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Abstract. This paper is devoted to non-uniform approximations for the radiative properties of gases 

based on effective scaling factors. These methods are recognized as more accurate than other 

established techniques such as the Curtis-Godson approximation in statistical narrow band 

modeling, or the Correlated-k assumption. An analytical solution is proposed to calculate these 

scaling factors and a comprehensive description of the method to derive its parameters from high 

resolution spectra is given. Practical implications of the results of the present work are quite large, 

as non-uniform techniques based on effective scaling factors can be applied to any model form. 

The main value of this work is to render possible and computationally realistic the use of this 

category of non-uniform approximations for radiative heat transfer calculations.  

 

KEYWORDS:  gas radiation, non-uniform, effective scaling factor, l-distribution, scaled models, 

Scaled-k. 
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NOMENCLATURE 

EN  radiative energy emitted in a given spectral region  

F  distribution function of spectral scaling coefficients – Eq. (7) 

g  cumulative k-distribution – Eq. (5) 

l    inverse of the transmission function (cm) as defined in Section 2 

L  gas path length (cm) 

M  joint distribution function of spectral and absorption coefficients – Eq. (10) 

 u L    effective (path dependent) scaling factor 

 u L L  effective scaling function (cm) – Eq. (14) 

u    spectral scaling coefficient 

U  constant scaling factor 

x  abscissas of a Gauss-Legendre quadrature over [0,1]  

Greek symbols 

 k   set of wavenumbers  1 such that k k dk       

 k   width of the set of wavenumbers  1 such that k k dk       

   spectral absorption coefficient (cm-1) 
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   wavenumber (cm-1) 

S     
1

1
s

s

d



 




 
  

  
  generalized mean absorption coefficient with real exponent s  

SP   Spearman’s rank correlation coefficient – Eq. (11) 

   transmission function; transmissivity 

  weights of a Gauss-Legendre quadrature over [0,1]  

  dummy variable inside [0,1] 

Subscripts 

12  related to the non-uniform path 1 2L L L   

b  blackbody 

P  Planck mean 

R  Rosseland mean 

S associated with the set of wavenumbers defined as 

 1 such that S S Sd          

Superscripts 

eff  effective 

GG  gray gas 
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1,2  state 1 or 2 of the gas 

   width of the spectral interval for the averaging of spectral properties 

Other notations 

f g  represents the functional composition of f and g i.e.    f g x f g x      

 ,ij p qL L     
1

exp i j

p qL L d 



  




  
    Ex.     1 1

11 1 2 1 2

1
, expL L L L d

 



   






  
   

Abbreviations 

EGA   Emissivity Growth Approximation - Ref. [4] 

GWN   Godson-Weinreb-Neuendorffer’s method - Refs. [1,3] 

LBL   Line-By-Line 

MoD   Measure of Dependence – Refs. [12,13] 

SNB   Statistical Narrow Band model – Ref. [1] 
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1. INTRODUCTION 

For many years, the scaling approximation, which consists in assuming that the ratio between two 

spectra in distinct thermophysical states is a constant with respect to the wavenumbers, was the 

only possible way to handle radiative heat transfer problems in non-uniform gaseous media. This 

simple idea, which is known to provide inaccurate results in a general frame as gas spectra in 

distinct states are not linearly dependent, is however the building block of many non-uniform 

treatments proposed all along the past century. Various techniques are in fact derived from the 

scaled view such as:  

1/ non-uniform approximations involving two instead of one scaling coefficient, like in the Curtis-

Godson (CG) approximation [1],  

2/ the so-called Correlated-k technique [2], which mostly consists of the definition of scaling 

coefficients that depend on the values of the absorption coefficient in one particular state chosen 

as a reference. 

3/ the Godson-Weinreb-Neuendorffer GWN [1,3] / Emissivity Growth Approximation EGA [4] or 

Scaled-k [5] approaches, which do not try to provide an explicit way to evaluate effective scaling 

factors but instead rely on an implicit definition of these quantities (see Eq. (13) later in this paper).   

These last methods are widely recognized as more accurate than those based on explicit definitions 

of finite numbers of scaling coefficients: see Ref. [1], chapter 12, in which comparisons between 

the GWN and CG methods are described; or Ref. [5] where it is shown that the Scaled-k approach 

outperforms the Correlated-k method for radiative heat transfer in highly non-uniform situations. 

Despite this advantage of non-uniform techniques based on effective scaling factors, it must be 

recognized that this category of methods has not embraced the same interest as other, in fact usually 
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simpler, non-uniform approximations. This is mainly because, in general, solving the implicit 

equation Eq. (13) to determine the effective scaling factor involves iterative numerical techniques 

that increase significantly the computational cost of the approach compared to explicit methods. 

Recently, the l-distribution approach was proposed [6]. This approximate model for the radiative 

properties of gases is founded on a formalism that: 1/ provides accurate approximations in uniform 

media and 2/ allows solving very efficiently the implicit equation involved in the definition of 

effective scaling factors. While developing this method, the author of the present paper noticed that 

the literature on effective scaling approximation is quite meager. Indeed, the non-uniform 

approximation (viz. the implicit equation) is always introduced in an intuitive way without 

specification of the assumptions that may lead to this particular equation. Accordingly, the existing 

literature on effective scaling factors does not permit studying in depth some of their properties 

(the functional form of the solution, for instance) nor it can be helpful to improve the technique 

further.  

The aim of the present paper is to provide insights into the assumptions made to extend the usual 

concept of constant scaling coefficients to effective ones. Starting from a truly scaled situation, we 

first explain how the concept of constant scaling coefficient can be extended to real spectra. The 

main assumption required is shown to be the statistical independence between a spectrum, chosen 

as a reference, and the spectral scaling coefficients defined as the ratio between any other spectrum 

and this reference.  Based on this assumption of statistical independence, an explicit mathematical 

formula – Eq. (27) -, which is the core finding of the present work, is derived for effective scaling 

functions. The full method to construct this function for radiative heat transfer applications is also 

described and assessed against reference LBL calculations in non-uniform situations. 



8 
 

The main practical implication of the results provided in the present work is that effective scaling 

functions require the specification of parameters that are hard to define without optimization. To 

some extent, one faces the same problem as encountered in Correlated-k models in which the 

existence of a strictly increasing function that associates spectra in distinct states is assumed. This 

function cannot be identified directly from LBL data because it is founded on assumptions about 

the statistical properties of gas spectra, not on a true description of high resolution data. 

Accordingly, the only way to define this function to associate spectra in distinct states is implicit, 

by using a relationship that involves the cumulative distributions of the absorption coefficients in 

the various thermophysical states. In the same way, within the frame of scaled models with variable 

scaling factors, the most relevant approach to derive effective scaling factors is to solve the implicit 

equation directly. This makes the l-distribution approach undoubtedly the most efficient and 

accurate method for this purpose. This statement is discussed further in the paper. The paper also 

provides an explicit formulation to solve this equation, which can be used with any model form.  

The main value of the present paper is to provide, to the best of the author’s knowledge, the first 

detailed analysis of models based on effective scaling factors, from the derivation of the scaling 

function up to the analysis of the conditions required between spectra for this formulation to be 

acceptable. Results from the present work have strong implications for future developments of the 

l-distribution approach but are not restricted to this approximate model: scaled-k methods, such as 

FSSK [5] or the recently proposed Scaled-SLW modeling [7], can benefit directly from results 

described here. 

The paper is organized as follows. In the second section, the concept of effective scaling models is 

introduced. A simple case is treated in order to illustrate some characteristics of this kind of 

approaches. This section ends with a detailed derivation of effective scaling functions within the 
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frame of narrow band models. In the third section, the full method to evaluate the coefficients that 

appear in the effective scaling function is described. Detailed statistical analysis of spectra together 

with their correlation with spectral scaling coefficients are given. Comparisons of the approximate 

model with LBL calculations show the relevancy of the method proposed for radiative heat transfer 

calculations. 

All derivations provided in this work are restricted to the two-cell problem. This analysis is 

sufficient for application together with all existing methods based on effective scaling factors 

which either: 1/ assume the existence of some reference state and then scale any other state to this 

reference [5,7]; or, 2/ propagate the information about scaling factors along a non-uniform path in 

a step by step manner by coupling adjacent layers [3,4,6,11]. In both cases, only two distinct states 

of the gas are involved. 
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2. MODEL OF EFFECTIVE SCALING FUNCTIONS  

2.1. Introduction to the concept of effective scaling factors / functions 

Let us start by reminding some results related to scaled spectra.  For this purpose, we consider a 

non-uniform layer discretized in two homogeneous isothermal sub-paths: the first one has a length 

1L   and the gas is in the thermophysical state 1 , the second path has a length 2L   and the state of 

the gas is 2 . The spectral absorption coefficients in the two layers are 
1

   and 
2

  respectively. 

We will restrict here our analysis to narrow bands   over which: 1/ the Planck function is 

constant; 2/ absorption coefficients 
1

   and 
2

   are strictly positive. 

In the case of truly scaled spectra, the ratio 
2 1 U     is a constant with respect to the 

wavenumbers. The transmissivity of the non-uniform path 1 2L L L   averaged over the narrow 

band  , written  12 1 2,L L 
, is: 

      1 2 1

12 1 2 1 2 1 2

1 1
, exp expL L L L d L U L d

  

 

     
 



 

             (1) 

From Eq. (1), we can observe that in the particular case 1 0L  , the following equality holds:  

       2 1

12 1 2 2 2 2 2 1 2

1 1
0, exp expL L L L d U L d U L  

 

 

      
 

  

 

               (2) 

It is possible to spread the scaled view from a constant to a non-constant scaling coefficient by 

using an approach similar to the widely popular k-distribution method [2]. Indeed, this technique 

starts from the concept of gray gas, for which the absorption spectrum    is represented by a 

single value of the absorption coefficient Pk  : 
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        ,

0

exp expGG

P PL k L k L dH k k


          (3) 

and extends it to real spectra by a change of variable of integration: 

        
0

1
exp expL L d k L dg k





  








    
    (4) 

where: 

      
1

g k k H k d 



  




    
 P  (5) 

is the cumulative k-distribution. In Eqs. (3,5), H is the Heaviside step function and notation  YP  

represents the probability of the “event” Y defined as the fraction of the spectral interval   over 

which Y is true. 

In a similar way, it is possible to extend the scaled model with constant scaling factor: 

        2 1 1

0

L U L u L dH u U    


         (6) 

to real spectra by simply replacing the Heaviside step function by the cumulative distribution of 

spectral scaling coefficients 
2 1u     defined as: 

      
1

F u u u H u u d 








    
 P   (7) 

This yields in the uniform case, i.e. from Eq. (2): 
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      2 1

0

L u L dF u  


    (8) 

and similarly, for the non-uniform path 1 2L L L  , viz. starting from Eq. (1): 

        1 2

12 1 2 1 2 1 1 2

0

1
, expL L L L d L u L dF u 

 



    




 



     
    (9) 

It is important to notice that the transition from Eq. (6) to Eq. (8) is exact if the gas spectrum 
1

 , 

which then plays the role of a reference state, and the spectral scaling coefficient 
2 1u     are 

statistically independent. This is because the joint distribution of 
1

  and 
2 1u    defined as: 

        1 11
, ,M k u k u u H k H u u d   



  




       
 P  (10) 

is in this particular case equal to the product of distributions F, Eq. (7) and g, Eq. (5), viz. 

     ,M k u g k F u  . This joint distribution is involved in the exact calculation of  12 1 2,L L 
 

in distribution form, as explained in Appendix. 

The relevancy of the change of variable involved between Eq. (6) and Eq. (8) is thus strongly 

connected with the assumption of statistical independence between  
1

  and 
2 1u    . This 

assumption can be assessed by calculating the Spearman’s coefficient SP  defined as (see 

Appendix): 

      1 1

SP

1
, 12 3u g F u d   



   




   
    (11) 
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Indeed, as SP  is a so-called Measure of Dependence MoD [12,13], it takes by definition values 

between -1 (when the two variables are associated through a strictly decreasing function – variables 

are then said counter-monotonic) and 1 (when they are related to each other by a strictly increasing 

function – variables are then said co-monotonic). High absolute values of Spearman’s coefficients 

specify strong relationships (increasing or decreasing) between the variables; small ones are 

representative of a weak dependence. Null values of Spearman’s coefficients indicate the statistical 

independence between the variables. Calculating Spearman’s coefficients thus allows appraising 

to which extent the assumption of statistical independence between 
1

  and 
2 1u    is correct 

or not. By extension, it provides information about the possible use of the approximation set by 

Eq. (9) for the calculation of the transmissivity of the non-uniform path.  

The main shortcoming of using Eqs. (8,9) for radiative heat transfer applications is that they require 

the specification of the distribution function of spectral scaling coefficients which is usually not 

known. This problem can be circumvented by noticing that the present formulation can be 

reformulated in implicit form by application of the mean value theorem. This provides a set of 

equations similar to the one proposed intuitively by Godson in 1953 [8]. Details and comments are 

given in Appendix. This leads to the following approximation of  12 1 2,L L 
: 

       1

12 1 2 11 1 2 2 1 2 2

1
, , expL L L u L L L u L L d 





   


 



             (12) 

where the effective scaling factor  2u L , which depends on the length of the gas path in the column 

2L , is defined as solution of the implicit equation:  
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      1

2 2 2 2 1 2 2

1
expL u L L d u L L 





   


 



            (13) 

As the l-distribution formalism is well suited to non-uniform approximations based on effective 

scaling factors, it will be used in the subsequent developments. Eq. (13) will thus be written in l-

distribution form [6] as: 

    1 2 2 2 2L u L L   l  (14) 

where 1l  is the inverse of the transmissivity function of the gas in the thermophysical state 1   

defined as  1 1 1 1L L  l . From now on, the function  1 2 2L 
l  will be called the effective 

scaling function and  2u L  the effective scaling factor.  

Eqs. (12-14): 1/ mostly extend Eqs. (1,2) to non-scaled spectra through the definition of a path 

dependent scaling factor, 2/ are closely related but not rigorously equivalent to Eqs. (8,9), as 

explained in Appendix.  

Methods based on effective scaling factors thus intuitively and implicitly assume the statistical 

independence between absorption spectra and spectral scaling coefficients. In practice, this leads 

to symmetry issues because, in most cases, this assumption is more relevant in one direction, which 

corresponds to a particular choice of one of the two states as a reference, than in the other one. This 

property is illustrated in a simple case in the next section. 

2.2. Detailed analysis in a simple case 

The aim of this section is to study a particular situation in order to illustrate some characteristics 

of approximate models based on effective scaling factors. For this purpose, we consider a non-
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uniform case for which the gas spectrum in state 1 is gray but the second one, in state 2, can be of 

any form.  

With this couple of states, one has two possible choices for the definition of a reference spectrum 

and corresponding spectral scaling coefficient: the couple 
1 constant ref

     and 

2 constantu   (Case S1) or 
2 ref

    and 
1 2 constant / refu       (Case S2).   

It is easy to check that application of Eqs. (12,13) in case S1 provides the exact solution (see for 

instance Appendix B of Ref. [11]). Furthermore, in this case: 

-  and ref u   are statistically independent, because the reference spectrum does not depend 

on wavenumbers whereas the scaling coefficient varies strongly with  . The Spearman’s 

coefficient for this case is thus equal to 0; 

- Function    
 2 2

1 2 2 2 2

ln

constant

L
L u L L



 




    l  is concave (concave down): this is a 

consequence of known properties of the so-called Curve-Of-Growth  2 2ln L   [1]. This 

constraint on function  1 2 2L 
l is important to warrant the approximation set by 

Eqs. (12-14) to provide a physically realistic solution. Indeed, the definition of a scaling 

factor mostly corresponds to an homogenization method where a non-uniform path is 

“transformed” into an equivalent uniform layer. Guaranteeing  1 2 2L 
l  to be concave 

(concave down) ensures that this equivalent path actually behaves like a uniform gas layer. 

This point was raised and studied in Ref. [11]. 

If we now consider Case S2, we can see that:  
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- 1 2 constant / refu       is a decreasing function of the reference spectrum. The 

Spearman’s coefficient is in this case -1; 

- It is difficult to give a priori information about the possible accuracy or physical meaning 

of the non-uniform approximation. 

Accordingly, in this simple case, there exists one obvious choice of reference state (S1) which is 

more relevant than the other one (S2): it corresponds to the couple  and ref u   that is statistically 

independent and for which Eqs. (8,9) are exact. We will extend this analysis to the general case in 

the next section, where an explicit formula for effective scaling functions is also proposed.   

2.3. Mathematical formulation of effective scaling functions 

Let us define  k  as the width of the set of wavenumbers  1 such that k k dk       

where k is a possible value of the spectral absorption coefficient 
1

  and dk is a small positive 

increment.  

The transmissivity of the uniform path 2L  in the gas in state 2  averaged over  k  is: 

    
 

 
   

 
 

2

2 2 2 2

1 1
exp exp

k

k k

L L d k u L d
k k



 

 

   
 



 

     
     (15) 

where 
2 1 2u k        is the spectral scaling coefficient defined as the ratio between the spectra 

in the two states. 
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As soon as the narrow band   does not contain any transparency region of the gas, the spectral 

scaling coefficient takes values inside a bounded interval    min max;u k u k    and can be written as

   min minu u k u u k    .  This yields: 

      
 

  
 

2 2 min 2 min 2

1
exp exp

k

k

L k u k L k u u k L d
k







 






            (16) 

One can write the integral at the RHS in Eq. (16) as: 

 
 

  
 

 min 2 2

1
exp exp ,

k

k u u k L d k R k L
k










            (17) 

in which we have introduced the notation: 

  
 

  
 

2 min 2

1 1
, ln exp

k

R k L k u u k L d
k k










 
         

  (18) 

Function  2,R k L  can be equivalently written as: 

  
 

  
 

2 min 2

1 1
, ln 1 1 exp

k

R k L k u u k L d
k k










 
            

 
  (19) 

Let us write  , 2bI T the Planck function at temperature 2T  assumed to be constant over the narrow 

band  . The quantity     
 

, 2 min 21 expb

k

I T k u u k L d 






         represents the amount of 

radiative energy EN  emitted in the spectral region defined as 

  1

min such that  and 0k k dk u u k         . This quantity can be reasonably 
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considered small compared to the energy bEN  emitted by a blackbody over the same spectral 

interval which is    , 2b bEN I T k   . Accordingly, Eq. (19) can be approximated as:  

  
 

  
 

2 min 2

1 1 1
, ln 1 1 exp

b b k

EN EN
R k L k u u k L d

k EN k EN k k









 
                



  (20) 

This provides the following formula for the effective scaling function over the interval  k : 

      
 

  
 

min 2 2 min 2 min 2

1 1
, 1 exp

k

u k L R k L u k L k u u k L d
k k










             

  (21) 

Let us now consider the optically thin limit for which 2 0L  . In this case, the following estimate 

of Eq. (21) can be used as an approximation of the effective scaling function over  k : 

  
 

  
     

min 2 min 2 2

1 1 1
1 exp

k k

u k L k u u k L d u d L
k k k

 

 

 
 

 

               

  (22) 

The integral at the RHS in Eq. (22) is the mean value of spectral scaling coefficients over  k . 

If this value is the same for all k, then mean absorption coefficients inside distinct intervals  k  

and  ' , 'k k k   are translated by the same amount between the two states: accordingly, gas 

spectra averaged over  k  can be treated as scaled since a unique scaling factor can be used for 

all these intervals.  
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A similar analysis can be made at the optically thick limit for which: 

  
 

  
 

 min 2 min 2 min 2

1 1
1 exp

k

u k L k u u k L d u k L
k k










            (23) 

Gas spectra can be treated as rigorously scaled once averaged over  k  for large gas path 

lengths as soon as  minu k  is the same for all k. 

This shows that if the reference absorption spectrum and the spectral scaling coefficients are 

statistically independent, then the functional form set by Eq. (21), which depends on k, can be 

represented, at the optically thin and thick limits, by a unique function that does not depend on the 

values taken by the absorption coefficient. 

This property can be extended to any gas path length.  However, as functions    
min

min 2 2,

u

u k L R k L



  

are dependent on k-values through the non-linear dependence of  2,R k L  with k, an additional 

assumption is required. In order to extend the functional form Eq. (21) to the entire narrow band 

and only keep its dependence with respect to the length of the gas path 2L , we will assume here 

for simplicity that one can define a mean value of k, written from now on S , such that for any 

length: 

      2 2 1 min 2 2,S SL u L R L           (24) 

Notice that a possible dependence of minu  and R with S  is retained explicit in this formulation 

because in practice gas spectra and scaling coefficients are never rigorously independent: 

Spearman’s coefficients are not null when real spectra are considered. Letting these quantities as 
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non-constant will allow us to search for their best values through an optimization process, as will 

be discussed in the next section.  

The derivation provided in this section can be applied to any model form. However, we will use in 

the subsequent developments the l-distribution formalism [6] which is particularly well suited to 

non-uniform approximations based on effective scaling functions. Accordingly, Eq. (21) is 

rewritten: 

 

   
 

  
 

      

1 2 2 min 2 min 2

min 2 min 2

0

1 1
1 exp

1
1 exp

S

S S S

S S

S S S S

S

L u L u u L d

u L u u L dF u





 

    
  

  








         

        





l

 

  (25) 

where SF  is the distribution function of spectral scaling coefficients restricted to the spectral 

interval  1 such that S S Sd         . It may be close but somewhat different from the 

distribution of scaling coefficients over the narrow band in cases of weak dependence i.e. for non-

zero values of Spearman’s coefficients. SF  is defined as: 

    
 

 
 

1
 and 

S

S S

S

F u u u H u u d  

 

  
 



     
   (26) 

For practical use (see the next section), we will rewrite the effective scaling function Eq. (25) under 

the following form: 

         
1

1

1 2 2 min 2 min 2

0

1
1 expS S S S

S

L u L F u L d     


         l  (27) 
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Transition from Eq. (25) to Eq. (27) is done by application of the change of variable 

     10,1S SF u u F     . It can be noticed that by definition of SF , one has 

     1

min  for any 0,1S SF u      and thus the integral in Eq. (27) is positive. 

The relevance of the functional form Eq. (27) (called a Bernstein function in Mathematical 

Sciences [9] or a Laplace exponent of a Levy subordinator in Probabilistic literature [10]) to 

represent  1 2 2L 
l  will be studied further in Section 3.  

One can notice that:  

1/ Eq. (27) provides the solution to Eq. (13) if the following representation for the effective scaling 

factor is used: 

  
 

      
1

1 2 2 1

2 min min 2

2 2 0

1
1 expS S S S

S

L
u L u F u L d

L L


    





          
l

 (28) 

2/ if  1 2 L 
l  can be written as in Eq. (27), then  2 1 L 

l , which is its inverse, cannot share 

the same mathematical representation if gas spectra are not truly scaled, i.e. if the integral at the 

RHS in Eq. (28) is not null. This is because if an increasing function is concave (concave down), 

then its inverse is convex (concave up) which allows writing [11]: 

 

 
        

 

2 1
2

1 2 1 1

min min 22

0

2

2 1

2

exp 0

0

S S S S S S

L
F u F u L d

L

L

L






      





 




           


 




l

l

   

  (29) 
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The second inequality is not compatible with a possible representation of  2 1 L 
l  under the 

same form as in Eq. (27), by definition of Bernstein functions, viz. a function f is called Bernstein 

if it takes positive values and  
1

1 0
n n nf x


    . 

3/ this general formula complies with the mathematical formulation of   1 2 L 
l  provided in 

Ref. [11] which was restricted to the SNB model for Lorentz lines with Malkmus’ distribution of 

linestrengths or the l-distribution approach with close thermophysical states  1 2,  . More details 

can be found in Ref. [11]. 
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3. APPLICATION 

In the following section, details about the method proposed to construct an effective scaling 

function are given. This function is then applied for radiative heat transfer calculations and assessed 

against reference non-uniform LBL calculations and exact solutions of the implicit equation 

Eq. (13). Comparisons with outputs of the l-distribution approach are also provided.  

3.1. Model parameters and mathematical tools 

The high resolution (10-2 cm-1) LBL dataset used for the reference calculations was described 

previously in Ref. [14]. It is based on HITEMP2010 [15] for H2O, which is the only radiating 

species considered here. In order to assess the full methodology to define effective scaling 

functions, a uniform model needs to be selected. Here, the LBL approach was chosen. The Fortran 

subroutine SUBSPEAR taken from Ref. [16] was implemented to evaluate Spearman’s 

coefficients. It is based on a method that differs from a direct application of Eq. (11) but was found 

to provide the same results at a lower computational cost. The code to generate shifted Gauss-

Legendre quadratures (see Section 3.2.2.) was taken from the same reference. The fitting process 

(see Sections 3.2.3 and 3.2.4) is handled by a Stochastic Particle Swarm Optimizer (SPSO). This 

method was chosen for convenience: any other optimization technique (Levenberg-Marquardt, 

etc.) can be used for this purpose.  

The l-distribution model parameters, used in the present work for comparison with the method 

based on explicit effective scaling factors, viz. Eq. (27), are the same as those described in Ref. [6]. 

The interested readers should refer to this paper for additional details. 
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3.2. Detailed method to estimate the effective scaling function 

The method to estimate effective scaling functions requires several steps. They are described in 

this section.  

3.2.1. Statistical test of independence between gas spectra and spectral scaling coefficients 

For any pair of absorption spectra  1 2,   ,  it is possible to construct two couples of variables 

consisting of a “reference” absorption spectrum (which plays the role of 
1

   in Section 2) and a 

corresponding spectral scaling coefficient (constructed by dividing the other spectrum by this 

“reference”). These two couples are  1 2 1,      and  2 1 2,     . For each of them, one can 

evaluate over any narrow band a value of Spearman’s coefficient,  1 2 1

SP ,       and 

 2 1 2

SP ,      . These coefficients can be plotted as a function of the narrow band centers. An 

output of such a calculation is depicted in Figure 1, for a couple of states at the gas with the same 

molar fractions of H2O (0.2) and N2 (0.8), the same total pressure (1 atm) but distinct temperatures 

(1000 K and 2000 K).  

Clearly, there are in most cases large differences between the two values of Spearman’s 

coefficients: one of them remains relatively small (indicating weak dependence between the 

spectrum chosen as the reference and the corresponding scaling coefficient); the second one has 

large negative values indicating a strong decreasing relationship between the variables. This means 

that the assumption of statistical independence is more reasonable in one direction (which 

corresponds to the couple of reference absorption coefficient and scaling coefficient associated 

with the smallest absolute value of SP ) than in the other one.  
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Figure 1. Asymmetry in Spearman’s coefficients – Case C3 

This is confirmed by the plots provided in Figures 2 that depict the reordered absorption and 

spectral scaling coefficients reordered with the same rearrangement of the wavenumber scale as 

for the absorption spectrum.  Results correspond to the narrow band centered at 1700 cm-1. In order 

to avoid strong oscillations of the spectral scaling coefficients, a 64 points Savitsky-Golay 

smoothing filter was applied to the data. Figure 2-A (the reference spectrum is the hot one) shows 

a very weak dependence between the spectrum and the scaling coefficient. Corresponding value of 

Spearman’s SP  is equal to 0.02. In the other direction (the reference spectrum is the cold one), see 

Figure 2-B, the scaling coefficient appears to be a decreasing function of the reference absorption 

coefficient. Spearman’s SP  for this case is -0.73. Notice also that assuming the reference spectrum 

and scaling coefficient to be independent in the case of Figure 2-B would consist in replacing the 

decreasing curve by some mean line as in Figure 2-A. This may increase artificially the highest 
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values of the absorption coefficient observed near 1   and produce a physically unrealistic 

behavior at the optically thin limit. A symmetrical effect may be also observed at the optically thick 

limit. 

Accordingly, the calculation of Spearman’s SP  allows choosing the most appropriate couples 

 1 2 1,      or  2 1 2,      to seek an effective scaling function under the mathematical form 

Eq. (27). This is because the derivation of this formula is strongly connected with the assumption 

of statistical independence between the reference spectrum and the corresponding spectral scaling 

coefficients.  

We have thus used the following selection rule: 

 
   

1

1 2 1 2 1 2

SP SP 2 1

 is the reference spectrum 
, ,

and  the corresponding scaling coefficient 

 



     

 


       

 


  


(30) 

in which case all equations provided in Section 2 can be used directly, or: 

 
   

2

2 1 2 1 2 1

SP SP 1 2

 is the reference spectrum 
, ,

and  the corresponding scaling coefficient 

 



     

 


       

 


  


(31) 

in which case all equations in Section 2 can also be used but the roles played by indices and 

exponents “1” and “2” need to be switched. The necessity to define selection rules (30,31) is the 

main reason that explains the asymmetries observed in non-uniform approximations based on 

effective scaling factors [1,3,8,11]. 

For all the cases considered in this work (details are provided in Section 3.3), the most appropriate 

direction of calculation was always found to correspond to the choice of the hot gas as the reference 
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(except for some narrow bands). Comparisons with the criterion proposed in Ref. [11], based on 

ratios of Planck and Rosseland mean absorption coefficients, revealed that these two criteria 

(Spearman’s coefficient and ratio of mean absorption coefficients) provide the same outcome for 

most narrow bands. Details are provided in Section 3.3. 
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Figure 2-A. Reordered absorption and scaling coefficients – Reference is the hot gas. 

 

Figure 2-B. Reordered absorption and scaling coefficients – Reference is the cold gas. 
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3.2.2. Preliminary calculations  

As soon as the direction for the model is chosen according to the criteria Eqs. (30,31) (state “1” is 

assumed to be the reference state all along this section), the second step of the method consists in 

finding an approximate value for the generalized mean S . This is done by assuming that the 

reference absorption coefficient and the corresponding spectral scaling coefficient are actually 

statistically independent over the narrow band. In this case, SF  (Eq. (26)) can be replaced by F

(Eq. (7)). The quantity  min Su   can also be set to the minimum value of spectral scaling 

coefficient found over the narrow band. With these assumptions, Eq. (27) becomes: 

     
1

1

1 2 2 min 2 min 2

0

1
1 exp S

S

L u L F u L d   


         l   (32) 

Then, the integral in Eq. (32) is approximated as a weighted sum: 

     1

1 2 2 min 2 min 2

1

1
1 exp

N

i S i

iS

L u L F x u L  


 



        l  (33) 

where , , 1,i ix i N   are the weights and abscissas of a Gauss-Legendre quadrature at order N 

(= 6 in the present work) over the  0,1  interval. The method to construct such an approximation 

of the integral is similar to the technique widely encountered in k-distribution methods, but applied 

here to the distribution function of scaling coefficients instead of the k-distribution. 

Then, the approximation set by Eq. (33) is used in a non-linear least square process so as to 

minimize the following objective function  SDist   (the optimization process thus consists in 

finding 0

S  such that  0 0S S SdDist d     ): 
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     

  

2

2 1

1

1

min min

1

1
1 exp

J
eff

S j j

j

N
eff

j j i S i j

iS

Dist L L

L u L F x u L

   

 


 








    



         




 (34) 

In Eq. (34), , 1,eff

jL j J  are equivalent gas path lengths. They correspond to the values of the 

effective scaling function at lengths , 1,jL j J . These equivalent gas path lengths only depend on 

S . 

Lengths , 1,jL j J  are chosen logarithmically scaled inside an interval  min max,L L  whose 

boundaries are defined as solutions of: 

    2 min 2 max0.99, 0.01L L      (35) 

Eqs. (35) are solved using a bisection method. J was arbitrarily set to 20. 

At this step, we thus have approximations for  min minSu u  , 0

S S   (where 0

S  is the solution 

of the optimization process set by Eq. (34)) as well as the distribution function of scaling 

coefficients over the arrow band  , F (as defined by Eq. (7)) and associated values of 

 1 , 1,iF x i N  . 

3.2.3. Treatment of the integral at the RHS in Eq. (27) 

If S  is known, it is theoretically possible to estimate  SF u  following its definition i.e. Eq. (26). 

However, in practice, using this definition is not convenient as it requires evaluating the conditional 

probability of scaling coefficients given the constraint S  . Accordingly, we propose to 

circumvent this difficulty by reformulating Eq. (27) into: 
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where: 

  
 

 

1

1

SF
D

F









  (37) 

is a weighting factor. Its role is to rectify the moments of the scaling coefficients defined over the 

narrow band   so as to coincide with those over the unknown interval  S  . These 

differences between the moments are due to the fact that  and u    are not rigorously independent 

(see Figure 1, for instance) and thus SF F . Accordingly, the moments of u  over  S  , viz. 

 
1

1

0

,
n

SF d n     , and over  , i.e.  
1

1

0

,
n

F d n     , are not exactly the same. If 

 and u   are statistically independent over  , SF F  and, following Eq. (37),   1D   . 

Eq. (36) can be written in the same form as Eq. (33): 

           1

1 2 2 min 2 min 2

1

1
1 exp

N

S i S i i S

iS

L u L D x F x u L    


 



         l  (38) 

The coefficients that appear in Eq. (38), viz.     min ,  and , 1,S S iu D x i N   can be found by a 

non-linear least square fitting technique. This is detailed in the next section. 
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3.2.4. Non-linear least square optimization 

The final step consists in a non-linear least square fitting of the “true” parameters of the model. 

Initial values and bounds of the search space are provided in Table 1. They are defined in terms of 

the approximations found in Section 3.2.2. 

 

Parameter Initial value Lower bound Upper bound 

 min Su   minu  0.1 minu  10 minu  

S  0

S  0.1 0

S  10 0

S  

  , 1,iD x i N  1 0.1 10 

Table 1. Initial parameter values and bounds of the search space used in the optimization process. 

 

A SPSO was used to minimize the following objective function, similar to Eq. (34) but that now 

depends on more than one variable: 

 

       

        

2

min 2 1

1

1

min min

1

; ; , 1,

1
1 exp

J
eff

S S i j j

j

N
eff

j S j i S i i S j

iS

Dist u D x i N L L

L u L D x F x u L

    

   


 








       



         




 (39) 

At the end of the optimization process, we thus have estimates for all the quantities that appear in 

the model of effective scaling function. These parameters can be stored in tables for later use (which 

means that the full method does not need to be applied for each new calculation but a database can 

be constructed using the present approach to build a scaled model dataset). 
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An example of output of the fitting process is illustrated in Figure 3-A. It corresponds to the Case 

C2 described in the next section, over the narrow band centered at 1700 cm-1. The LBL curve 

corresponds to the exact transmissivity function at temperature 1000 K; the squares depict the 

transmission obtained by application of a LBL model at the hot temperature (here 1500 K) with 

the effective scaling factors obtained by the method described in this section. The corresponding 

effective scaling function  1 2 2L 
l is compared to the exact values of solutions of Eq. (13) 

obtained by a bisection method in Figure 3-B. 

 

Figure 3-A. Uniform transmissivities (see text for details) 
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Figure 3-B. Effective scaling function (see text for details) 

3.3. Application of effective scaling factors for radiative heat transfer calculations 

For all the test cases considered in this section, the non-uniform LBL calculation is the reference. 

The following terminology is used to distinguish the various approximate models:  

- “Exact 11 “ corresponds to the use of Eq. (12) with the scaling factor  2u L  obtained by 

solving Eq. (13) with the bisection method;   

- “Exact 22 ” is the same as “Exact 11 ” but the roles played by states 1 and 2 are reversed;  

- “ ii  with effective scaling function” is the same as “Exact 11 ” or “Exact 22 ” with the 

scaling function calculated as described in Section 3.2. – the scaling function and the value 

of index i is determined over each narrow band by application of the criteria (30,31);  



35 
 

- l-distribution is the output of the model described in Ref. [6] – for this model, the ordering 

of the path uses the criterion set in Ref. [11] (which, as noticed earlier in the present paper, 

coincides with (30,31) in most cases).  

Index “2” is always associated with the cold layer, index “1” with the hot one. 

The first three cases (C1 to C3) concern non-uniform gaseous mixtures of H2O and N2. They consist 

of 2 uniform layers at different temperatures: the H2O molar fraction is 0.2 in both columns and 

their length is fixed to 50 cm. In all these cases, the temperature of the cold path is 1000 K. The 

temperatures of the hot layer are 1100 K (C1), 1500 K (C2) and 2000 K (C3) respectively. Results 

are depicted in Figures 5,7 (Spearman’s coefficients SP  for cases C1 and C2 – Case C3 

corresponds to Figure 1), and Figures 4,6,8 (calculation of transmissivities over non-uniform paths 

for cases C1, C2 and C3 respectively).  It can be immediately noticed that for small gradients of 

temperature, Spearman’s coefficients for  1 2 1,      and  2 1 2,     are almost the same, but 

with opposite signs. For higher gradients, strong asymmetries appear. In these cases, the 

assumption of statistical independence between one spectrum and its corresponding scaling 

coefficient depends on the choice of the reference state and is more relevant in one direction than 

in the other. The choice of the hot layer as the reference (associated with 11 ) was found to provide 

the best results over most of the narrow bands. Application of the criteria (30,31) was found to 

suggest an index for the definition of the effective scaling function equal to 1 (viz. the hot layer is 

the reference) for 98.8 % of the narrow bands in case C1 (against 99.4 % if the criterion proposed 

in Ref. [11] is used), 99.4 % in case C2 (against 100 % when the direction, defined as the direction 

of propagation of the path 1 2L L   such that the point of arrival is in the gas in the reference state, 



36 
 

is chosen according to the ratios of mean absorption coefficients [11]). It reaches 100 % in case C3 

for both criteria. 
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Figure 4. Transmissivities of non-uniform paths – Case C1 

 

Figure 5. Narrow band Spearman’s coefficients – Case C1 
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Figure 6. Transmissivities of non-uniform paths – Case C2 

 

Figure 7. Narrow band Spearman’s coefficients - Case C2 
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Figure 8. Transmissivities of non-uniform paths – Case C3 

Case C4 was used in Ref. [5] to assess the Scaled-k and Correlated-k methods against LBL 

reference calculations. It is similar to Case C3 but the temperature of the cold path is now 300 K. 

Results are depicted in Figures 9 and 10. 

Finally, the last test case, C5, was taken from Ref. [17]. It consists of two paths with different 

species concentrations (molar fraction of water vapor is 0.5 in the hot column, 0.05 in the cold 

one): the hot temperature is 1500 K and the length of the path is 10 cm; the cold layer is at 500 K 

and its length is 100 cm. This means that the product (molar fraction of absorbing species x length 

of the gas path) is the same in both layers. This test case was found in Ref. [17] to be challenging 

for statistical narrow band models either extended to non-uniform paths with the help of the Curtis-

Godson or of the Lindquist-Simmons approximations [1]. With the present method, a very 

acceptable accuracy is obtained as shown in Figures 11 and 12. 
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Figure 9. Transmissivities of non-uniform paths – Case C4 

 

Figure 10. Narrow band Spearman’s coefficients - Case C4 
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Figure 11. Transmissivities of non-uniform paths – Case C5 

 

Figure 12. Narrow band Spearman’s coefficients - Case C5 
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3.4. Discussion 

From the results described above, the following comments can be drawn: 

1/ the best solution is associated in most cases with the choice of the reference state according to 

the criteria (30,31). This can be observed on the Figures provided in Section 3.3 by comparing the 

outputs of “Exact 11 ” with “Exact 22 ”. Indices in these notations represent the reference state and 

application of criteria (30,31) suggest in most cases state “1” to be the reference (see the last 

sentence in Section 3.3). “Exact 11 ” is closer to exact non-uniform reference LBL calculations 

than “Exact 22 ”  in almost all cases depicted in Figures (4,6,8,9,11). 

2/ the functional form Eq. (27) gives accurate predictions of solutions to Eq. (13) even with small 

quadrature orders N (N=6 was arbitrarily chosen in this work). When applied in non-uniform 

calculations, it provides results almost as precise as “exact” solutions based on a direct resolution 

of Eq. (13) using a bisection method. 

3/ large asymmetries exist between Spearman’s coefficients in the case of strong gradients of 

temperature. In these cases, which can be encountered in spectroscopic applications for instance, 

the definition of effective scaling factors requires a proper definition of the reference state. For 

small gradients, as in most radiative heat transfer applications for which profiles of temperatures 

and species concentrations are smooth and almost continuous, it was observed (case C1) that the 

calculations provide the same results in either directions, both in terms of Spearman’s coefficients 

and transmissivities. In these situations, no reordering of the path is expected to improve the results 

significantly if a propagation scheme is used (GWN or ICE [6 ]) as in this case “reference” states 

are defined locally along the propagation path. However, for models based on a single reference 

spectrum (Scaled-k method, for instance) used to scale all other states, the proper definition of the 
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reference is likely to be required. This needs to be analyzed in depth and this problem can be studied 

by application of criteria (30,31). However, the definition of a method to relate results on these 

couples of states to the optimum unique reference is required. These conclusions apply to the 

approach considered in the present work, which can be used with any model form, but also to the 

l-distribution method.  

4/ the l-distribution approach almost matches the exact solution, with a higher accuracy than the 

method based on Eqs. (12-13,27-28). However, this second technique provides results very close 

to the exact solution and has the advantage of being applicable with any uniform model (LBL or 

k-distribution, for instance).  

5/ The explicit method based on Eqs. (13,27-28) together with a LBL or k-distribution model 

requires the evaluation of two integrals: one over wavenumbers (LBL) or  k-values (k-distribution); 

the other one over u, i.e. Eq. (27). This makes the l-distribution approach, which requires no 

integral, more computationally efficient than these methods. However, many existing codes already 

use a k-distribution technique: for all of them, Scaled methods based on effective scaling functions 

(which can be constructed using the scheme described in the present work) can be considered as 

relevant alternatives to the widely used Correlated-k approximation. However, although the use of 

the explicit formula Eq. (27) is more computationally efficient than a direct iterative solving of 

Eq. (13), the method remains more expensive than a C-k approximation. Nevertheless, as a counter-

part and following the existing literature on models based on effective scaling factors [1,5,6,11], a 

higher accuracy of the non-uniform approximation can be expected with the scaled approach than 

with the correlated one. 
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4. CONCLUSION 

Non-uniform methods based on effective scaling factors were among the first to appear in the 

history of approximate models for the radiative properties of gases. The idea introduced by Godson 

in 1953 was rediscovered several times. All these works have reached the same conclusion: this 

approach is more accurate than other, more established, techniques such as Correlated-k for 

instance. One reason that may explain the apparent lack of interest for such methods, not often 

encountered in the literature, is the absence of explicit ways to evaluate effective scaling factors. 

The aim of the present paper was to suggest a solution to this issue by proposing an analytical 

formula for the calculation of effective scaling factors, together with an analysis of the conditions 

on gas spectra and spectral scaling coefficients for this formulation to be acceptable. This formula, 

Eq. (27), is the core result of the present paper.  

The other main findings of the present work are:  

1/ the origin of asymmetries encountered in models based on effective scaling factors, which were 

shown to be closely related to the assumption of statistical independence between gas spectra and 

spectral scaling coefficients. In highly non-uniform two-cell problems, it was found that only one 

choice for the gas reference spectrum is possible to ensure this assumption to be reasonable;  

2/ the definition of the parameters that appear in effective scaling functions requires an optimization 

process, fully detailed in the paper;  

3/ after optimization, the use of the explicit formula Eq. (27) provides results almost as accurate as 

a direct approximation of scaling factors by an iterative solving of the implicit equation Eq. (13). 

The use of this explicit formula is less computationally demanding than any iterative process 

(bisection, Newton’s method, etc). 
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The main value of the results described in this paper is to open new possibilities for application 

together with all existing codes of gas radiation. This is because non-uniform approximations based 

on effective scaling factors can be applied to any model form. This fact was discussed, for instance, 

by Young in his recent book.  
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APPENDIX 

A.1. Theoretical justification of Eqs. (8,9) in the independent case 

Let f  be a bivariate function of a spectral absorption coefficient   and a scaling coefficient u  . 

It was shown in reference [14] that the mean value of function f over a narrow band   can be 

written in distribution form as: 

      
0 0

1
, , ,f f u d f k u dM k u

 



 


 





  
      (A.1) 

where  ,M k u  is the joint distribution function of   and u : 

        
1

, ,M k u k u u H k H u u d   



  




       
 P   (A.2) 

If   and u  are statistically independent, then this joint distribution can be written as the product 

of the distribution of each variable, i.e.      ,M k u g k F u  , to yield: 

        
0 0

1
, ,f f u d f k u dg k dF u

 



 


 





  
     (A.3) 

Application of (A.3) to uniform and non-uniform transmissivities provides Eqs. (8) and (9). 

Indeed, if we replace for instance  f  by  1exp u L   we obtain directly: 

              1

2 2 2 2 1 2

0 0 0

1
exp expL u L d k uL dg k dF u uL dF u 

 



   


  

 



 
      
  

     

  (A.4) 
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which is Eq. (8). A similar derivation provides Eq. (9). 

A.2. Connections with Godson’s method 

Let us now show up some connections between the approach described in the paper and Godson’s 

method [1,8]. For this purpose, we start by rewriting Eq. (A.4) as: 

    
1

1

2 2 1 2

0

L F L d           (A.5) 

For a given length 0L , application of the mean value theorem shows that one can find a particular 

value 0   of    such that: 

      
1

1 1

2 0 1 2 1 0 0

0

L F L d F L                    (A.6) 

Different values of 0L  may provide distinct values of 0 . Accordingly, by choosing a large number 

of values of  0  one can define pointwise a function X of 0L  such that for any 0L ,  0 0X L   

where 0  corresponds to the solution of Eq. (A.6). Once combined with 1F   we thus obtain a 

function of 0L  such that for any length 0L : 

     1

2 0 1 0 0L F X L L         (A.7) 

Function  1F X L     corresponds to function  u L  in Eq. (13). 

The same method can be applied in the non-uniform case. But instead of the definition of a function 

of a single variable as in uniform situations, we receive in this case a function that both depends 

on 1 2 and L L  and which takes the following form:  1

1 2' ,F X L L    . By definition, this function 
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returns values between the minimum and the maximum of the spectral scaling coefficient over the 

narrow band. Accordingly, if we further assume that the interval of u values is small, then one can 

use the following approximation: 

       1 1 1

1 2 1 2 2' , ' 0,F X L L F X L L F X L                (A.8) 

This approximation provides Eq. (12). 

This shows that the method presented in the paper can be written in the same form as Godson’s, 

EGA or scaled-k techniques. It must be however noticed that in the truly independent case, formula 

Eq. (9) provides the exact solution whereas Eq. (13) is only approximate due to (A.8). On the other 

hand, for weakly dependent situations, errors may appear if Eq. (8) is used to represent the uniform 

path. Eq. (13) is in this case exact. 

Stronger connections between the two approaches can be established if one assumes that, in the 

weakly dependent case, it is possible to define a subrange of values of k, written D , such that: 

 

   

 

 
 

 

1

1

2 2 1 2

0

:

:

 D

D

D

D

L F L d

H u u d

F u
d





 



 

 

   





  






   


 













 (A.9) 

Then replacing   by  F u  we obtain: 

          1

2 2 1 2

0

,  D D DL T u L dF u T u F F u  


           (A.10) 
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(A.10) takes a form similar to Eq. (8) but, in this case, variable u does not appear directly but is 

modulated by some function DT . By definition, this function DT  : 1/ preserves the moments of the 

absorption coefficient and ensures the transition from Eq. (A.9) to Eq. (13) to be exact; 2/ values 

of    1

D DT u F F u     are in a bounded interval included inside the domain of variation of the 

spectral scaling coefficient over the narrow band i.e.  min max;u u . The size of the image of 

 min max;u u  through DT  is thus smaller than  min max;u u  and, as a consequence, spectra are “more 

scaled” over D than over  : this connects this formulation directly with the assumptions made 

in Godson’s method (see the last sentence above Eq. (A.8)). There are undoubtedly strong 

connections between the domain D introduced here and the mean absorption coefficient S  used 

in the paper, but this analysis is kept as future work.   

A.3. Justification of Eq. (11) 

Spearman’s coefficient defined as [12,13]: 

        1

SP

1
, 12 , 3u g k F u dM k u 
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can be written equivalently, using Eq. (A.1), as: 
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which is Eq. (11). It suffices to apply (A.1) to the function      ,f k u g k F u . 


