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In this note, new sharp bounds for trigonometric functions are proved. We provide alternative proofs to existing results on exponential bounds, with some improvements, by using infinite products and the socalled Bernoulli inequality.

Introduction

The following two theorems have been proved by Yogesh J. Bagul [START_REF] Bagul | Inequalities involving circular, hyperbolic and exponential functions[END_REF]. The first result concerns bounds for cos(x).

Theorem 1. [2, Theorem 1] For x ∈ (0, 1), we have e -ax 2 < cos(x) < e -x 2 /2 , with a ≈ 0.6156265.

The second result is about bounds for sin(x)/x. Theorem 2. [2, Theorem 2] For x ∈ (0, 1), we have e -bx 2 < sin(x) x < e -x 2 /6 , with b ≈ 0.172604.

Our main interest is to provide tight and tractable lower bounds for cos(x) and sin(x)/x. The proofs of [2, Theorems 1 and 2] are based on the so-called l'Hospital's rule of monotonicity [START_REF] Anderson | Conformal Invarients, Inequalities and Quasiconformal maps[END_REF], with the use of non trivial derivative properties of involving functions.

In this paper, we first propose alternative proofs of these two results, with extensions, by the use of infinite product and the so-called Bernoulli inequality. Then new bounds for cos(x) and sin(x)/x defined with polynomial terms are proved. Their tightness are shown graphically.

Alternative proofs of existing bounds

The following version of the so-called Bernoulli inequality will be at the heart of our proofs. Proposition 1. [Bernoulli inequality] For u, v ∈ (0, 1), we have

1 -uv (1 -v) u .
We refer to [START_REF] Shi | Generalizations of Bernoulli's inequality with applications[END_REF]Theorem A] for the general version of the Bernoulli inequality (with less restriction on u and v). An elegant short proof for the considered version is given below.

Proof of Proposition 1. For u, v ∈ (0, 1) and k 1, we have u k u. It follows from the logarithmic series expansion that

ln(1 -uv) = - +∞ k=1 u k v k k u - +∞ k=1 v k k = uln(1 -v).
Composing by the exponential function, we obtain the desired inequality.

The following result is a slight generalization of [2, Theorem 1], but with a completely different proof.

Proposition 2. For α ∈ (0, π/2) and x ∈ (0, α), we have

e -βx 2 cos(x) e -x 2 /2 , with β = [-ln(cos(α))]/α 2 .
Proof of Proposition 2. The proof is centred around the infinite product of the cosine function: for all x ∈ R, we have

cos(x) = +∞ k=1 1 - 4x 2 π 2 (2k -1) 2 .
• Proof of the upper bound. Using the known inequality : e y 1 + y for y ∈ R and

+∞ k=1 1 (2k-1) 2 = π 2
8 , for x ∈ (0, π/2) (such that all the terms in the product are strictly positive), we have

cos(x) = +∞ k=1 1 - 4x 2 π 2 (2k -1) 2 +∞ k=1 exp - 4x 2 π 2 (2k -1) 2 = exp - 4x 2 π 2 +∞ k=1 1 (2k -1) 2 = exp - 4x 2 π 2 × π 2 8 = e -x 2 /2 .
• Proof of the lower bound. Using the infinite product expression of the cosine function and Proposition 1 (with respect to the considered u and v that satisfy u, v ∈ (0, 1)), for x ∈ (0, α), we have

cos(x) = +∞ k=1 1 - 4α 2 π 2 (2k -1) 2 x 2 α 2 +∞ k=1 1 - 4α 2 π 2 (2k -1) 2 x 2 /α 2 = +∞ k=1 1 - 4α 2 π 2 (2k -1) 2 x 2 /α 2 = (cos(α)) x 2 /α 2 = e -βx 2 , with β = [-ln(cos(α))]/α 2 .
By combining the obtained upper and lower bounds, we end the proof of Proposition 2. Proposition 3. For α ∈ (0, π) and x ∈ (0, α), we have

Note

e -γx 2 sin(x) x e -x 2 /6 , with γ = [-ln(sin(α)/α)]/α 2 .
Proof of Proposition 3. The proof is centred around the infinite product of the sinc function, i.e. sinc(x) = sin(x)/x for x = 0, the so-called Euler formula: for all x ∈ R -{0}, we have

sin(x) x = +∞ k=1 1 - x 2 π 2 k 2 .
• Proof of the upper bound. Using the inequality : e y 1 + y for y ∈ R and

+∞ k=1 1 
k 2 = π 2 6
, for x ∈ (0, π), we have

sin(x) x = +∞ k=1 1 - x 2 π 2 k 2 +∞ k=1 exp - x 2 π 2 k 2 = exp - x 2 π 2 +∞ k=1 1 k 2 = exp - x 2 π 2 × π 2 6 = e -x 2 /6 .
• Proof of the lower bound. Using the infinite product expression of the sinc function and Proposition 1, for x ∈ (0, α), we have

sin(x) x = +∞ k=1 1 - α 2 π 2 k 2 x 2 α 2 +∞ k=1 1 - α 2 π 2 k 2 x 2 /α 2 = +∞ k=1 1 - α 2 π 2 k 2 x 2 /α 2 = sin(α) α x 2 /α 2 = e -γx 2 , with γ = [-ln(sin(α)/α)]/α 2 .
Note: Taking α = 1, we obtain γ = -ln(sin(1)) ≈ 0.1726037, and Proposition 3 becomes [2, Theorem 2].

Note: Similar results to Propositions 2 and 3 can be obtained with hyperbolic functions instead of trigonometric functions. Indeed, the following Bernoulli inequality exists: for u ∈ (0, 1) and v > 0, we have 1+uv (1+v) u (see [START_REF] Shi | Generalizations of Bernoulli's inequality with applications[END_REF]Theorem A]). Therefore, using the same arguments to the proofs of Propositions 2 and 3 with the infinite products for cosh(x) and sinh(x)/x, i.e. cosh(x)

= +∞ k=1 1 + 4x 2 π 2 (2k-1) 2 and sinh(x)/x = +∞ k=1 1 + x 2
π 2 k 2 , we establish that, for α > 0 and x ∈ (0, α),

• e θx 2 cosh(x) e x 2 /2 , with θ = [ln(cosh(α))]/α 2 , which is appeared in [3, Remark 2.1] and

• e ζx 2 sinh(x)/x e x 2 /6 , with ζ = [ln(sinh(α)/α)]/α 2 .

Polynomial bounds for trigonometric functions

This section is devoted to the proof of new sharp polynomial lower bounds or new proofs, for trigonometric functions.

Proposition 4. For x ∈ (0, π/2), we have

cos(x) 1 - 4x 2 π 2 π 2 /8 . (3.1) 
Proof of Proposition 4. The proof combines the infinite product of the cosine function, Proposition 1 and

+∞ k=1 1 (2k-1) 2 = π 2 8
, but in a different way to the proof of Proposition 2. We have

cos(x) = +∞ k=1 1 - 4x 2 π 2 1 (2k -1) 2 +∞ k=1 1 - 4x 2 π 2 1/(2k-1) 2 = 1 - 4x 2 π 2 +∞ k=1 1/(2k-1) 2 = 1 - 4x 2 π 2 π 2 /8
.

We provide a graphical illustration of the bounds (3.1) in Figure 1. 

(1 -4x 2 π 2 ) (π 2 8)
k 2 = π 2 6 : sin(x) x = +∞ k=1 1 - x 2 π 2 1 k 2 +∞ k=1 1 - x 2 π 2 1/k 2 = 1 - x 2 π 2 +∞ k=1 1/k 2 = 1 - x 2 π 2 π 2 /6 1 
.

In the following Corollary, we give tight upper bound for cos(x).

Corollary 1. For x ∈ (0, π) we have

cos(x) 1 + 3π 2 π 2 + 6 1 - x 2 π 2 (π 2 +6)/6 -1 . (3.3)
Proof of Corollary 1. Using (3.2) and integrating we have

x 0 sin(t) dt x 0 1 - t 2 π 2 π 2 /6 t dt which turns into -cos(x) -1 - 3π 2 π 2 + 6 1 - x 2 π 2 (π 2 +6)/6 - 1 
proving desired result.

The upper bound of Corollary 1 can be seen in Figure 2. Note: Similar results to Propositions 4 and 5 can be obtained with hyperbolic functions instead of trigonometric functions. Indeed, using the following Bernoulli inequality: for u ∈ (0, 1) and v > 0, we have 1 + uv (1 + v) u and the infinite products for cosh(x) and sinh(x)/x, we prove that, for x > 0,

• cosh(x)

1 + 4x 2 /π 2 π 2 /8 ,

• sinh(x)/x 1 + x 2 /π 2 π 2 /6 .

:

  Taking α = 1, we obtain β = -ln(cos(1)) ≈ 0.6156265, and Proposition 2 becomes [2, Theorem 1]. Proposition 3 below gives a generalization of [2, Theorem 2].
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 122632 Figure 1: Graphs of the functions in (3.1) for x ∈ (0, π/2).
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 2 Figure 2: Graphs of the functions in (3.3) for x ∈ (0, π).