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Abstract—In this paper, we propose a soft-output Multiple-Input
and Multiple-Output (MIMO) detector algorithm, which is based
on two complementary techniques: exploration and exploitation.
The proposed detector, called List Exploration and Exploitation
(L2E), achieves near-optimal performance with low and fixed
computational complexity. It has a high parallelism degree, which
makes it suitable for efficient practical implementation. The soft-
output values are calculated by means of squared Euclidean
distances in a max-Log Likelihood Ratio (LLR) approximation.
The average Bit Error Rate (BER) performances of the L2E
are compared to the well-known List Sphere Decoding (LSD)
algorithm and it is shown that our method considerably reduces
the computation complexity while maintaining near-optimal per-
formance in comparison to LSD algorithm.

Keywords-MIMO detection; sphere-decoding; soft demod-
ulation.

I. INTRODUCTION

MIMO systems can be used to increase data rates by adopt-
ing spatial multiplexing method or to improve the reception
reliability by exploiting spatial diversity. In spatial multiplex-
ing systems, the maximum likelihood (ML) detection leads
to the optimal method for minimizing transmission errors.
However, it involves high computation complexity and requires
a brute-force search over all of the transmitted vectors. A
promising and efficient alternative, with reduced computational
complexity, is the original sphere decoding (SD) algorithm by
Fincke and Phost and its variants [1]–[4].
Nevertheless, the computational complexity of the sphere
decoding algorithm is still exponential in problem size [5]. Fast
but suboptimal ML detection algorithms such zero forcing,
minimum mean-squared error, semi-definite programming, and
interference cancellation detectors have already been proposed
in the literature [6]. This wide variety of detectors is mainly
due to a lack of optimum performances and/or higher compu-
tational complexity.

It has already been shown that the soft-output detector
improves the error performance compared with a hard-output
detector [8]. A soft-output detector generates the LLR value of
each bit, defined as the ratio of the probabilities that a zero or
a one has been transmitted conditioned on the received vector.
However, the computation complexity of exact a-posteriori
probabilities (APP) is exponential in the MIMO system di-
mensions [9]–[11]. Recently, a number of soft-output MIMO
detectors have been reported, which approximate the APP and
provide soft outputs [7]. Several demodulation schemes use
a list of candidate data vectors to obtain approximate LLRs.
To the best of our knowledge there are three families of

candidate list generation algorithms for the suboptimal soft-
output maximum a-posteriori (MAP) detector. The first type
of algorithms is a modified version of well-known hard tree
search detector where the goal of is to find one tree leaf with
the best metric. The goal of soft-output is to find and keep
a list in which one seeks to efficiently identify all bit vectors
that dominate the LLRs. The mostly well-known list type of
soft-output MIMO decoding algorithms are LSD algorithm
[8], sequential sphere decoding (LISS) algorithm [12], and the
M-Algorithm [13]. The second type of algorithms is based
on simple bit flips around the hard solution [14]. Therefore,
a hard decoder is employed to find a maximum a posteriori
symbol estimate, and a candidate list is generated by bit-
flipping of the MAP estimate. This technique may produce
a LLRs approximation with high probability. The third type
of techniques is based on lattice-reduction (LR) aided detector
following by bit-flipping technique, which generates a list from
which it computes the APP of all bits comprising the symbol
vector. The channel matrix properties can be improved using
an efficient lattice reduction and by this way we can reduce
the complexity of the hard demodulator.

Our contribution in this paper is multi-fold: Based on
previous MIMO detection studies of the hard detector [15][16],
we propose a new near-optimal soft-output demodulator based
on list generation algorithm. The algorithm list’s size is
controlled using the number of considered candidates, Nc,
during the exploitation phase, and the number of considered
direction, Nd. The proposed soft-output MIMO detection algo-
rithm L2E was closely approximate the max-log LLR functions
based on the generated initial solutions list with a reduced and
fixed computational complexity. In contrary, the List Sphere-
Decoding algorithm has a variable computational complexity
depending on the MIMO channel conditioning. Moreover, the
growth of the LSD complexity is exponential in the low Signal-
to-noise ratio (SNR) region.

The computation complexity of the proposed L2E algo-
rithm is independent from the SNR and thus has a constant
value over all SNR regions. In our algorithm, the complexity
depends only on the number of transmitter/receiver antennas,
the number of considered candidates Nc, and the number of
considered directions Nd. Monte Carlo simulations show that
the proposed soft-output list detector has better complexity
and performance trade-offs than the well-known LSD detector.
Moreover, the L2E detector has an inherent parallel structure,
thus it is very suitable for massive parallel architectures.

The reminder of this paper is organized as follows. Section
II introduces the mathematical model of the studied MIMO bit-
interleaved coded modulation (BICM-MIMO) system and the



associated maximum likelihood detection (MLD) problem. The
hard-output version of the exploration and exploitation detector
algorithm (H2E) will be introduced and it is extended to
compute soft-outputs. The proposed algorithm will be called as
list exploration and exploitation detector (L2E). Computational
complexity issues are given in Section IV. Section V provides
Monte Carlo simulation results of the proposed algorithm
and gives same discussions. Finally, Section VI is devoted to
concluding remarks;

II. MATHEMATICAL MODEL

In this section, we introduce the BICM-MIMO model and
the LLR generation with perfect channel state information
(CSI) at the receiver is described.

A. MIMO-BICM system Model

Herein, we consider a MIMO system with N transmit
antennas and M receive antennas associated to a BICM
schema where a block of information bits is mapped to transmit
symbols through a channel encoder and a symbol mapper
separated by a code-bit interleaver [17] [18]. Let us consider
a MIMO-BICM system with M × N channel matrix Hc. At
the receiver, a detector calculates the log-likelihood ratios for
the coded bits, which are deinterleaved and passed to the
subsequent channel decoder. The coded bit stream is mapped
to N -dimensional transmit vector symbols xc ∈ φN , where
φ is a 2Q-QAM modulation. The individual coded bits are
denoted by bij , where the indexes i and j refer to the ith

bit in the binary label of the jth entry of the transmitted
symbol vector xc = [xc1, x

c
2, ..., x

c
N ]T . In considered MIMO-

BICM system, the transmitted signal and the received signal
are related through a complex baseband input-output relation
as:

yc = Hcxc + wc (1)

where wc is an independent and identically distributed
complex zero-mean Gaussian noise with variance σ2/

√
2 per

complex entry, yc is the received symbol vector, and xc is
the transmitted symbol vector with the average transmit power
of each antenna normalized to one, i.e. E[xcxH

c ] = IN . The
M × N channel matrix Hc contains uncorrelated complex
Gaussian fading gains where the element hcij represents the
complex transfer function from the jth transmit antenna to
the ith receive antenna. Thus, the channel matrix Hc, which
is assumed to be known by the receiver, is modeled as
an independent and identically distributed complex Gaussian
variable with zero mean and variance 1/2 per entry. Treating
real and imaginary part of (1) separately, and with the real-
valued channel matrix and the real-valued vectors, the system
model can be rewritten as[
<(yc)
=(yc)

]
=

[
<(Hc) −=(Hc)
=(Hc) <(Hc)

] [
<(xc)
=(xc)

]
+

[
<(wc)
=(wc)

]
where <(z) and =(z) denote the respective real and

complex parts of a complex number z. Let m = 2M and
n = 2N , then the dimension of the real channel matrix is
given by m × n. Likewise, the dimension of the vectors are
given by y ∈ Rm, w ∈ Rm, and x ∈ ξn where ξ ≡ <(φ). In
this paper, we restrict our study to the case where ξn ≡ {±1}n.

B. Optimum Soft-output Demodulation

Given the channel matrix H, the received vector y, and
assuming an ideal interleaver, the optimum soft-output max-
imum a posteriori decoder minimizes the BER by evaluating
the LLRs of the a posteriori probability of each bit bij .

L(bij) = log
P (bij = 1|y)

P (bij = 0|y)
(2)

where P (bij |y) is the probability mass function of the code bits
conditioned on y. The exhaustive evaluation of (2) has a high
computational complexity. Thus, using Bayes’ theorem and the
max-log approximation as shown in [7][9], the equation (2) can
be further rewritten as:

L(bij) ≈
1

2σ2

(
min

x∈X 0
ij

‖y−Hx‖2 − min
x∈X 1

ij

‖y−Hx‖2
)

(3)

where X 1
ij and X 0

ij are the sets of symbols vectors having
bij equal to 1 and 0, respectively. The set ξn can be seen
as the union of the previous two subsets ξn = X 1

ij ∪ X 0
ij .

The computation complexity of (3) is exponential in the
number of transmit antennas. Thus, we propose a novel soft-
output detector, called L2E, which keeps a limited number
of candidates in order to evaluate the equation (3). Hence,
the LLR of the ith bit bij in the jth symbol xj can be
approximated as

L(bij) ≈
1

2σ2

(
min

x∈Γ∩X 0
ij

‖y−Hx‖2 − min
x∈Γ∩X 1

ij

‖y−Hx‖2
)
(4)

where Γ denotes the candidates list, which is the subset of
the feasible set ξn. The computational complexity the soft-
output detector is affected by the list size and it increases
approximately linearly (see Section IV).

III. PROPOSED SOFT-OUTPUT DETECTOR

In this section, we propose an soft-output MIMO detec-
tor based on the exploration and exploitation strategies. The
proposed L2E detector allows a sub-optimal solution for the
optimum soft-output demodulation problem that limits the
complexity of the receiver design.

A. Exploitation technique

The exploitation step can be defined as a simple and naive
local search technique. This section gives a mathematical basis
to understand how the exploitation (intensification) is applied
on the subset ξnst ⊂ ξn. The subset ξnst is generated by the first
phase, which is the exploration (diversification) step. In the
reminder of this section, we show that a simple greedy policy
of position switching between neighbouring feasible solutions
to locally minimize the objective function f(x) = ‖y−Hx‖2
over the subset ξnst.

1) Definition 1: A neighbourhood operator is a function
Z : ξn 7−→ Z(ξn) that assigns to every solution u ∈ ξn

a set of neighbours Z(u) ⊆ ξn. The subset Z(u) is called
neighbourhood of u and it is equivalent to a neighbourhood
graph, which has ξn as vertex set, and which contains directed
edge v 7−→ u⇔ v ∈ Z(u).



2) Definition 2: A local minimum solution with respect to
a neighbourhood operator Z is a solution u∗, such that for all
u ∈ Z(u∗)⇒ f(u∗) ≤ f(u). The exploitation technique starts
at a given solution u ∈ ξn and makes it as the current solution
x0 = u. At each iteration, it examines all the neighbours of
the current solution and seeks to best one having a better
objective function value than x0, i.e., v ∈ Z(x0) such that
f(v) ≤ f(x0). If such a solution is found, it becomes the
current solution, i.e., x0 = v. These iterations are repeated
until there is no better solution in the neighbourhood Z(x0)
of the current solution. For the exploitation step, we perform
a simple 1-flip local search algorithm where only one variable
is flipped, per step, to reach the nearest neighbour. The local
neighbourhood is the Hamming ball with distance one. More
expensive, p-flip methods can be adopted where at most p
variables are simultaneously flipped. In general, for a total
number of n variables, the cardinality of the neighbourhood
set is equal to

∑p
i=0

(
n
i

)
.

B. Exploration technique

Given a channel matrix H, the singular value decomposi-
tion of this matrix is defined as H = UDVT , where the diago-
nal matrix D contains the singular values [λk]nk=1, supposed to
be indexed in increasing order, i.e., {λi ≤ λj , 1 ≤ i < j ≤ n}.
The unitary matrices U and V contain, respectively, the left
[uk]mk=1 and right [vk]nk=1 singular vectors of the matrix H.

Let us now consider xzf = H+y, where H+ is the pseudo-
inverse of channel matrix H, be a linear solution given by the
zero-forcing (ZF) detector. For all x ∈ ξn, the vector z =
x− xzf can be expressed as a linear combination of the basis
vectors formed by the columns of the matrix V. Moreover, the
value of the objective function f(x) can be expressed as

f(x) = ‖H(x− xzf )‖2

= Σn
k=1a

2
kλ

2
k (5)

where the coefficients [ak]nk=1 are real numbers. Since the
singular values of the channel matrix are ordered increasingly,
we can note that the increase in the objective function is
much slower along the first Nd singular values than the last
(n − Nd) values. Let us consider an n-dimensional line ∆k

passing through the point xzf with the directed vector vk, i.e
∆k = {z ∈ Rn; z = xzf + γvk, γ ∈ R}. It is obvious that if
we choose x ∈ ξn that are close to the first Nd lines {∆k}Nd

k=1
associated to the Nd smallest singular values, we can create a
subset ξnst that contains Nc possible solutions in the vicinity
of each line. The purpose of the exploration step is to create
a subset ξnst ⊂ ξn, which contains NcNd feasible solutions.

C. L2E algorithm

By construction, the exploration step generates a subset ξnst
of feasible solutions where each solution will be processed
independently by the exploitation step. The latter step will
iterate once over each element of the subset ξnst. In this
exploration and exploitation optimization process, the objective
function will be evaluated nNdNc times. The L2E will create
the list Γ of 2nNdNc elements, which yielded the lowest
objective function values, and then the Γ list will be used to
evaluate the output soft metrics. A summary of the proposed
soft-output MIMO detector is shown in Figure 1.

Data: Channel matrix H, received vector y, Nd and
Nc.

Result: LLR-values of the sub-optimal solution’s
entries.

begin
Extract the Nd right singular vectors of the channel
matrix {vk}Nd

k=1;
Compute H+;
Compute xzf = H+y;
for k = 1..Nd do

Generate the line ∆k defined by xzf and
directed vector vk;

Find all intersection points between the line ∆k

and all hyperplanes x(i) = 0 and project them
on ξn;

Evaluate the objective function for all feasible
solution and keep the best Nc solution in order
to update ξnst;

Create Γ using ξnst;
Perform the exploitation step over Γ;
Compute LLR-values;

Figure 1. L2E Algorithm

IV. L2E COMPLEXITY

The complexity is measured in terms of the number of real
multiplications required to decode one block of transmitted
information bits. The assumption of a block-constant channel
is almost universal in the analysis of MIMO systems. Thus,
computing the pseudo-inverse matrix H+ is not needed for
each received vector. We assume that each block contains
L transmitted vector. To find the linear solution xzf , the
received signal vector will be multiplied by the pseudo-inverse
of channel matrix. The resulting complexity for L transmitted
vectors is hence equal to Ln2 multiplications. For the Nd

studied directions, the exploration step produces an initial list
of feasible solutions using the intersection points between lines
{∆k}Nd

k=1 and hyperplanes {x(i) = 0}ni=1. Thus, the compu-
tation complexity of the exploration step would be LNdn

2

multiplications. The exploitation step will be performed on
subset ξnst of feasible solutions (the ξnst subset’s cardinality is
NdNc). The exploitation step needs 2nNdNc multiplications.
Finally, the LLR-values computation needs 4nNdNc.

For a given Nd and Nc, the computational complexity of
the proposed soft-output L2E detector is constant, over the
entire SNR range, compared to that of the list sphere-decoding.

V. SIMULATION RESULTS

In this section, we carry out some simulation results to
evaluate the bit error rate performances of the soft-output L2E
MIMO detector. We consider a MIMO-BICM system as pro-
posed in [8], with N transmit antennas and M receive anten-
nas. This system use a parallel concatenated turbo error control
coding with rate R = 1/2. Each constituent convolutional code
has memory 2, feedback polynomial Gr(D) = 1 + D + D2,
and feedforward polynomial G(D) = 1 +D2. The interleaver
size of the turbo code is 512 information bits. We choose the
number of inner iterations for the turbo decoding module to



be 10. As in [8], we generate independent Rayleigh flat fading
channels between transmit/receive antennas and we assume a
perfect channel estimation at the MIMO receiver side.

In the 4 × 4 MIMO system (i.e., n = m = 8) case, the
Figure 2 compares the performance of proposed soft output
L2E algorithm versus the list sphere decoding (LSD) with
candidate list of maximal length Ncand = 1024 as show in
[8] and the shifted spherical list APP detector [19]. It can be
seen that for this MIMO systems scenario, the shifted spherical
list APP detector, with Ncand = 1024, has a slightly better
performance than the L2E decoder with parameters (Nd = 3
and Nc = 4). However, the soft-output L2E use not more than
nNdNc feasible solutions to generate the log-likelihood ratios
of different outputs.
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Figure 2. BER performances versus the SNR of L2E, LSD and shifted list
sphere decoder, N = M = 4.

In Figure 3, the bit error rate performances between
following soft-output MIMO detectors has been compared:
list sphere-decoding, list exploration and exploitation detector,
and soft-output semi-definite programming (SDP). Numerical
results are presented for a MIMO system with N = 8
and M = 8 in a Rayleigh fading channel. The bit error
rate difference is not even noticeable between the L2E with
parameters Nd = 3 and Nc = 4 and the soft output SDP. At the
bit error rate of 10−4, L2E performance is only less than 0.2
dB from the LSD with candidates list length Ncand = 1024.

VI. CONCLUSION

In this paper, we proposed a soft-output MIMO detector
algorithm called the list exploration and exploitation. We
have shown that the proposed algorithm achieves near-optimal
performance with low and fixed computational complexity.
Furthermore, it is suitable for efficient practical implemen-
tation because of its parallelism. We have compared the bit
error rate performances of the proposed detector are compared
to the well-known list sphere decoding algorithm and it is
shown that our method maintains near-optimal performances
in comparison with LSD while considerably reducing the
computation complexity.
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Figure 3. BER performances versus SNR of L2E, LSD and soft-output SDP
detector, N = M = 8.
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