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ABSTRACT   
The Scaled SLW model for prediction of radiation transfer in non-uniform gaseous media is 
presented.  The paper considers a new approach for construction of a Scaled SLW model. In 
order to maintain the SLW method as a simple and computationally efficient engineering method 
special attention is paid to explicit non-iterative methods of calculation of the scaling coefficient.  
The moments of gas absorption cross-section weighted by the Planck blackbody emissive power 
(in particular, the first moment – Planck mean, and first inverse moment – Rosseland mean) are 
used as the total characteristics of the absorption spectrum to be preserved by scaling.  
Generalized SLW modelling using these moments including both discrete gray gases and the 
continuous formulation is presented.  Application of line-by-line look-up table for corresponding 
ALBDF and inverse ALBDF distribution functions (such that no solution of implicit equations is 
needed) ensures that the method is flexible and efficient.  Predictions for radiative transfer using 
the Scaled SLW model are compared to line-by-line benchmark solutions, and predictions using 
the Rank Correlated SLW model and SLW Reference Approach. Conclusions and 
recommendations regarding application of the Scaled SLW model are made. 
   
 
Keywords:  gas radiation, non-uniform, SLW, Rank Correlated SLW Model, Reference 
Approach SLW, Scaled SLW, moments of absorption cross-section  
 



Revision of “The Scaled SLW Model….,” by Solovjov et al. 2 

NOMENCLATURE 
a   gray gas weights 
C  gas absorption cross-section [m2/mol]  
E   radiation emissive power [W/m2]  
F   ALBDF 
I   radiation intensity [W/m2/sr]  
L   gas layer thickness [m]  
  -distribution 
N   gas molar density [mol/m3]  
p   gas total pressure [atm]  
s   path variable [m]  
T   gas temperature [K]  
u   scaling coefficient 
Y   gas specie mole fraction 
 
Greek symbols 
β    -distribution overlapping parameter 
φ   symbolic notation for given gas thermodynamic state, { }T ,Y , pφ =  
ξ  continuous variable as a limit of a discrete absorption cross-section  
κ   gas absorption coefficient [m-1]  
µ   moment 
η   wavenumber [cm-1]  
σ   Stefan-Boltzmann constant, 5.67×10-8 W/m2/K4  
τ   transmissivity 
  
Subscripts 
b   blackbody 
j   gray gas number 
n   number of gray gases in the model 
P   Planck mean 
R   Rosseland mean 
s   order of the moment 
loc   local 
ref   reference 
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INTRODUCTION 
 

Among the global methods of gas radiation, the Spectral-Line-Weighted-sum-of-gray-gases 
(SLW) model has been demonstrated to be a simple, accurate, and efficient method of spectral 
modelling of radiation transfer in gaseous media [1].  A primary challenge of global methods is 
spectral modelling of radiation transfer in non-uniform media (non-isothermal and/or non-
homogeneous scenarios), where the gas absorption spectrum changes with spatial location due to 
changes in local thermodynamic state.  Approaches based on the assumption of correlated gas 
absorption spectra have been developed [1-6].  Greater accuracy in these approaches comes 
generally at the expense of greater sophistication, more complexity, greater difficulty in 
implementation, and higher associated computational cost.  This work concerns itself with the 
scaled spectrum assumption in the context of the Spectral Line Weighted-sum-of-gray-gases 
(SLW) model.   
 
The SLW method considered in this work is an extension and further development of the global 
WSGG method originally proposed by Song and Viskanta [4].  They recognized the difficulty 
which arises in WSGG modelling of gas radiation in non-uniform media.  They noted that 
spectral integration of monochromatic RTE over the gray gas wavenumber intervals yields 
appearance of numerous so-called Leibnitz terms.  These terms arise in the integration because 
the boundaries of the gray gas wavenumber intervals vary with spatial location in non-uniform 
media if the supplemental cross-sections defining the gray gas wavenumber intervals are fixed 
[2-6].  Simple neglect of these additional terms can yield significant error in the prediction of 
radiative transfer.  It was proposed by Song and Viskanta that the gray gas spectral intervals be 
fixed to avoid the appearance of the Leibnitz terms by varying the supplemental absorption 
cross-sections in such a way that the spectral intervals obtained at some chosen reference 
thermodynamic state are maintained the same at all local states in the medium.  However, the 
approach was not implemented in the original paper, nor in the following applications of the 
WSGG method [7]. Despite this issue, the WSGG method continues to be attractive to 
researchers, and further improvement of the method has been developed recently [8-12]. The 
different versions of the WSGG method are distinguished mainly by the difference in 
mathematical representations of the gray gas absorption coefficients and the corresponding 
weights. For example, recent work has proposed the determination of coefficients in the WSGG 
model through the i) superposition of correlations for a mixture of gas species and soot, and ii) 
superposition of the separate coefficients for each specie (and soot) [9]. These correlations are 
obtained from the high resolution spectral database HITEMP-2010 [13] by fitting emittance data 
for a range of thermodynamic conditions.  The examples considered in [11, 12] demonstrate 
satisfactory accuracy for non-isothermal, non-homogeneous cases.   
 
The classical WSGG method does not possess the flexibility of the SLW method which, unlike 
the WSGG method, can be used with an arbitrary number of gray gases and any gas 
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compositions.  However, although the WSGG method may not be sufficiently accurate to 
provide benchmark results, its robustness, consistency and computational efficiency make it a 
viable alternative to more sophisticated models, especially in applications in which thermal 
radiation is only one part of several other complex, coupled modeled phenomena. 
 
Approaches in the SLW methods are based on assumptions of correlated/scaled absorption 
spectra which can be reduced to the assumption on which separation of dependence of gas 
absorption coefficient on space variable (and therefore, on the local gas thermodynamic state) 
and on wavenumber.  The usual approaches are based on specification of a reference 
thermodynamic state and construction of the associated SLW reference histogram absorption 
spectrum at this state.  The local histogram spectrum at other spatial locations is then scaled to 
the reference spectrum by a scaling coefficient which can be different for different gray gases 
(correlated models), or by a single coefficient (scaled models).  Because this assumption, in 
general, is not valid for real spectra, accuracy of the predictions depends critically on the choice 
of reference state.  The reference gas temperature Tref has been chosen from some physical 
consideration which has included the maximum temperature in the system, the minimum 
temperature in the system, the volume-averaged temperature, the Planck mean temperature, and 
the emission-weighted temperature [6, 14]. 
 
Application of the correlated spectrum assumption does not necessarily provide optimal accuracy 
of prediction of radiative quantities.  For systems with large temperature and/or concentration 
gradients, the dependence of the spectral properties on these properties can produce significant 
errors. One way to solve this temperature dependence problem is to model the absorption 
coefficient’s dependence on the temperature as was done in the Multi-Group Full Spectrum k-
distribution Method (MGFSK) [15].  The MGFSK Method provides good results for 
inhomogeneous media, and the accuracy may be increased by increasing the number of groups. 
However, the method remains approximate. A more accurate but more computationally 
expensive alternative is presented by Tencer and Howell [14]. Their multi-source full spectrum 
k-distribution method is capable of providing exact results for one-dimensional geometries with 
piecewise constant temperature and absorption coefficient in the same way that the full spectrum 
k-distribution method is able to provide exact results for homogeneous media. The approach as 
outlined in [14] provides a significant increase in accuracy when compared to other k-
distribution based approaches while remaining significantly less computationally expensive than 
a standard line-by-line solution. The errors introduced by this method are entirely due to the 
multilayer approximation. As a result, the method converges linearly as the number of layers is 
increased. This allows the error relative to the line-by-line solution to be estimated.  
 
The need for simple, accurate engineering approaches for the prediction of radiation transfer in 
non-uniform high temperature gas applications remains, particularly in comprehensive reacting 
flow modeling applications.  Recent progress in SLW modelling, including the development of 
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the Generalized SLW model [2] and the Rank Correlated SLW model [3, 16], opens new 
opportunities for a model developed independently on the assumption of a scaled spectrum. The 
scaled spectrum assumption has never been explored in the framework of the SLW model, but it 
has potential to improve performance of the SLW method when correlated models fail.  The 
scaled SLW models which are outlined here are not intended to replace the correlated SLW 
models developed earlier, but rather to complement the correlated SLW model. 
 
In the scaled spectral model it is assumed that the absorption cross-sections of a particular gas or 
gas mixture at two different local thermodynamic states denoted symbolically as ( )1 1 1, ,T Y pφ =    
and ( )2 2 2, ,T Y pφ =  are related by a simple scaling for the entire spectrum (for all wavenumbers 

0η > )  as 

( ) ( ) ( )2 1 2 1,C u Cη ηφ φ φ φ=   

The scaled spectrum assumption is a particular and more restrictive case of the correlated 
spectrum assumption. However, application of the scaled model may have some advantages.  
Correlated spectrum models rely on how well real spectra are correlated but they cannot 
overcome the fact that real spectra are never completely correlated.  Consequently, in the case of 
highly non-uniform media the prediction of radiative transfer can be inaccurate.  Scaled spectral 
models may improve performance with the help of a more informed choice of scaling coefficient 

( )1 2,u φ φ  for better representation of gas absorption spectra at the local thermodynamic state in 
the prediction of radiative transfer in non-uniform media.  Further, the scaled model may have 
the advantage of being simpler in its construction and implementation. 
 
Once the scaling coefficient is determined, the scaled SLW model can be readily constructed.  
Therefore, the critical element of the scaled model is the development of an efficient method of 
calculating the scaling coefficient ( )1 2,u φ φ . A global scaled model requires the scaling 
coefficient for the entire (full) spectrum. However, for particular radiation problems not all 
spectral regions contribute equally to the total radiation energy transfer.  Emphasizing more 
important wavenumber regions by a properly chosen weighting function and requiring the 
scaling coefficient to preserve total characteristics of the absorption coefficient at the local state 
can make scaling of some chosen reference spectrum to a spectrum at a local state more efficient 
and more accurate.   
 
The works of Godson [as summarized in 17] and Weinreb and Neuendorfer [18] appear to be the 
first to investigate scaled spectrum modeling.  Modest subsequently proposed the scaled FSK 
model, demonstrating some advantage in accuracy of radiative transfer predictions over 
correlated FSK models [19].  In that approach computation of the local scaling coefficient was 
performed by solution of the implicit integral equation 



Revision of “The Scaled SLW Model….,” by Solovjov et al. 6 

( ) ( ) ( ) ( ) ( )0 0, , ,
0 0

0 0

  m mL u L
b bI T e d I T e dη ηκ η φ κ η φ φ φ
η ηη η

∞ ∞
− −=∫ ∫  (1) 

The relationship of Eq. (1) provides the correct evaluation of radiation transmitted through a 
plane layer of thickness Lm, which is the mean beam length.  Following the FSK model 
formulation, this equation may be expressed in terms of k-distributions by 

( ) ( ) ( )0 0 0 0 0

1 1
, , , , ,

0
0 0

m mT g L T g u Le dg e dgκ φ κ φ φ φ∗ ∗− −=∫ ∫  (2) 

Equation (2) is an implicit integral equation in the local scaling coefficient ( )0,u φ φ , and is 
solved iteratively to find the coefficient.  It was noted by Modest in [20] that a simplified scaling 
function would be needed without the use of an implicit equation to make the scaled model more 
efficient and attractive for adoption. 
 
This paper considers different approaches for construction of the Scaled SLW model. In order to 
maintain the SLW method as a simple and computationally efficient engineering method special 
attention is paid to explicit, non-iterative methods of calculation of the scaling coefficient.  The 
moments of gas absorption cross-section weighted by the Planck blackbody emissive power (in 
particular, the first moment – Planck mean, and the first inverse moment – Rosseland mean) are 
used as the total characteristics of the absorption spectrum to be preserved by scaling.  
Generalized SLW modelling of these moments (including both discrete gray gases and the 
continuous formulation) and the LBL look-up table for corresponding distribution functions 
(ALBDF and inverse ALBDF, such that no solution of implicit equations is needed) ensures that 
the method is flexible and efficient.   
 
The scaling assumption presented in this paper is not new. It is similar to assumptions previously 
used in narrow band and global methods.  The objective of this work is to develop the scaled 
model within the SLW model framework which is simple yet accurate enough for engineering 
applications.  Scaled SLW model predictions are compared to LBL benchmark solutions, to the 
most recent advancement in correlated SLW modeling (Rank Correlated SLW model), and to the 
traditional SLW model reference approach.  Conclusions and recommendations on application of 
the Scaled SLW model are made.  
 
 

THE SCALED SLW MODEL 
 
1.  Scaled gas absorption spectra assumption 
Consider a gas characterized by the spectral absorption cross-section ( )Cη φ  defined at the gas 
thermodynamic state symbolically denoted by a set of properties { }T ,Y , pφ =  , where T is the 
gas temperature, Y is the gas mole fraction, and p is the total pressure.  As illustrated in Fig. 1, 
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the gas absorption cross-section ( )Cη φ  is said to be scaled if the entire spectra ( )1Cη φ  and 
( )2Cη φ  at any two different thermodynamic states φ1 and φ2 for all 0η >   are related by the 

simple equation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Scaled gas absorption cross-sections. 
 
 

( ) ( ) ( )2 1 2 1,C u Cη ηφ φ φ φ=  (3) 

Here, the scaling coefficient ( )1 2,u φ φ  depends only on the two thermodynamic states φ1 and φ2, 
and is independent of wavenumber η.  The assumption of scaled spectrum preserves the 
wavenumber intervals, with the implication being that the wavenumber intervals for which 
absorption cross-section at State 1 is less than any prescribed value C is the same as the set of 
wavenumbers for which the absorption cross-section at State 2 is less than the scaled value 

( )1 2,u Cφ φ .  This is stated mathematically as    

( ){ } ( ) ( ){ }1 2 1 2: : ,C C C u Cη ηη φ η φ φ φ< = <  (4) 

Therefore, the assumption of scaled spectrum is a particular case of the more general assumption 
of rank correlated spectrum [3, 16]. 
 

( )1 2,u Cφ φ ⋅

( )1Cη φ

( ) ( ) ( )2 1 2 1,C u Cη ηφ φ φ φ= ⋅

C

C

η
( ){ } ( ) ( ){ }1 2 1 2: : , C C  C u Cη ηη φ η φ φ φ< = <
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If one particular thermodynamic state is fixed as a reference state refφ , then the absorption cross-
section at any local state ( )locCη φ  can be found by scaling the reference absorption cross-section 

( )refCη φ  as shown in Eq. (5) 

( ) ( ) ( ) ( ) ( ) ( ),loc loc ref ref loc ref loc refC u C u C u Cη η η ηφ φ φ φ φ φ φ= = =  (5) 

The objective of the Scaled SLW model is to find the local scaling coefficient uloc which 
provides the best possible solution for radiative transfer in non-uniform media.  Further, 
optimization of the local scaling coefficient should not be too complicated.  For engineering 
applications it may be preferable to settle for somewhat less accurate solutions in favor of the 
computational economy offered by an explicit formula for calculation of the scaling coefficient. 
The objective of the present paper is to find a scaling coefficient which preserves some important 
global physical characterizations such as the moments of the absorption cross-section. 
 
2.  Moments of gas absorption cross-section  
Moments are important total characterizations of the spectral dependence of the gas absorption 
cross-section.  In general, the spectral absorption cross-section can be reconstructed from its 
moments.  Preservation of moments by the scaling coefficient can be a criterion for its 
construction. 
 
The sth moment ( ),s bTµ φ  of the gas absorption cross-section ( )Cη φ  at thermodynamic state φ  
weighted by the Planck spectral blackbody emissive power ( )b bE Tη  at the blackbody 
temperature bT  can be defined generally as 

( ) ( ) ( )
( )0

,
s b b

s b
b b

E T
T C d

E T
η

ηµ φ φ η
∞

 =  ∫  (6) 

where the moment order s can be any non-zero real number, and ( ) 4
b b bE T Tσ=   is the total 

blackbody emissive power at temperature bT .  Combining Eqs. (5) and (6), it can be shown that 
the moments ( )1,s bTµ φ  and ( )2 ,s bTµ φ  of the scaled gas absorption cross-sections ( )1Cη φ  and 

( )2Cη φ  at any two different thermodynamic states φ1 and φ2 are related by the equation 

( ) ( ) ( )1 1 2 2, , ,
s

s b s bT u Tµ φ φ φ µ φ=     (7) 

This relationship for the case of a fixed reference state as in Eq. (5) can be rewritten as 

( ) ( ), ,s
s loc b loc s ref bT u Tµ φ µ φ=  (8) 

Then the local scaling coefficient locu  can be found explicitly by 

( )
( )

 1
,
,

s

s loc b
loc

s ref b

T
u

T
µ φ
µ φ

 
=  

  
 (9) 
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The significance of Eq. (9) is that the scaling coefficient may be found explicitly, rather than 
through the solution of an implicit equation.  This equation will be applied for calculation of the 
local scaling coefficient of absorption cross-section.  The scaled model based on moments 
assumes a perfect statistical independence between some reference spectrum and the spectral 
scaling coefficient constructed by dividing any other spectrum by the reference.  This assumption 
is used implicitly to derive Eq. (7). 
 
In this work the focus will be on two important particular moments:  the 1st moment (s = 1) and 
the 1st inverse moment (s = -1) of the gas absorption cross-section. 
 
3.  SLW modelling of the moments of gas absorption cross-section   
The SLW method is based on application of the absorption line blackbody distribution function 
(ALBDF) defined as [1]: 

( ) ( ) ( )
( )0

, ,  b b
b

b b

E T
F C T H C C d

E T
η

ηφ φ η
∞

 = − ∫       (10) 

where C is the absorption cross-section and H is the Heaviside unit-step function.  Its value 
represents the fraction of the total emissive power ( )b bE T  at blackbody temperature bT  which 
lies in the portions of the spectrum where the gas absorption cross-section ( )Cη φ  is below the 
prescribed value C. 
 
Following the classical SLW model, discretization of the gray gases is performed with the help 
of discrete values of the supplemental cross-section , 0,1,...,jC j n= , where n is the number of 
gray gases in the model.  The gray gas is defined by its absorption cross-section jC , usually 
chosen as the geometric mean of adjacent supplemental cross-sections.  As is shown in ref. [2], 
the SLW method models the moments as follows: 
 
1st moment (“Planck mean” of the absorption cross-section): 

( ) ( ) ( ) ( )
( )1

10

, ,  
n

b b
P b b j j

jb b

E T
C T T C d a C

E T
η

ηφ µ φ φ η
∞

=

= = = ∑∫        (11) 

1st inverse moment (“Rosseland mean” of the absorption cross-section): 

( ) ( ) ( )
( )
( )1

10

1 1,  
,

n
jb b

b
jR b b b j

aE T
T d

C T C E T C
η

η

µ φ η
φ φ

∞

−
=

= = = ∑∫   (12)  

Graphical representation of the SLW modelling of the first and first inverse moments by the 
histogram reordered absorption cross-section is shown in Fig. 2.  The gray gas weights are 
calculated as ( ) ( ) ( )1, , , , ,j b j b j ba T F C T F C Tφ φ φ−= −  .  The terms “Planck mean” and “Rosseland 
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mean” are used here conditionally, because they resemble the traditional Planck and Rosseland 
mean values of the absorption coefficient.   
 
The ALBDF used in the SLW model is calculated using the high-resolution HITEMP 2010 
spectroscopic database [13].  The ALBDF has been traditionally represented through one of two 
methods [21]:  i) mathematical correlations, or ii) stored tabulated form in a look-up table.  It has 
been shown that the best accuracy can be achieved if the analytical expressions for the SLW 
models are evaluated with the full data of the look-up table which has nearly LBL accuracy. The 
look-up table presents the values of the ALBDF iF  for discrete values of absorption cross-
section Ci, i = 1, 2,…, N,  where N = 71 for the look-up table published in [21].  The discrete 
look-up table data for the ALBDF for continuous SLW models [2] can be integrated analytically 
if a linear dependence of the ALBDF is assumed between finely-resolved tabulated points: 

( ) ( ) ( ) ( )( )1 1 1
10

, ,
, , 2

N
b

P b b j j j j
j

F C T
C T T C dC F F C C

C
φ

φ µ φ
∞

− −
=

∂
= = = − +

∂ ∑∫     (13) 

( ) ( ) ( ) ( )
( )

max

min

1
1

1 11

, ,1 1, ln
,

C N
j j jb

b
jR b jC j j

F F CF C T
T dC

C T C C CC C
φ

µ φ
φ

−
−

= =−

−  ∂
= = =   ∂ +  

∑∫         (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  SLW modelling of the Planck mean and Rosseland mean absorption cross-sections.  
The area under the stepwise graph is numerically equal to CP and 1/CR, respectively. 

 
 

jC

ja ja

j

1 
C
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These equations provide the best accuracy provided by the look-up table. It should be noted that 
the Rosseland mean of the gas absorption cross-section is not a characterization of the gas 
absorption spectrum in general, but rather of the SLW model histogram gray gas spectrum only 
excluding the clear gas (transparent spectral windows) [2].   
 
4.  SLW modeling of the scaling coefficient  
Application of the scaled SLW models given by Eqs. (11) – (14) to Eq. (9) yields the following 
expressions used for the explicit calculation of the local scaling coefficients 

( )
( )

,
,

P loc locloc
P

P ref loc

C T
u

C T
φ
φ

=   (15) 

( )
( )

,
,

R loc locloc
R

R ref loc

C T
u

C T
φ
φ

=   (16) 

The sense of this scaling expression is that if the absorption spectra at different thermodynamic 
states are scaled, then they are scaled in the same manner as their Planck or Rosseland means. 
 
From Eqs. (5) and (15), the similarity relationship for any local thermodynamic state follows: 

( )
( )

( )
( ), ,

refloc

P loc loc P ref loc

CC
C T C T

ηη φφ
φ φ

=   (17) 

Therefore, the “normalized” spectrum can be defined as 

( )
( ),

ref

P ref loc

C
C

C T
η

η

φ

φ
=   (18) 

which is invariant for any gas local thermodynamic state.  Then the spectrum at any local state 
can be found as 

( ) ( ),loc P loc locC C T Cη ηφ φ=   (19) 

It should be noted that the Scaled SLW model presented can also be developed in terms of the 
gas absorption coefficient ( ) ( ) ( )N YCη ηκ φ φ φ= , where N is the gas molar density, rather than 
the gas absorption cross-section ( )Cη φ .  The scaled spectrum assumption in this case is written 
as 

( ) ( )loc loc refuη ηκ φ κ φ=   (20) 

and the sth moment of gas absorption coefficient is defined as 
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( ) ( ) ( )
( )0

,
s b b

s b
b b

E T
T d

E T
η

ηµ φ κ φ η
∞

 =  ∫   (21)   

The scaling coefficients following this development can then be defined as 

( )
( )

,
,

P loc b
P

p ref b

T
u

T
κ φ
κ φ

=   (22)                 

( )
( )

,
,

R loc b
R

R ref b

T
u

T
κ φ
κ φ

=  (23)                

where ( ),P bTκ φ  and ( ),R bTκ φ  are the SLW modified Planck mean and Rosseland mean 
absorption coefficients, respectively. 
 
It should be noted that  formulation of the Scaled SLW model in terms of absorption coefficient 
is similar but not equivalent to the scaled SLW model in terms of gas absorption cross-section.   
The scaled SLW model in terms of absorption coefficient was not investigated in this paper.   
 
5.  The Scaled SLW model   
The scaling assumption outlined previously yields a scaled histogram absorption cross-section 
which, for any spectral location, is defined by loc loc ref

j jC u C=  from the arbitrarily chosen 
subdivision into reference supplemental absorption cross-sections ref

jC .  
 
The wavenumber gray gas intervals defined by the reference supplemental cross-sections and 
absorption cross-section at the reference state for the scaled absorption cross-section defined by 
Eq. (5) remain the same at all thermodynamic states, as described by Eq. (24) and shown in Fig. 
3: 

( ){ } ( ){ }1 1: :ref ref loc ref loc ref
j j ref j j loc jC C C u C C u Cη ηη φ η φ− −∆ = < < = < <      (24) 

Therefore, integration of the spectral RTE over wavenumber intervals j∆  yields the gray gas 
RTE without additional Leibnitz terms of integration: 

( ) ( ) ( ) ( ) ( ) ( )( )j
j j j j b

I s
s I s a s s I T s

s
κ κ

∂
= − +

∂
  (25) 

Here, the local gray gas absorption coefficients at location s are defined as 

( ) ( ) ( ) ( ) ref
j js N s Y s u s Cκ =   (26) 

The local gray gas weights can be calculated using two different approaches.  In what is termed 
here Method 1, the weights are determined with the reference supplemental cross-sections and 
the reference thermodynamic state: 
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( ) ( ) ( )1, ,ref ref
j j ref loc j ref loca s F C T F C Tφ φ−= −    (27) 

Alternatively, the weights can be calculated with the scaled supplemental cross-sections and the 
local thermodynamic state, denoted Method 2: 

( ) ( ) ( )1, , , ,loc ref loc ref
j j loc loc j loc loca s F u C T F u C Tφ φ−= −    (28) 

The difference between calculation using the reference or local supplemental cross-sections 
(Methods 1 and 2, respectively) is visualized in Fig. 3.  Theoretically, for truly scaled spectra, 
these two methods for calculating the gray gas weights should produce equivalent results since 
they represent the same fraction of the Planck spectral emissive power at the same blackbody 
temperature, Tb = Tloc.  However, because real spectra are not perfectly scaled Eqs. (27) and (28) 
yield, in general, different results.  This will be demonstrated in a section to follow.  
 
6.  Continuous limit of the Scaled SLW model   
It is useful at this point to confirm that the Scaled SLW model approaches the continuous limit 
with an increase in number of gray gases.  This is done by first defining the intensity at the 
supplemental absorption cross-section ref

jC  using the equation: 

( )ref ref
j j jI I C C= ∆ ,  1

ref ref ref
j j jC C C −∆ = −        (29) 

Substitution of the gray gas absorption coefficients Eq. (26) and the gray gas weights Eq. (27), 
the gray gas RTE Eq. (25) can then be written as 

( ) ( ) ( ) ( ) ( )1, , , ,ref ref ref
j j ref j refref ref ref

j j j bref
j

I C F C T F C T
NYuC I C NYuC I T

s C
φ φ−∂ −

= − +
∂ ∆

  

       (30) 

Here, ( )T T s=  is the local gas temperature and ( )N N s= , ( )Y Y s= , and ( )u u s=  are the 
corresponding local values of gas molar density, mole fraction, and scaling coefficient, 
respectively.  With an increase in the number of gray gases in the model, the gray gas 
supplemental cross-sections approach the continuous variable ref

jC ξ→ , and the finite increment  
in Eq. (30) becomes the continuous limit of the Scaled SLW model: 

( ) ( ) ( ) ( )
, ,ref

b

F TI
NYu I NYu I T

s
ξ φξ

ξ ξ ξ
ξ

∂∂
= − +

∂ ∂
  (31) 

The total radiation intensity is found by 

( ) ( ) ( ) ( )
1

0 00 0

n n
ref ref

j j j
j j

I s I s d I I C C I dη η ξ ξ
∞

= =

= = = ∆ =∑ ∑∫ ∫       (32) 

The geometric meaning of the derivative term ( )refF , ,Tξ φ ξ∂ ∂  in Eq. (31) is illustrated in Fig. 
3, where the derivative is seen as the slope of the tangent line to the ALBDF curve. 
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Figure 3.  Graphical representation of spectral scaling in the Scaled SLW spectral model. 
 
 
7.  Theoretical justification of the Scaled SLW model by the -distribution method   
The choice of the gas reference thermodynamic state and the order of the moments of the 
absorption cross-section for construction of the proposed scaled spectral model are arbitrary, 
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( )refCη φ
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loc ref
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which can be used to advantage for improvement of the model’s accuracy.  To make a better 
selection (preference) between the Planck and Rosseland mean approaches, one may apply 
recent developments in the modelling of radiation transfer in non-uniform media with the help of 
a new approach termed the -distribution method [22, 23], which is based on application of 
statistical theory to narrow band modelling of radiative transfer.   
 
The -distribution method is developed as a narrow band model for prediction of radiative 
transfer along uniform and non-uniform gaseous paths [22].  However, in general, the method is 
not restricted to narrow bands, and it can thus be extended to the full spectrum. Therefore, one 
may modify here the main concepts of the -distribution method needed for this application 
directly to the full spectrum version. The -distribution theory summarized here will provide 
further theoretical justification for the proposed scaling relations of Eqs. (15) and (16). 
 
The total transmissivity of a uniform path L is obtained by   

( ) ( ) ( )
( )

,

0

L b b

b b

E T
L e d

E T
ηκ η φ ητ η

∞
−= ∫   (33) 

where the integral extends over all wavenumbers for which the absorption coefficient is strictly 
positive, e.g., using the same intervals as for κR.  The total transmissivity ( )Lτ  is as a strictly 
decreasing function of pathlength L, and is thus invertible. Its inverse  can be defined as 
solution of the relation: 

( )L Lτ =     (34) 

The assumption of the path-dependent scaling approach is formulated in the following way:   For 
any length L1 inside the gas at thermodynamic state φ1 the total transmissivity is preserved by the 
scaling coefficient  

( ) ( ) ( ) ( ) ( )1 1 2 1 2 1 1, ,

0 0

L u L L
b b b bE T e d E T e dη ηκ φ κ φ φ φ
η ηη η

∞ ∞
− −=∫ ∫        (35) 

which establishes the scaling relationship between the absorption spectra at states φ1 and φ2  

( ) ( ) ( )1 1 2, 1 2,u Lη ηκ φ φ φ κ φ=   (36) 

Here, the scaling coefficient ( )1 2 1, ,u Lφ φ  is path-dependent, in contrast to the scaling coefficient 
in Eq. (3).  However, it is independent of wavenumber η, and ( )2ηκ φ  is the absorption 
coefficient at any arbitrary state 2φ .  (In some sense it can play a role of the reference state.)  If 
the non-uniform path L consists of two uniform layers of length L1 and L2, then the scaling 
coefficient in [22, 23] is defined as 

( ) ( )( )1 2 1 2 1 1 1, ,u L L Lφ φ τ=         (37) 
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It was shown in ref. [22, 23] that a rough though relevant approximation of the numerator in the 
right-hand side of Eq. (37) is 

( )( ) ,1 ,1 ,1 11 1 1
2 1 1 1

,2 2 ,2 2 ,1 1

2
1 1 1P P P

P P P

L
L L

κ κ πκβ β βτ
κ β κ β πκ β

  
= − − − +       

       (38) 

where the Planck and Rosseland mean absorption coefficient (first and first inverse moments) are 
calculated by including the weight function for spectral integration (m = 1, 2): 

( ) ( )
( ),

0

b b
P m m

b b

E T
d

E T
η

ηκ κ φ η
∞

= ∫        (39) 

( )
( )
( ),

0

1 b b
R m

m b b

E T
d

E T
η

η

κ η
κ φ

∞

= ∫       (40) 

and the parameter β is defined as 
1

,

,

1P m
m

R m

κ
β π

κ

−
 

= −  
 

 (41) 

It should be noted that the Rosseland mean (first inverse moment) is not usually defined for 
gases in the full spectrum because of spectral windows of the gas absorption coefficient which 
prohibit division by κη = 0 in Eq. (40).  Therefore, the Rosseland mean is treated here 
exclusively in the context of the Generalized SLW model which excludes transparent windows 
from its definition [2].  
   
If ,1 1 12 1P Lπκ β   (as can be the case of an optically thin layer) in Eq. (38), then a linear 
approximation of the square root can be taken, 1 1 2x x+ ≈ + , and the equation reduces to 

( )( ) ,1
2 1 1 1

,2

P

P

L L
κ

τ
κ

≈  (42) 

The scaling coefficient for the optically thin case thus becomes 

( )
( )( ) ( )

( )
2 1 1 ,1

1 2 1
1 ,2

, , P b

P b

L T
u L

L T
τ κ

φ φ
κ

= ≈


  (43) 

which corresponds to the scaling coefficient uP defined by Eq. (15).   
 
If P Rκ κ  (which is observed for gases [2]) then , ,m R m P mβ π κ κ≈  and the scaling coefficient 
can be approximated as the ratio of Rosseland means: 
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( )
( )( ) ( )

( )
2 1 1 ,1

1 2 1
1 ,2

, , R b

R b

L T
u L

L T
τ κ

φ φ
κ

= ≈


    (44) 

which corresponds to the scaling coefficient uR defined by Eq. (16).  Thus, the application of 
previously published -distribution theory confirms and supports the theoretical basis of Eqs. 
(15) and (16) for calculation of the scaling coefficients in the Scaled SLW model.  Further, this 
development underlines the significant advantage of the scaling coefficient being determined 
explicitly, which is an important feature of the current model’s theoretical development.  
 
8.  Relationship to the scaled FSK method 
The current theoretical construction of the scaling coefficient can be related to prior work using 
the scaled spectrum assumption in the context of the FSK method.  The exponential terms in Eq. 
(1) for the scaling coefficient of the FSK method may be replaced by their linear approximation 
of exponential functions: 

( ) ( ), 1 ,mL
me Lηκ η φ

ηκ η φ− ≈ −  (45a) 

( ) ( ) ( ) ( )0 0, ,
0 01 , ,mu L

me u Lηκ η φ φ φ
ηκ η φ φ φ− ≈ −  (45b) 

These approximations are then substituted in Eq. (1) and simplified 

( ) ( ) ( ) ( ) ( )0 0 0 0
0 0

,  , ,  b bI T d u I T dη η η ηκ η φ η κ η φ φ φ η
∞ ∞

=∫ ∫  (46) 

The scaling coefficient can then be factored 

( ) ( ) ( ) ( ) ( )0 0 0 0
0 0

,  , ,  b bI T d u I T dη η η ηκ η φ η φ φ κ η φ η
∞ ∞

=∫ ∫  (47) 

If both sides of the relation above are divided by the total Planck emissive power at the reference 
temperature 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
0 00 0

1 1,  , ,  b b
b b

I T d u I T d
I T I Tη η η ηκ η φ η φ φ κ η φ η

∞ ∞

=∫ ∫  (48) 

and the definition of the modified Planck mean absorption coefficient is applied 

( ) ( ) ( )0 0 0 0, , ,P PT u Tκ φ φ φ κ φ=  (49) 

one may solve for the scaling coefficient 

( ) ( )
( )

0
0

0 0

,
,

,
P

P

T
u

T
κ φ

φ φ
κ φ

=  (50) 
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This expression reveals that the scaled Planck SLW model in terms of absorption coefficient is 
equivalent to the linear approximation of the scaled FSK method.  This result is also equivalent 
to Eq. (43), which corresponds to the optically thin approximation in the -distribution method.  
Invoking the linear approximation yields the advantage of an explicit calculation of the scaling 
coefficient, as mentioned previously.  The accuracy of the assumption under this development 
will now be explored. 
 

MODEL PREDICTIONS 
 

The Scaled SLW model as developed in the foregoing sections has been exercised through 
prediction of radiative transfer in example problems designed to test the scaled spectrum model 
assumption.  Predictions are explored using both the Planck mean- and Rosseland mean-based 
scaling coefficient.  These predictions are compared to line-by-line (LBL) benchmark 
predictions, and to predictions made with the SLW Reference Approach and the recently 
published Rank Correlated SLW model.  This allows the comparison of predictions using both 
correlated and scaled spectrum assumptions.  In all cases the same spectral database has been 
used for the line-by-line calculations and the generation of the ALBDF used in the Scaled SLW, 
Rank Correlated SLW, and SLW Reference Approach model predictions.  The tabulated form of 
the ALBDF has been used for the Scaled SLW model, Rank Correlated model, and SLW 
Reference Approach predictions.  
 
Example 1 
Consider the prediction of the divergence of total net radiative flux in a plane-parallel layer of 
thickness L bounded by black walls filled with a mixture of water vapor and carbon dioxide.  The 
gas temperature and species mole fractions have a parabolic profile defined by 

( ) ( ) 24000 800,KT x x L x L= − +  (51a) 

( ) ( )
2

2
H O 0.8 0.12Y x x L x L= − +  (51b)  

( ) ( )
2

2
CO 0.4 0.06Y x x L x L= − +  (51c) 

and are illustrated graphically in Fig. 4.  Four different cases for the gas layer thickness are 
considered in this example problem, L = 0.01, 0.1, 1.0, and 5.0 m.  This permits the identification 
of any dependence of the models’ accuracy on optical depth.  In all cases, the maximum 
temperature in the gas layer Tmax = 1800K occurs at the middle point of the layer and the 
minimum temperature Tmin = T0 = TL = 800K is at the walls.  The difference between maximum 
and minimum temperature in the layer is ∆T = 1000K, which, for the different layer thicknesses 
explored, results in substantially different spatial temperature gradients.  The average gas 
temperature of the layer for all cases is Tave = 1467K.  The ratio of gas mole fractions, H2O and 
CO2, is spatially constant for this example at 

2 2H O COY Y = 2.  
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Figure 4. Profiles of a) temperature, and b) gas mole fraction for Example 1. 

  
 
Prediction of the total divergence of the net radiative flux is performed using the analytical 
solution for the multilayer SLW solution method [24], with the Scaled SLW Planck mean (SP-
SLW) and Scaled SLW Rosseland mean (SR-SLW) models developed here, the Rank Correlated 
SLW model (RC-SLW) [3], and the SLW Reference Approach (SLW-RA) [6].  The mixture of 
H2O and CO2 in the SLW methods is treated as a single gas using the SLW multiplication 
approach described in [25]. The values of the minimum and maximum absorption cross-section, 
Cmin = 3×10-4 m2/mol and Cmax = 60 m2/mol, have been chosen to effectively cover the entire gas 
mixture absorption cross-section and to maintain the scaled absorption cross-sections in the 
range of the cross-sections in the ALBDF look-up table [21].  25 gray gases have been used in all 
SLW model predictions to ensure that prediction error is not caused by discretization into gray 
gases.  The line-by-line (LBL) benchmark predictions are performed with the same multilayer 
exact solution as that employed in the SLW method solutions, with spectral integrations 
performed using a summation over spectral intervals.  The high resolution spectra based on the 
HITEMP2010 [13] spectral database for H2O, and the CDSD-4000 [26] database for CO2 were 
used with spectral discretization ∆η = 0.01 cm-1.  More details about these spectral databases can 
be found in [27].  Detailed comparisons, not reported here, have shown that the use of the 
CDSD-4000 database instead of HITEMP2010 for CO2 in the construction of the SLW model 
database does not provide significant differences in full spectrum uniform scenarios. 
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Calculations are first made in this example problem for the case of layer thickness L = 1.0 m to 
compare the methods for determining the local gray gas weights according to Eq. (27) using 
Method 1, and according to Eq. (28) using Method 2.  This case is also used to consider in a 
preliminary way the influence of the choice of the gas reference temperature Tref.  Two the most 
widely used choices for gas reference temperature are compared, namely 1) the spatially 
averaged temperature, calculated as  

( )
0

1 L

ref aveT T T x dx
L

= = ∫ ,  (52) 

and 2) the maximum temperature in the medium Tref = Tmax, which, for this example is Tmax = 
1800K.  Comparison is made in Fig. 5a of the total divergence of the local net radiative flux, 
Q(x), for the scaled model based on Planck mean (SP-SLW), and in Fig. 5b for the scaled model 
based on Rosseland mean (SR-SLW).  Although this is only one example problem, the 
predictions suggest that the combination of Method 1 used for calculation of the gray gas 
weights and the use of the maximum temperature as reference temperature yield the most 
accurate results.  On this basis Method 1 will be used in all predictions hereafter.  The optimal 
reference temperature will be explored at length in sections to follow. 
 

 
Figure 5.  Predicted total divergence of the local net radiative flux for a layer thickness L = 1.0 m 

using a) the SP-SLW model, and b) the SR-SLW model. 
 
 
For better evaluation and quantitative comparison of the performance of different methods, the 
local and total absolute relative error of prediction of the total divergence of the net radiative flux 
are defined, respectively, as 

( ) ( ) ( ) ( )SLW LBL LBLLE x Q x Q x max Q x= −  (53) 
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and 

( ) ( ) ( )
L L

SLW LBL LBL
0 0

TE Q x Q x dx Q x dx= −∫ ∫  (54) 

These quantities are calculated and presented to provide comparison of the prediction by 
different methods. 
 
The results for prediction of the total divergence of net radiative flux are shown in Fig. 6a - 6d 
for the four layer thicknesses studied, L = 0.01 m, 0.1 m, 1.0 m, and 5.0 m.  The figure also 
illustrates the local absolute relative error LE(x) as defined in Eq. (53).  The maximum 
temperature in the domain was used as reference temperature (Tref = Tmax) for the SP-SLW, SR-
SLW, and RA-SLW model predictions, and the average temperature was used for the blackbody 
source temperature (Tb = Tave) in the RC-SLW model predictions.  The Rank Correlated SLW 
(RC-SLW) model is the most advanced correlated SLW model available [3].  Figure 6 shows 
that this model yields very accurate predictions.  The accuracy for this model exhibits generally a 
modest increase in error as L increases.  The traditional SLW Reference Approach (RA-SLW) 
shows similar behavior.  The Scaled Planck mean-based SLW model (SP-SLW) yields very good 
accuracy at low layer thicknesses, with the local error rising as L increases.  Finally, the Scaled 
Rosseland mean-based SLW model (SR-SLW) exhibits higher error at the extremes of low and 
high layer thickness, with minimum local error found for L = 1.0 m.  Interestingly, for the choice 
of reference temperature employed here (Tref = Tmax) the Planck mean-based Scaled SLW model 
yields the best accuracy of the two Scaled SLW models. 
 
Figure 7 illustrates the dependence of the total absolute relative error, TE, on reference 
temperature Tref for the SP-SLW, SR-SLW, and RA-SLW models, and Tb for the RC-SLW 
model for the conditions of Example 1.  For this case the following observations may be made.  
The error in prediction for the traditional SLW Reference Approach (RA-SLW) decreased 
monotonically as Tref increases from the minimum to the maximum temperature in the domain.  
It appears that the Tref = Tmax is the optimal choice of reference temperature for this model.  This 
has been suggested previously [14, 28].  The Rank Correlated SLW (RC-SLW) model yields 
accurate predictions which are insensitive to the choice of source temperature, Tb.  there appears 
to be slight increase in TE with Tb for the RC-SLW model, and the total error also appears to 
increase with increasing layer thickness.   
 
Figure 7 reveals that the Planck mean-based Scaled SLW (SP-SLW) model exhibits a 
monotonically decreasing total error with increasing reference temperature at low layer 
thicknesses, with the best predictive accuracy found employing Tref = Tmax.  However, for L ≥  
1.0 m there exists a local minimum in the total error’s dependence on Tref.  The local minimum 
error moves to lower reference temperature as the layer thickness increases; for L = 1.0 m Tref ≈  
1675K yields the best solution, and for L = 5.0 m Tref ≈  1550K is optimal.   
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Figure 6.  Predicted total divergence of the local net radiative flux Q(x) and corresponding local 
relative error LE(x) for the four layer thicknesses studied:  a) L = 0.01 m, b) L = 0.1 m, c) L = 1.0  

m, and d) L = 5.0 m 
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Figure 7.  Predicted total relative absolute error as a function of reference temperature Tref for the 

SP-SLW, SR-SLW, RA-SLW models; and Tb for the RC-SLW model for the four layer 
thicknesses studied in Example 1. 

 
 
The total relative error for the Rosseland mean-based Scaled SLW (SR-SLW) model predictions 
exhibits a considerably more complex dependence on reference temperature.  For this Scaled 
SLW model the minimum total error for this example may be found somewhere between the 
minimum and maximum temperatures in the domain.  Although the use of Tref = Tmax for the SR-
SLW model will yield acceptable predictions, the complex dependence of TE on Tref makes a 
more reasoned recommendation for the optimal reference temperature difficult to determine for 
this model.  
 
It might also be mentioned that predictions have been made using Tref (or Tb for the RC-SLW 
model) outside the range of minimum and maximum temperature in the domain, which in some 
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cases yield better accuracy than those utilizing Tmin ≤  Tref ≤  Tmax.  While this is an interesting 
finding, the theoretical basis for such a choice of reference temperature is unclear at this point, 
and deserves further investigation. 
 
It is interesting to note that the more restrictive Scaled SLW models may yield predictions that 
are more accurate than the less restrictive Rank Correlated SLW model, provided an optimized 
reference temperature can be identified for use in the Scaled models.  However, the Rank 
Correlated SLW model retains the significant advantage of requiring the specification of no 
reference state (temperature), and further, the RC-SLW model predictions are nearly insensitive 
to the source temperature, Tb.        
 
There is theoretical justification for the use of Tref = Tmax in the Scaled SLW model. The 
dependence of the mean absorption cross-sections on gas temperature T, which defines the gas 
thermodynamic state { }, ,T Y pφ = , is shown in Fig. 8.  The gas absorption cross-section data of 
Fig. 8a reveals that ( ),P bC Tφ  and ( ),R bC Tφ  exhibit different dependence on gas temperature.  
As shown in Fig. 8b, this yields a strong variation in the ratio ( ) ( ), ,P b R bC T C Tφ φ  with gas 
temperature which reaches its minimum value at the highest temperature in the layer.  The ratio 

P Rκ κ , which is proportional to ( ) ( ), ,P b R bC T C Tφ φ , appears in Eq. (41) defining the parameter 
β of the -distribution method [22, 23].  According to the -distribution method as applied to 
narrow bands, the value of gas temperature for which the parameter β is maximum (i.e., the 
value of β that corresponds to gas temperature for which the ratio ( ) ( ), ,P b R bC T C Tφ φ  is 
minimum) provides an optimum choice for the reference temperature.  Theoretically, this fact 
has not yet been proven for global models.  However, in the example considered here, it is 
consistent with narrow band observations; the ratio ( ) ( ), ,P b R bC T C Tφ φ  achieves its minimum at 
temperatures near T = 1800K, which is the maximum gas temperature in Example 1.   
 

 
Figure 8. Dependence on temperature of the mean absorption cross-sections CP, CR, and their 

ratio CP/CR for Example 1. 
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The spatial dependence of the scaling coefficients uP and uR for Example 1 is presented in Fig. 9.  
It may be observed that both uP and uR deviate significantly from unity, ranging from values 
below 0.2 to above 1.2.  This suggests that considerable correction is needed from the reference 
state to achieve optimal results.  Further, the figure reveals that the scaling coefficients vary 
significantly through the medium.  While generalizations are not possible with a single example 
problem, it may be stated that the influence of the Planck mean absorption cross-section and 
Rosseland mean absorption cross-section on the scaling coefficient is significant. 

 
 

 
Figure 9.  Profiles of the local scaling coefficients uP and uR in the gas layer of Example 1. 

 
 
Despite the simpler approach to construction of the Scaled SLW model relative to correlated 
SLW models, the moment-based Scaled SLW models have stronger theoretical foundation and 
more specific recommendations for the choice of the local scaling coefficient.  The results 
showing more accurate prediction using the Planck mean absorption cross-section for the smaller 
layer thicknesses is in agreement with the Eq. (43) which is for the optically thin case.  It should 
be noted that as L increases the layer deviates from the optically thin limit.  However, the scaling 
coefficient is established in the Multi-Layer SLW solution method [24], in which sublayers can 
be considered optically thin. 
 
Example 2 
Example 1 considered in the foregoing section considered a non-homogeneous mixture featuring 
spatially constant mole fraction ratio, 

2 2H O COY Y .  This situation is not atypical for gases in 
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combustion applications.  However, to investigate the ability of the scaled SLW approaches 
developed here to handle gas media with non-constant mole fraction ratio the previous example 
is modified in Example 2.  With all other example problem parameters unchanged, the water 
vapor mole fraction profile is now inverted in such a way that the total water vapor in the layer 
remains the same: 

2

2
H O 29 75 (4 5) ( )invY x x L L= − −   (55) 

Figure 10 illustrates the original H2O and CO2 mole fraction profiles ( )2 2H O COandY Y  used in 
Example 1, the inverted H2O mole fraction profile ( )2H O

invY  used in Example 2, and the 
corresponding mole fraction ratio profiles ( )2 2 2 2H O CO H O COand invY Y Y Y .  For this problem the ratio 
of H2O and CO2 mole fractions varies significantly in the range 1.17 < 

2 2H O COY Y  < 6.4, 
compared to the spatially constant ratio 

2 2H O COY Y = 2 for the H2O mole fraction profile of 
Example 1.  This problem is proposed to rigorously test the Scaled SLW model’s ability to 
perform under a condition radically departing from constant H2O/CO2 mole fraction.  It may also 
be noted that the problem of non-constant H2O/CO2 mole fraction has not been explored using 
the Rank Correlated SLW model. 

 
 

 
Figure 10.  Mole fraction and mole fraction ratio profiles for Examples 1 and 2, illustrating the 

original and inverted H2O mole fraction and corresponding mole fraction ratio profiles. 
 
 
Figure 11 presents predictions for the inverted H2O mole fraction profile scenario described 
above for a layer of thickness L = 1.0 m.  The figure includes the line-by-line benchmark 
solution, and the Scaled SLW model, Rank Correlated SLW model, and SLW Reference 
Approach model predictions.  The local radiative flux divergence Q(x) and local absolute relative 
error LE(x) are shown.  Consistent with the results of Example 1, there is very good agreement in 
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the radiative flux divergence for the RC-SLW and RA-SLW methods using Tb = Tave in the RC-
SLW model and Tref = Tmax for the RA-SLW model.  By contrast, it may be observed that the 
Scaled SLW model predictions using Tref = Tmax yield local errors somewhat higher than for the 
spatially constant mole fraction ratio case of Example 1.  Recall from Fig. 7 that the predicted 
total relative error for the constant mole fraction case of Example 1 revealed the choice of Tref = 
Tmax to be nearly optimal for both the SP-SLW and SR-SLW models for L = 1.0 m.  Also shown 
in Fig. 11 are predictions using the Scaled SLW models (SP-SLW and SR-SLW) using reference 
temperatures Tref = 1250K for the SP-SLW model and Tref = 1000K for the SR-SLW model.  It 
may be seen that the use of these reference temperatures in the predictions yields much more 
accurate results. 
 

 
Figure 11.  Predicted total divergence of the local net radiative flux Q(x) and corresponding local 

relative error LE(x) for the inverted H2O mole fraction profile of Example 2. 
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The local error data of Fig. 11 suggest that for the conditions of Example 2, the optimal reference 
temperature deviates significantly from the maximum temperature in the domain.  Figure 12 
illustrates the dependence of the total absolute relative error, TE, on the reference temperature 
Tref (or Tb for the RC-SLW method) for the case featuring the inverted H2O mole fraction profile, 
Example 2.  The RA-SLW and RC-SLW methods show similar monotonic dependence on Tref or 
Tb to that observed in Example 1.  The total error in the RA-SLW model prediction is 
monotonically decreasing, with the minimum total error found for Tref = Tmax.  Likewise, similar 
to the results of Example 1, the RC-SLW model predictions are nearly insensitive to Tb, with the 
optimal source temperature being the minimum temperature in the domain.  By contrast, the 
Scaled SLW model predictions show behavior quite different from that observed in Example 1.  
Both scaled models exhibit a local minimum in the total absolute relative error in the range of 
minimum and maximum temperature of the domain.  As can be seen, TE is a minimum near Tref 
≈  1250K for the SP-SLW model, and Tref ≈  1000K for the SR-SLW model (for which 
predictions were included in the local radiative flux divergence and local error results of Fig. 11).  
The accuracy appears to depend quite strongly on the reference temperature for these two 
methods, and the use of Tref = Tmax yields unsatisfactory results.  However, the predictions shown 
in Fig. 12 for the non-constant mole fraction condition confirm that the Scaled Model can 
achieve accuracy rivaling (or even exceeding) that of the less restrictive Rank Correlated SLW 
model if an optimized reference temperature can be found.  Further work is needed to 
characterize and generalize this dependence on the reference temperature. 
 
 

 
 

Figure 12.  Predicted total relative absolute error as a function of Tref for the SP-SLW, SR-SLW, 
RA-SLW models; and Tb for the RC-SLW model for the inverted H2O mole fraction profile of 

Example 2. 
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OUTLINE OF THE SCALED SLW MODEL 
 

It may be instructive to present a step-by-step outline of the Scaled SLW model to illustrate in a 
detailed way its implementation. 
 
1) One first chooses the reference gas thermodynamic state { }, ,ref ref ref refT Y pφ = .  The reference 
total pressure and gas species mole fractions should be chosen as spatially averaged values.  For 
the planar layer, it is calculated by 

( )
0

L

refY Y x dx L= ∫   

Because the emission is nonlinearly weighted by temperature, in the absence of more 
information relative to the optimum, it is recommended to choose the maximum temperature in 
the medium as the reference temperature Tref = Tmax.  
 
2) The reference supplemental absorption cross-sections are selected 0 1, ,...,ref ref ref

nC C C    as evenly 
logarithmically-spaced between the minimum and the maximum values Cmin and Cmax which 
effectively represent the spectral gas absorption cross section ( )refCη φ  at the reference state: 

( )min max min , 0,1,...,j nref
jC C C C j n= =   

Here, n  is the number of gray gases in the model (8 - 12 gray gases are recommended for high 
accuracy). Then the reference absorption cross-sections can be chosen as a geometric mean of 
the corresponding adjacent supplemental cross-sections  

1 , 1, 2,...,ref
j j jC C C j n−= =    

Alternative subdivisions into the reference absorption cross-sections can be found in [2]. 
 
3) Calculate the reference modified Planck mean and Rosseland mean absorption cross-sections 
using the well-established SLW modelling approach according to Eqs. (11) and (12): 

( )
1

,
n

ref ref ref
P ref b loc j j

j
C T T a Cφ

=

= = ∑         

( ) 1

1
,

refn
j
refref

j jR ref b loc

a
CC T Tφ =

=
= ∑    

The local gray gas weights are calculated as 
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 ( ) ( )1, , , ,ref ref ref
j j ref b loc j ref b loca F C T T F C T Tφ φ−= = − =  .   

Calculate the local modified Planck mean and Rosseland mean absorption cross-sections using 
their SLW modelling: 

( )
1

n
loc loc ref
P loc b loc j j

j
C T T a Cφ

=

= = ∑         

( ) 1

1 locn
j

loc ref
jR loc b loc j

a
C T T Cφ =

=
= ∑    

where the local gray gas weights are calculated as 

 ( ) ( )1, , , ,loc ref ref
j j loc b loc j loc b loca F C T T F C T Tφ φ−= = − =  . 

Note that in both cases, the blackbody source temperature is chosen at the local state, Tb = Tloc.  
The Planck mean and the Rosseland mean absorption cross-sections can be calculated also using 
the full data of the ALBDF look-up table [21] by Eqs. (13) and (14).  
 
The local scaling coefficients are calculated explicitly using Eqs. (15) and (16): 

( )
( )

,
,

P loc locloc
P

P ref loc

C T
u

C T
φ
φ

=    

( )
( )

,
,

R loc locloc
R

R ref loc

C T
u

C T
φ
φ

=   

 
4) The local gray gas absorption coefficients and their weights are now calculated.  The local 
gray gas absorption coefficients at location s are defined by scaling (where loc

Pu  is recommended 
in most cases) 

( ) loc loc ref
j j loc loc js N Y u Cκ κ= =    

It is recommended that the local gray gas weights be calculated with the help of the reference 
supplemental cross-sections and the reference thermodynamic state (Method 1): 

( ) ( ) ( ), 1 ,, ,loc ref ref
j j j ref loc j ref loca s a F C T F C Tφ φ−= = −    

The clear gas absorption coefficient is ( )0 0 0locsκ κ= =  and the corresponding weight is 

( ) ( )0 0 0 , ,loc ref
ref loca s a F C Tφ= =  .  The gray gas weights for the boundary conditions are calculated 

using the wall temperature as the blackbody source temperature, Tb = Tw:  



Revision of “The Scaled SLW Model….,” by Solovjov et al. 31 

( ) ( ), 1 ,, ,w ref ref
j j ref w j ref wa F C T F C Tφ φ−= −    

( )0 0 , ,w ref
ref wa F C Tφ=  . 

The gray gas RTE is then written as 

( ) ( ) ( ) ( ) ( ) ( )( ) ,   0,1,...,j
j j j j b

I s
s I s a s s I T s j n

s
κ κ

∂
= − + =

∂
 

Any arbitrary RTE solver can be used for solution of the gray gas RTE subject to boundary 
conditions. 
 
Finally, some comment may be made relative to correlated and scaled models for the prediction 
of radiative transfer in nonhomogeneous gas media.  Correlated models assume a perfect 
monotonically increasing relationship between gas spectra in distinct states.  This assumption, 
called comonotonicity in the most recent statistical literature, is never true in practice. This can 
be verified by calculating Spearman's coefficient [16, 29], which are used for determining the 
level of correlation between data at different conditions.  By definition, Spearman’s coefficient 
takes a value of unity for comonotonic (completely correlated) variables and zero for data that 
are completely statistically independent.  It can be verified that Spearman’s coefficients for real 
gas spectra deviate from unity, and thus, gas spectra are not rigorously comonotonic.  In general, 
real gas spectra are neither correlated nor scaled, and thus, neither approximation can be 
generalized to be superior.  This is consistent with the findings in this work. 
 
 

CONCLUSIONS 
 

The Scaled SLW method suitable for engineering applications has been developed on the basis 
of the first and first inverse moments of the gas absorption cross-section.  The method as 
developed features simple, explicit construction of the scaling coefficient, which is shown for 
two formulations of the scaling coefficient.  Predictions reveal that the more simply constructed 
Scaled SLW model can yield accuracy near that of the less restrictive Rank Correlated SLW 
model if an optimal reference temperature can be determined.  The Scaled SLW method can be 
an alternative to correlated SLW models when the gas absorption spectrum is not well correlated 
due to high non-uniformity of the medium. 
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