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1 Introduction

The following two theorems have been proved by Yogesh J. Bagul [2]. The
first result concerns bounds for cos(x).

Theorem 1. [2, Theorem 1] For x ∈ (0, 1), we have

e−ax
2
< cos(x) < e−x

2/2,

with a ≈ 0.6156265.

The second result is about bounds for sin(x)/x.

Theorem 2. [2, Theorem 2] For x ∈ (0, 1), we have

e−bx
2
<
sin(x)

x
< e−x

2/6,

with b ≈ 0.172604.
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Our main interest is to provide tight and tractable lower bounds for
cos(x) and sin(x)/x. The proofs of [2, Theorems 1 and 2] are based on
the so-called l’Hospital’s rule of monotonicity [1], with the use of non trivial
derivative properties of involving functions.

In this paper, we first propose alternative proofs of these two results,
with extensions, by the use of infinite product and the so-called Bernoulli
inequality. Then new bounds for cos(x) and sin(x)/x defined with polyno-
mial terms are proved. Their tightness are shown graphically.

2 Alternative proofs of existing bounds

The following version of the so-called Bernoulli inequality will be at the
heart of our proofs.

Proposition 1. [Bernoulli inequality] For u, v ∈ (0, 1), we have

1− uv > (1− v)u.

We refer to [4, Theorem A] for the general version of the Bernoulli in-
equality (with less restriction on u and v). An elegant short proof for the
considered version is given below.

Proof of Proposition 1. For u, v ∈ (0, 1) and k > 1, we have uk 6 u. It
follows from the logarithmic series expansion that

ln(1− uv) = −
+∞∑
k=1

ukvk

k
> u

(
−

+∞∑
k=1

vk

k

)
= uln(1− v).

Composing by the exponential function, we obtain the desired inequality.

The following result is a slight generalization of [2, Theorem 1], but with
a completely different proof.

Proposition 2. For α ∈ (0, π/2) and x ∈ (0, α), we have

e−βx
2
6 cos(x) 6 e−x

2/2,

with β = [−ln(cos(α))]/α2.

Proof of Proposition 2. The proof is centered around the infinite product of
the cosine function: for all x ∈ R, we have

cos(x) =

+∞∏
k=1

(
1− 4x2

π2(2k − 1)2

)
.
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• Proof of the upper bound. Using the known inequality : ey > 1 + y for

y ∈ R and
+∞∑
k=1

1
(2k−1)2 = π2

8 , for x ∈ (0, π/2) (such that all the terms

in the product are strictly positive), we have

cos(x) =
+∞∏
k=1

(
1− 4x2

π2(2k − 1)2

)
6

+∞∏
k=1

exp

(
− 4x2

π2(2k − 1)2

)

= exp

(
−4x2

π2

+∞∑
k=1

1

(2k − 1)2

)
= exp

(
−4x2

π2
× π2

8

)
= e−x

2/2.

• Proof of the lower bound. Using the infinite product expression of the
cosine function and Proposition 1 (with respect to the considered u
and v that satisfy u, v ∈ (0, 1)), for x ∈ (0, α), we have

cos(x) =
+∞∏
k=1

(
1− 4α2

π2(2k − 1)2
x2

α2

)
>

+∞∏
k=1

(
1− 4α2

π2(2k − 1)2

)x2/α2

=

(
+∞∏
k=1

(
1− 4α2

π2(2k − 1)2

))x2/α2

= (cos(α))x
2/α2

= e−βx
2
,

with β = [−ln(cos(α))]/α2.

By combining the obtained upper and lower bounds, we end the proof of
Proposition 2.

Note: Taking α = 1, we obtain β = −ln(cos(1)) ≈ 0.6156265, and
Proposition 2 becomes [2, Theorem 1].

Proposition 3 below gives a generalization of [2, Theorem 2].

Proposition 3. For α ∈ (0, π) and x ∈ (0, α), we have

e−γx
2
6
sin(x)

x
6 e−x

2/6,

with γ = [−ln(sin(α)/α)]/α2.

Proof of Proposition 3. The proof is centered around the infinite product
of the sinc function, i.e. sinc(x) = sin(x)/x for x 6= 0, the so-called Euler
formula: for all x ∈ R− {0}, we have

sin(x)

x
=

+∞∏
k=1

(
1− x2

π2k2

)
.
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• Proof of the upper bound. Using the inequality : ey > 1 + y for y ∈ R

and
+∞∑
k=1

1
k2

= π2

6 , for x ∈ (0, π), we have

sin(x)

x
=

+∞∏
k=1

(
1− x2

π2k2

)
6

+∞∏
k=1

exp

(
− x2

π2k2

)

= exp

(
−x

2

π2

+∞∑
k=1

1

k2

)
= exp

(
−x

2

π2
× π2

6

)
= e−x

2/6.

• Proof of the lower bound. Using the infinite product expression of the
sinc function and Proposition 1, for x ∈ (0, α), we have

sin(x)

x
=

+∞∏
k=1

(
1− α2

π2k2
x2

α2

)
>

+∞∏
k=1

(
1− α2

π2k2

)x2/α2

=

(
+∞∏
k=1

(
1− α2

π2k2

))x2/α2

=

(
sin(α)

α

)x2/α2

= e−γx
2
,

with γ = [−ln(sin(α)/α)]/α2.

Note: Taking α = 1, we obtain γ = −ln(sin(1)) ≈ 0.1726037, and
Proposition 3 becomes [2, Theorem 2].

Note: Similar results to Propositions 2 and 3 can be obtained with hy-
perbolic functions instead of trigonometric functions. Indeed, the following
Bernoulli inequality exists: for u ∈ (0, 1) and v > 0, we have 1+uv > (1+v)u

(see [4, Theorem A]). Therefore, using the same arguments to the proofs of
Propositions 2 and 3 with the infinite products for cosh(x) and sinh(x)/x,

i.e. cosh(x) =
+∞∏
k=1

(
1 + 4x2

π2(2k−1)2

)
and sinh(x)/x =

+∞∏
k=1

(
1 + x2

π2k2

)
, we es-

tablish that, for α > 0 and x ∈ (0, α),

• eθx2 6 cosh(x) 6 ex
2/2, with θ = [ln(cosh(α))]/α2,

• eζx2 6 sinh(x)/x 6 ex
2/6, with ζ = [ln(sinh(α)/α)]/α2.

3 Polynomial bounds for trigonometric functions

This section is devoted to the proof of new sharp polynomial lower bounds
or new proofs, for trigonometric functions.
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Proposition 4. For x ∈ (0, π/2), we have

cos(x) >

(
1− 4x2

π2

)π2/8

. (3.1)

Proof of Proposition 4. The proof combines the infinite product of the co-

sine function, Proposition 1 and
+∞∑
k=1

1
(2k−1)2 = π2

8 , but in a different way to

the proof of Proposition 2. We have

cos(x) =
+∞∏
k=1

(
1− 4x2

π2
1

(2k − 1)2

)
>

+∞∏
k=1

(
1− 4x2

π2

) 1
(2k−1)2

=

(
1− 4x2

π2

)+∞∑
k=1

1
(2k−1)2

=

(
1− 4x2

π2

)π2/8

.

We provide a graphical illustration of the bounds (3.1) in Figure 1.
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Figure 1: Graphs of the function and the bound in (3.1) for x ∈ (0, π/2).

Proposition 5 below corresponds to [3, Lower bound in Theorem 1.26].
The proof in [3] is based on the study of the function f(x) = log(x/sin(x))−
(π2/6)log(1/(1 − x2/π2)). Here we give a more direct proof using infinite
products.

Proposition 5. [3, Lower bound in Theorem 1.26] For x ∈ (0, π), we have

sin(x)

x
>

(
1− x2

π2

)π2/6

. (3.2)
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Proof of Proposition 5. The proof combines the infinite product of the sinc

function, Proposition 1 and
+∞∑
k=1

1
k2

= π2

6 :

sin(x)

x
=

+∞∏
k=1

(
1− x2

π2
1

k2

)
>

+∞∏
k=1

(
1− x2

π2

) 1
k2

=

(
1− x2

π2

)+∞∑
k=1

1
k2

=

(
1− x2

π2

)π2/6

.

In the following Corollary, we give tight upper bound for cos(x).

Corollary 1. For x ∈ (0, π) we have

cos(x) 6 1 +
3π2

π2 + 6

(1− x2

π2

)π2+6
6

− 1

 . (3.3)

Proof of Corollary 1. Using (3.2) and integrating we have∫ x

0
sin(t) dt >

∫ x

0

(
1− t2

π2

)π2/6

t dt

which turns into

−cos(x) > −1− 3π2

π2 + 6

(1− x2

π2

)π2+6
6

− 1


proving desired result.

The upper bound of Corollary 1 can be seen in Figure 2.
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Figure 2: Graphs of the function and the bound in (3.3) for x ∈ (0, π).

Note: Similar results to Propositions 4 and 5 can be obtained with
hyperbolic functions instead of trigonometric functions. Indeed, using the
following Bernoulli inequality: for u ∈ (0, 1) and v > 0, we have 1 + uv >
(1 +v)u and the infinite products for cosh(x) and sinh(x)/x, we prove that,
for x > 0,

• cosh(x) >
(
1 + 4x2/π2

)π2/8
,

• sinh(x)/x >
(
1 + x2/π2

)π2/6
.
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