 and T2(g1) ≤ 0. We apply the tropical interpretation on g, and
we show by induction the result for f on the length of a.x.

(a) If maxx,f(x,y),t{|x|+T1(ga), |f(x,y)|+T2(ga), |yt|+Tt+2(ga), cga} = |x|+
T1(ga): |f(a.x,y)| ≤ |x|+ T1(ga) ≤ |x|+ T1(f), and the result holds.

(b) If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga} =
|f(x,y)| + T2(ga): Since T2(ga) ≤ 0, |f(a.x,y)| ≤ |f(x,y)|, and the
induction hypothesis applies.

(c) If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga} =
|yt| + Tt+2(ga) for some t: the result applies immediately by structural
induction on ga.

(d) If maxx,f(x,y),t{|x|+T1(ga), |f(x,y)|+T2(ga), |yt|+Tt+2(ga), cga} = cga ,
the result holds immediately.

(e) The base case f(ε,y) is immediate.
4. Let f be defined by primitive recursion on notations, and assume now

that the second of the two corresponding cases holds. Let f(a.x,y) =
ga(x, f(x,y),y), for a ∈ {0, 1}. Since the first case does not hold, T2(g0) = 1
or T2(g1) = 1: assume that T2(g0) = 1 (the other case being symmet-
ric). Assume also that, T1(g0) ≤ 0 and T1(g1) ≤ 0, and for all t ≥ 2,
Tt(g0) = Tt(g1) = Tt−2(h) = −∞. Then, we set T1(f) = max{0, ch}. We
apply the tropical interpretation on g, and prove by induction on the length
of a.x that |f(a.x,y)| ≤ |a.x|+ max{cg1 , cg2 , ch}.
(a) If maxt≥2{|x|+T1(ga), |f(x,y)|+T2(ga), |yt|+Tt(ga), cga} = |x|+T1(ga).

Since T1(ga) ≤ 0 and T1(f) ≥ 0, |f(a.x,y)| ≤ |x| ≤ T1(f) + |x|, and the
result holds.

(b) If maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga} = |f(x)| +
T2(ga). Since T2(ga) ≤ 1, |f(a.x)| ≤ 1 + |f(x)|, and the induction hy-
pothesis allows to conclude.

(c) If maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga} = cga , the
result holds immediately.

(d) The case maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga} =
|yt|+ Tt(ga) is impossible since Tt(ga) = −∞ for t ≥ 2.

(e) The base case f(ε,y) is immediate.
5. Let now assume f is define by primitive recursion on values. Then, the only

possible case is similar to the first case of primitive recursion on notation. ut

The proof by induction above emphasizes the critical difference between re-
cursion on notation and recursion on values: the second case of the safe recursion
on notations correspond to the linear, non-size increasing scanning of the input,
as in, for instance,

f(a.x) = sa(f(x)).

This, of course, is only possible in recursion on notation, where the height of the
recursive calls stack is precisely the length of the scanned input. Recursion on
values fails to perform this linear scanning, since, for a given recursive argument
x, the number of recursive calls is then exponential in |x|.

Proposition 1 proves that the tropical tiering of a function yields actually
a tropical polynomial interpretation for the function symbols: The right hand
side of the Lemma inequality is indeed a tropical interpretation. Moreover, this
interpretation is directly given by the syntax.

Furthermore, the proof also highlights why we use mutual recursion schemes
instead of more simple, non-mutual ones: non-size increasing discipline forbids
the use of multiplicative constants in the size of the strings. So, in order to
capture a computational space of size k. log(n), we need to use k binary strings
of length log(n), defined by mutual recursion.

Corollary 1. L-primitive pointer recursive functions are computable in loga-
rithmic space.

Proof.
Proposition 1 ensures that the size of all binary strings is logarithmically

bounded. A structural induction on the definition of f yields the result. The
only critical case is that of a recursive construct. When evaluating a recursive
construct, one needs simply to store all non-recursive arguments (the yi’s) in a
shared memory, keep a shared counter for keeping track of the recursive argu-
ment x, and use a simple while loop to compute successively all intermediate
recursive calls leading to f(x,y). All these shared values have logarithmic size.
The induction hypothesis ensures then that, at each step in the while loop,
all computations take logarithmic space. The two other cases, composition and
basic functions, are straightforward. ut

In the following section, we prove the converse: logarithmic space functions
can be computed by a sub-algebra of the L-primitive pointer recursive functions.

4.3 Tropical Recursion

In this section we restrict our tropical tiering approach to only four possible tier
values: 1, 0, −1 and −∞. The rules for tiering are adapted accordingly. More
importantly, the use of only four tier values allows us to denote these tropics
directly in the syntax, in an approach similar to that of Bellantoni and Cook.
Let us take as separator symbol the following | symbol, with leftmost variables
having the highest tier. As with safe recursive functions, we allow the use of a
high tier variable in a low tier position, as in, for instance,

f(x | y | z | t) = g(| y | x, z | t).

Our tropical recursive functions are then as follows.

Basic tropical pointer functions. Basic tropical pointer functions are the follow-
ing.

hd(| | | a.x) = a tl(| | a.x |) = x
hd(| | | ε) = ε tl(| | ε |) = ε
s0(x | | |) = 0.x s1(x | | |) = 1.x
s(x | | |) = E(D(x) + 1) Read(| | | x) = a ∈ {0, 1}

Prni (| xi | | x1, · · · , xi−1, xi+1, · · · , xn) = xi

Tropical composition. Define t = t1, t2, t3, t4. The tropical composition scheme
is then

f(x | y | z | t) = g(h1(| x | y | t), · · · , ha(| x | y | t) |
ha+1(x | y | z | t), · · · , hb(x | y | z | t) |
hb+1(y | z | | t), · · · , hc(y | z | | t) |
hc+1(t1 | t2 | t3 | t4), · · · , hd(t1 | t2 | t3 | t4))

Tropical Recursion on Notations - case 1.

f(x | ε,y | z | t) = h(x | y | z | t)

f(x | sa(r | | |),y | z | t) = ga(x | r, f(x | r,y | z | t),y | z | t)

Tropical Recursion on Notations - case 2. (Linear scanning)

f(| ε | | t) = ε

f(| sa(r | | |) | | t) = ga(f(| r | | t) | r | | t)

Tropical Recursion on Values.

f(x | ε,y | z | t) = h(x | y | z | t)

f(x | s(r | | |),y | z | t) = g(x | r, f(x | r,y | z | t),y | z | t)

As above, we use the mutual version of these recursion schemes, with the
same tiering discipline.

Definition 2. L-tropical functions
The class of L-tropical functions is the closure of our basic tropical pointer func-
tions, under tropical composition, tropical mutual recursion on notations, and
tropical mutual recursion on values.

The restriction of only four tier values suffices to capture the computational
power of RATMs. More precisely,

Theorem 3. The class of L-tropical functions is the class of functions com-
putable in logarithmic space, with logarithmic size output.

Proof. L-tropical functions are L- primitive pointer recursive functions with
tropics 1, 0, −1 and −∞. Following Corollary 1, they are computable in logspace.
The converse follows from the simulation of a logarithmic space RATM, given
in the Appendix. The simulation works as follows.

Encoding the machine configurations. Assume the machine M works in space
kdlog(n+ 1)e. A configuration of M is then encoded by 2k+ 3 binary strings of
length less than dlog(n+ 1)e:

1. one string, of constant length, encodes the machine state,

2. one string, of length dlog(n+ 1)e, encodes the pointer tape,

3. one string, of length dlog(n + 1)e, encodes the head of the pointer tape. It
contains 0 symbols everywhere, but on the position of the head (where it
contains a 1).

4. k strings, of length dlog(n+ 1)e, encode the content of the work tape, and

5. k strings, of length dlog(n+ 1)e, encode the position of the work tape head,
with (as for the pointer tape) 0 everywhere but on the position of the head.

Reading and Updating a configuration. Linear scanning of the recursive argu-
ment in tropical recursion, corresponding to case 2 of the definition of tropical
recursion on notations, is used to read and to update the encoding of the con-
figuration. In order to do so, one defines L-tropical functions for

1. encoding boolean values true and false, boolean connectives, and if then

else constructs,

2. scanning an input string until a 1 is found, and computing the corresponding
prefix sequence,

3. computing left and right extractions of sub-strings of a string, for a given
prefix,

4. replacing exactly one bit in a binary string, whose position is given by a
prefix of the string.

These functions are given in the Appendix. With all these simple bricks, and
especially with the in-place one-bit replacement, one is then able to read a con-
figuration, and to update it, with L-tropical functions. None of these L-tropical
functions uses recursion on values.

Computing the Transition map of the Machine. Given the functions above, the
transition map Next of the machine is then computed by a simple L-tropical
function of width (2k + 3): For a recursive argument s of size dlog(n + 1)e,
Next(| s, c | |) computes the configuration reached from c in one transition
step.

Simulating the RATM. The simulation of the RATM is then obtained by iter-
ating its transition map a suitable number of times. The time upper bound is
here obtained by nesting k tropical recursive functions on values: on an input of
size dlog(n + 1)e, the unfolding of these recursive calls takes time nk. At each
recursive step, this function needs to apply the transition map. The transition
map having width (2k + 3), we use here a mutual recursion scheme, of width

(2k + 3). Again, for a recursive argument s of size dlog(n+ 1)e, we define

Step1(| ε, s, c | |) = c

Step1(| s(t | | |), s, c | |) = Next(| s, Step1(| t,n, c | |) | |)
Step2(| ε, s, c | |) = c

Step2(| s(t | | |), s, c | |) = Step1(| s, s,Step2(| t, s, c | |) | |)
...

Stepk(| ε, s, c | |) = c

Stepk(| s(t | | |), s, c | |) = Stepk−1(| s, s,Stepk(| t, s, c | |) | |).

Replacing s by the Offset in the above gives the correct bounds. Finally,
one simply needs to use simple L-tropical functions for computing the initial
configuration, and reading the final configuration. ut

5 Logarithmic Space, Polylogarithmic Time

Definition 3. LP-tropical functions
The class of LP-tropical functions is the closure of our basic tropical pointer
functions, under tropical composition and tropical mutual recursion on notations.

Theorem 4. The class of LP-tropical functions is the class of functions com-
putable in logarithmic space, polylogarithmic time, with logarithmic size output.

Proof. Mutual recursion on notations, with recursive arguments of logarith-
mic size, are computable in polylogarithmic time, following similar arguments
as in the proof of Theorem 3. The converse follows from the simulation in the
proof of Theorem 3 above, where mutual recursion on values for the functions
Stepi is replaced by mutual recursion on notations. ut

6 Alternation

In this section we extend the approach of Leivant and Marion [12] to our setting.
Let us define a similar tropical recursion on notations with substitutions. Note
that the tropical tiering discipline prevents using substitutions in case 2 of the
tropical recursion on notations. Substitutions are therefore only defined for case
1 of this recursion scheme.

Tropical Recursion with substitutions on Notations. Given functions h, g0, g1,
k1 and k2,

f(x | ε, u,y | z | t) = h(x | u,y | z | t)
f(x | sa(r | | |),y | u, z | t) = ga(x | r, f(x | r, k1(| u | |),y | z | t),

f(x | r, k2(| u | |),y | z | t), | y | z | t) .

Tropical Recursion with substitutions on Values. Given functions h, g, k1 and
k2,

f(x | ε, u,y | z | t) = h(x | u,y | z | t)
f(x | s(r | | |),y | u, z | t) = g(x | r, f(x | r, k1(| u | |),y | z | t),

f(x | r, k2(| u | |),y | z | t), | y | z | t) .

Again, as above, we assume these recursion schemes to be mutual.

Definition 4. P-tropical functions
The class of P-tropical functions is the closure of our basic tropical pointer func-
tions, under tropical composition, tropical recursion on notations and on values,
and tropical recursion with substitutions on notations and on values.

Theorem 5. The class of P-tropical functions with binary output is the class
P.

Proof. The result follows from Alogspace = P [5], and Theorem 3. Sub-
stitutions in the tropical recursion scheme on notations amounts to alternation.
Restriction to decision classes instead of function classes comes from the use of
alternating Turing machines, which compute only decision problems.

Let us first see how to simulate a logspace alternating machine with P-tropical
functions. Recall the notations and functions of the proof of Theorem 3. Since
we now need to simulate a non-deterministic, alternating machine, we assume
without loss of generality that we now have two kinds of machine states:

– non-deterministic universal
– non-deterministic existential

and that non-deterministic transitions have at most two branches. Therefore, we
also assume that we have one predicate that determines the kind of a state in
a configuration c: IsUniversal(| s, c | |). This predicate is assumed to output
false or true.

We also assume that we have two transition maps, Next0(| s, c | |), and
Next1(| s, c | |), for computing both branches of non-deterministic transitions.
For deterministic transitions, we assume both branches are the same. Finally,
we also assume we have a predicate isPositive(| s, c | |), which returns true
if the configuration c is final and accepting, and false otherwise.

We define now, with substitutions, the following:

Accept(| ε, s, c | |) = isPositive(| s, c | |)
Accept(| s(t), s, c | |)) = match IsUniversal(| s, c | |) with
|true− > AND (| Accept(| t, Next0(| s, c | |), c | |),

Accept(| t, Next1(| s, c | |)) | |)
|false− > OR (| Accept(| t, Next0(| s, c | |)), c | |),

Accept(| t, Next1(| s, c | |)) | |) .

Then, for t and s large enough, and an initial configuration c,
Accept(| t, s, c | |) outputs the result of the computation of the machine. Fi-
nally, nesting up to k layers of such recursion on values schemes allows, as in the
proof of Theorem 3, to simulate a polynomial computation time.

The other direction is pretty straightforward: For any instance of a recur-
sion scheme with substitutions, for any given values r, u, x, y and z, each bit
of ga(x | r, f(x | r, k1(| u | |),y | z | t), f(x | r, k2(| u | |),y | z | t), | y | z | t)
is a boolean function of the bits of f(x | r, k1(| u | |),y | z | t) and
f(x | r, k2(| u | |),y | z | t). Hence, it can be computed by an alternating pro-
cedure. The space bound follows from the bound on the size of the strings,
provided by the tiering discipline. ut

Definition 5. NC-tropical functions
The class of NC-tropical functions is the closure of our basic pointer tropical
functions, under tropical composition, tropical recursion on notations and trop-
ical recursion with substitutions on notations.

Theorem 6. The class of NC-tropical functions with binary output is NC.

Proof. The result follows from A(logspace, polylogtime) = NC [16], and
Theorem 3. Substitutions in the tropical recursion scheme on notations amounts
to alternation. The proof is similar to that of Theorem 5, where additionally,

– The time bound on the computation of the machine needs only to be poly-
logarithmic, instead of polynomial. As in Theorem 4, tropical recursion on
notations suffices to obtain this bound, and tropical recursion on values is
no longer needed.

– For the other direction, any bit of ga(x | r, f(x | r, k1(| u | |),y | z | t),
f(x | r, k2(| u | |),y | z | t), | y | z | t) is again a boolean function of the
bits of f(x | r, k1(| u | |),y | z | t) and f(x | r, k2(| u | |),y | z | t). Here,
this boolean function can be computed by a boolean circuit of polyloga-
rithmic depth, hence, by an alternating procedure in polylogarihtmic time.
The arguments behind this remark are the same as the ones in the proof of
A(logspace, polylogtime) = NC. ut

7 Concluding Remarks

Theorems 3, 4, 5, and 6 rely on mutual recursive schemes. As stated above,
we use these mutual schemes to express a space computation of size k log(n) for
any constant k, with binary strings of length at most log(n) + c. If we were to
use only non-mutual recursion schemes, we would need to have longer binary
strings. This can be achieved by taking as input to our functions, not simply
the Offset, but some larger string #k(Offset), where #k is a function that
appends k copies of its argument.

Finally, it remains to be checked wether one can refine Theorem 6 to provide
characterizations of the classes NCi as in [13]. A first step in this direction is to
define a recursion rank, accounting for the nesting of recursion schemes: then,
check wether NC-tropical functions of rank i are computable in NCi. Conversely,
check also whether the simulation of Theorem 3 induces a fixed overhead, and
wether NCi can be encoded by NC-tropical functions of rank i + c for some
constant c small enough.

References

1. Bill Allen. Arithmetizing uniform NC. Ann. Pure Appl. Logic, 53(1):1–50, 1991.
2. Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characteriza-

tion of the polytime functions. Computational Complexity, 2:97–110, 1992.
3. Stephen A. Bloch. Function-algebraic characterizations of log and polylog parallel

time. Computational Complexity, 4:175–205, 1994.
4. Guillaume Bonfante, Reinhard Kahle, Jean-Yves Marion, and Isabel Oitavem. Two

function algebras defining functions in NCk boolean circuits. Inf. Comput., 248:82–
103, 2016.

5. Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

6. P. Clote. Sequential, machine-independent characterizations of the parallel
complexity classes ALOGTIME, ACk, NCk and NC. Feasible Mathematics,
Birkhaüser, 49-69, 1989.

7. A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel,
editor, Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, pages 24–30. North-Holland, Amsterdam, 1962.

8. Martin Hofmann. Linear types and non-size-increasing polynomial time computa-
tion. Inf. Comput., 183(1):57–85, 2003.

9. Martin Hofmann and Ulrich Schöpp. Pure pointer programs with iteration. ACM
Trans. Comput. Log., 11(4):26:1–26:23, 2010.

10. Satoru Kuroda. Recursion schemata for slowly growing depth circuit classes. Com-
putational Complexity, 13(1-2):69–89, 2004.

11. Daniel Leivant. A foundational delineation of computational feasiblity. In Proceed-
ings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91),
Amsterdam, The Netherlands, July 15-18, 1991, pages 2–11. IEEE Computer So-
ciety, 1991.

12. Daniel Leivant and Jean-Yves Marion. Ramified recurrence and computational
complexity ii: Substitution and poly-space. In Leszek Pacholski and Jerzy Tiuryn,
editors, CSL, volume 933 of Lecture Notes in Computer Science, pages 486–500.
Springer, 1994.

13. Daniel Leivant and Jean-Yves Marion. A characterization of alternating log time
by ramified recurrence. Theor. Comput. Sci., 236(1-2):193–208, 2000.

14. Daniel Leivant and Jean-Yves Marion. Ramified Recurrence and Computational
Complexity IV : Predicative Functionals and Poly-Space. Information and Com-
putation, page 12 p, 2000. to appear. Article dans revue scientifique avec comité
de lecture.

15. J. C. Lind. Computing in logarithmic space. Technical report, Massachusetts
Institute of Technology, 1974.

16. Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365–
383, 1981.

Appendix

In this section we provide the definitions of the L-tropical functions used in the
proof of Theorem 3, and the subsequent theorems. We also provide more details
on the RATM simulation performed in this proof.

Some Assumptions on the RATM being simulated

Let f be a function computable in deterministic space k log(n), with output of
size k log(n), computed by a RATM M . We assume the following.

– The machine M uses one pointer tape, of size dlog(n+ 1)e, and exactly one
computation tape.

– For every input x of length n, the machine uses exactly k.dlog(n+ 1)e cells
on the computation tape.

– At the start of the computation, the computation tape is as follows.
1. The computation tape is on a cell containing the 0 symbol, followed by
k.dlog(n+ 1)e − 1 0 cells on the right.

2. The cells on the left of the computation head, and the cells on the right
of the k.dlog(n+ 1)e 0 symbols, contain only blank symbols.

– Moreover, during the computation, the following holds.
1. The computation head never goes on any cell on the left of its initial

position.
2. The machine never writes a blank symbol.

– The same assumptions are made for the pointer tape.

It is easy to check that these assumptions are benign. They enable us to
ignore the blank symbol in the simulation, and have a strict correspondence
between the binary symbols of the RATM and those of the L-tropical algebra.

Encoding Machine Configurations

We need to encode the four following datas:

1. Machine state. Assume M has S states, with initial state numbered 0 and
final state numbered 1. A machine state t is encoded by a binary string of
length dlog(S + 1)e, consisting in the binary encoding of t, padded with 0
symbols if necessary.

2. Computation tape. We only need to encode the k.dlog(n + 1)e cells on the
right of the initial head position (including itself). These cells never contain
a blank symbol during the computation, we can therefore encode them in
binary. We encode them in a k-tuple of binary sequences of length dlog(n+
1)e.

3. Computation head. The position of the computation head is encoded by a
binary string of length k.dlog(n + 1)e, with a 1 symbol on the position of
the head, and 0 symbols everywhere else. This binary sequence is given by
a k-tuple of binary strings of length dlog(n+ 1)e.

4. Pointer tape. The pointer tape has size dlog(n+ 1)e: it is therefore encoded
by a binary string of length dlog(n+ 1)e.

5. Pointer tape head. The position of the pointer tape head is encoded by a
binary string of length dlog(n+ 1)e, with a 1 symbol on the position of the
head, and 0 symbols everywhere else.

The encoding of the machine configuration is then given by the (2k+3)-tuple
of the above binary strings.

Notation-wise, in our simulation, we use the variable name s for recursion
schemes on the size of the input: that is, such recursion schemes are meant to be
initially called with an argument s = Offset of length L(n). Similarly, we use
the variable name t for recursion schemes on the computation time.

L-tropical Functions for in-place Read/write Instructions

Boolean values and connective We encode booleans false and true with
s0(ε | | |) and s1(ε | | |) respectively. We define the following match construct

match x with

| s0(r | | |)− > A

| s1(r | | |)− > B

| ε− > C

as the following degenerate tropical recursion on notations.

match(| s0(r | | |), a, b, c | |) = a

match(| s1(r | | |), a, b, c | |) = b

match(| ε, a, b, c | |) = c

Then, if then esle, and AND and OR boolean functions are obtained by
trivial applications of the match construct above. We also use a function isempty,
for testing if a string equals ε.

1-bit concatenation Adding one-bit in first position.

1BC(y | x | |) = match x with

| s0(t | | |)− > s0(y | | |)
| s1(t | | |)− > s1(y | | |)
| ε− > y

For notational purposes we sometimes use hd(| | | x).y instead.

Tail extraction Extracting the tail of a string, for a given prefix length.

Te(| sa(x | | |) | e |) = tl(| | Te(| x | e |) |)
Te(| ε | e |) = e

Bit extraction Extracting one bit of a string, for a given prefix length.

Be(| | | x, e) = hd(| | | Te(| x | e |))

Head extraction Extracting the head a string, for a given prefix length.

He(| sa(| | | x) | | e) = Be(| | | sa(| | | x), e).He(| x | | e)
He(| ε | | e) = ε

Prefix length Computation Extract the initial subsequence of 0 only symbols,
followed by the first 1. This function is used for computing the prefix length
corresponding to the position of the head in our encoding of the tapes of the
RATM.

Prefix(| ε | |) = ε

Prefix(| s0(| | | x) | |) = s0(Prefix(| x | |) | | |)
Prefix(| s1(| | | x) | |) = s1(ε | | |)

Length Comparison A predicate for comparing string lengths

SameLength(| x, y | |) =

AND(| isempty(| Te(| x | | y) | |), isempty(| Te(| y | | x) | |) | |).

One bit replacement Replacing exactly one bit in a string e by the first bit of b,
for a given prefix length x.

Cb(| sa(x | | |) | | y, e, b) =
if SameLength(| sa(x | | |), y | |)

then hd(| | | b).Cb(| x | | y, e, b)
else Be(| | | Te(| sa(x | | |) | e |), e).Cb(| x | | y, e, b)

Cb(| ε | | y, e, b) = ε

and

ChBit(| s | | x, e, b) = Cb(| s | | Te(| x | | e), e, b)

for any s with |s| = |e|.

Reading and Updating a Configuration

The Prefix function above computes the prefix corresponding the position of
the head of the pointer and of the computation heads in our encoding. Used in
conjunction with the boolean constructs on the k strings encoding the computa-
tion tape, and in conjunction with the bit extraction function Be above, it allows
to read the current symbol on the computation tape, and on the pointer tape,
of the encoding of the RATM. Updating these two symbols is performed with
the ChBit in-place one-bit replacement function.

Similarly, moving the heads of these two tapes can easily be performed with
this ChBit, in conjunction with the tl and s1 basic tropical functions.

Let us now describe how we can read and update the machine state: This
machine state is encoded in binary by a string of length dlog(S + 1)e, where S
is the number of the states of M . The length of this string is fixed, and does
not depend on the input. Therefore, we can safely assume that we have a fixed
decision tree of depth dlog(S+ 1)e, for reading each bit of this string. The leaves
of this decision tree are in one-to-one correspondence with the states of M . This
decision tree can moreover be encoded with basic tropical functions and tropical
composition only. Similarly, overwriting the machine state can be done with
basic tropical functions and tropical composition only.

Finally, when in an input reading state, the input tape symbol is obtained
simply by using the basic tropical function Read, with the pointer tape as argu-
ment.

The transition map Next of the RATM is then obtained by a boolean com-
position of the above functions. Similarly, computing an encoding of the initial
configuration, and reading a final configuration, is simple.

