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Abstract

Individual cells take lineage commitment decisions in a way that is not necessarily
uniform. We address this issue by characterizing transcriptional changes in cord blood
derived CD34+ cells at the single-cell level and integrating data with cell division history
and morphological changes determined by time-lapse microscopy. We show, that major
transcriptional changes leading to a multilineage-primed gene expression state occur
very rapidly during the first cell cycle. One of the two stable lineage-primed patterns
emerges gradually in each cell with variable timing. Some cells reach a stable
morphology and molecular phenotype by the end of the first cell cycle and transmit it
clonally. Others fluctuate between the two phenotypes over several cell cycles. Our
analysis highlights the dynamic nature and variable timing of cell fate commitment in
hematopoietic cells, links the gene expression pattern to cell morphology and identifies
a new category of cells with fluctuating phenotypic characteristics, demonstrating the
complexity of the fate decision process, away from a simple binary switch between two

options as it is usually envisioned.
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Introduction

Hematopoietic stem and progenitor cells (HSPC) give rise to all the cellular components
of blood. The major stages of differentiation and the key genes participating in this
process are now well characterized [1]. According to the classical view, haematopoiesis
is a hierarchically organised process of successive fate commitments, where
differentiation potential is progressively restricted in an orderly way over cell divisions.
There are several variants of the model [2-6]. In all cases the first fate decision is a
binary choice taken by multipotent progenitors (MPP), which leads to two different
committed progenitors (for the purpose of simplicity, these progenitors are designed
here as common myeloid (CMP) and common lymphoid progenitors (CLP)). In
molecular terms, the choice is believed to be the result of the strictly regulated
activation of master regulator genes and their underlying transcriptional network [7].
However, the strict hierarchical logic of classical models has recently been challenged by
a number of in vivo and in vitro studies [8,9]. Single cell gene expression studies have
revealed a much higher heterogeneity of cell subtypes that can be detected using a
combination of surface markers [10]. It is not surprising that the number of identifiable
cell types increases with the resolution of the detection method. Although correct cell
type classification is a key step in understanding the cell fate decision issue, it cannot
reveal the dynamic features of the fate commitment process and leaves a number of
unanswered questions. Do different phenotypic forms represent different cell types or
different stages of the same process? How does the transition between the forms occur?
How long does it take?

Until recently, fully deterministic explanations were predominant, but recent
studies have suggested other alternatives. Two different possibilities have been put
forward. According to the first, the commitment process starts with the sporadic,
independent activation of genes within the same cell. The simultaneous stochastic
expression of regulatory genes specifying different lineages creates a multiprimed
intermediate state that enables these cells to choose one of the lineages [11-15]. A
coherent lineage-specific expression profile would then emerge from this metastable
state. According to the second, commitment is preceded by transcriptome fluctuations
between different lineage-biased states [16-18]. Surprisingly the time scale of

transformations related to the cellular fate decision process remains largely unexplored.
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The transcriptome of the same cell can be analysed only once, because the cell is
destroyed by RNA extraction. Therefore, indirect approaches are required to identify
trends and patterns in time series.

We addressed the issue of the dynamics and the time-scale of the commitment
process by integrating single-cell quantitative RT-PCR, cell division history and
morphological changes determined by time-lapse analysis. Contrary to the common
strategy consisting in isolating defined cell subpopulations with the help of specific
surface markers and characterizing their gene expression profiles at the single-cell level
[19], we used an alternative approach. Individual cells were randomly isolated from the
heterogeneous cord blood CD34+ cell fraction at different time points after cytokine
stimulation and their gene expression profiles were determined using single-cell
quantitative RT-PCR. The data provided a series of snapshots, showing the actual
statistical distribution of single-cell gene expression patterns across the whole
population. The structure of the population at the successive time points was revealed
by unsupervised classification of the expression profiles according to their similarity
using multiparametric approaches. The progression of the fate commitment process was
deduced from the evolution of the population structure. At the same time, using time-
lapse microscopy we tracked randomly isolated individual CD34+ cells and their
progeny for several days after cytokine stimulation. We recorded the division history
and the morphological changes of each cell in the clones. The population structure was
deduced on the basis of the statistical analysis of these observations. The efficiency of
the time-lapse approach in investigating cell fate decisions has been recently shown
[20]. To reinforce this approach, the time-lapse and gene expression data were
integrated into a coherent scenario. This was done by using CD133 protein expression
levels to isolate cells with one or the other transcription profiles and record directly
their dynamic phenotype, thereby providing a direct link between dynamic phenotype
and transcription profile.

Altogether, our results revealed that fate decision is a dynamic, fluctuating
process that is more complex than a simple binary switch between two options as it is

usually envisioned.
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Results

Single cell gene expression.

The transcriptional profile of individual cord-blood CD34+ cells was determined at 0, 24,
48 and 72 hours after the beginning of cytokine stimulation (Fig.1A). Single-cell
quantitative RT-PCR was used to quantify the mRNA levels of 90 different genes. A set of
32 genes was selected for their known function in the early differentiation of
hematopoietic cells and were expected to inform on the functional state of the cells (see
Supplemental Table 1.). A second set of 54 genes was chosen randomly from a list of
genes known to be expressed in the hematopoietic lineage [21,22]. These genes
provided an assessment of the overall transcriptional activity of the genome. Five
additional genes were added to the list for their role in maintaining the pluripotent state
in embryonic stem cells. A heat-map of all data and a violin plot of the expression profile
of each gene at the four separate time points are shown in the supplemental information
section (Fig S1). The normalized single-cell quantitative gene expression data obtained
for the different time points were merged in a single database and screened for
subpopulations by k-means clustering. The number of statistically distinguishable
groups was inferred using gap statistics [23]. The groups were visualized on heat maps
and on a two-dimensional plot using t-stochastic neighbour embedding (tSNE) [24].
Although every cell had a unique gene expression pattern, this approach enabled us to
clearly identify sub-groups of cells in the population on the basis of the statistical
similarity of their gene expression patterns (Fig 1B).

Non-stimulated CD34+ cells isolated from cord blood represented the t=0h time
point. A heat-map of the single-cell transcriptional profiles of genes contributing
significantly to the identification of subgroups (Fig S2) showed that this population of
cells was heterogeneous. Several genes reported to play a role in self-renewal,
quiescence and other stem cell functions (CD71, CD133, CXCR4, GATA2 and FLT3) were
expressed sporadically and at variable levels in a fraction of cells. Genuine pluripotent
stem cell genes were also expressed at low level in a fraction of cells (Nanog, OCT4,
KLF4). Nevertheless, no correlation was found between these genes (Fig.1D) and the
statistical analysis did not reveal distinguishable expression patterns that could define
cell types. The only detectable differences were donor-associated and probably reflected
differences related to the processing of individual blood samples. Donor-specific

differences disappeared at later stages.
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Fig.1 Transcriptional profile of cord blood-derived CD34+ cells at t=0h, t=24h, t=48h and t=72h
after the beginning of the experiment.

A. CD34+ cells were isolated from human cord blood and cultured in serum-free medium with
early-acting cytokines. Single-cell qRT-PCR was used to analyze single-cell transcription at Oh,
24h, 48h and 72h. At the same time, individual clones were continuously monitored using time-
lapse microscopy.

B. t-SNE map of single-cell transcription data. The four panels show analysis of the same data set
with each point representing a single cell highlighted by different color depending on the given
time point. The two clusters identified by gap statistics at t=48h and t=72h are surrounded by an
ellipse and numbered #1 and #2 for multipotent- and CMP-like cells. Note the rapid evolution of
the expression profiles.
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C. A heat-map representation of the expression levels of a subset of genes that strongly
contributed to the differentiation of the different groups (as detected by PCA; see Fig.S2) and
cluster analysis of expression profiles at the different time points show the rapid evolution of
gene expression. The list of the genes used (shown on the right) includes well-known genes
acting during hematopoietic differentiation but also many randomly selected genes. The color
code for expression levels is indicated below.

D. Pairwise correlations between every gene analyzed using single-cell quantitative RT-PCR.
Each semicircle represents the correlation between the two genes. The strength of the
correlation is indicated by the color code. The average of all correlation coefficients is given
separately for each group. The two clusters identified on t=48h and t=72h are represented
separately. Note the transient increase of the average correlation in cluster #2 at t=48h.

The gene expression profile 24 hours after the onset of cytokine stimulation was
found to be fundamentally different to t=0h cells. Almost every cell responded to
cytokine stimulation by increasing transcript levels and generating a unique gene
expression pattern (Fig 1C). When represented on the two-dimensional tSNE (Fig 1B)
and PCA plots (Fig.S2A) the cells formed a single but dispersed cluster, well separated
from the t=0h cells. In a fraction of cells moderate to high transcription of previously
non-expressed hematopoietic regulator genes was observed in addition to that already
seen at t=0h. For example, the expression of GATA1, GATAZ, PU1, CD71, FOG1, CD133 or
EPOR increased or was more frequent than at t=0h. In some cells all these genes were
expressed simultaneously. Nevertheless, no distinct subpopulations could be identified
at the resolution of our approach. The pairwise correlation coefficients between genes
remained low (Fig 1D). Strong correlations were only between housekeeping genes (for
example, GAPDH with ACTB). It is therefore likely that the patterns observed at 24 hours
resulted from essentially uncoordinated up-regulation of gene transcription and led to a
highly heterogeneous cell population. This is a transition state reminiscent of the
reported multi-lineage primed state with simultaneous expression of lineage-affiliated
genes specifying alternative cell fates [11,14].

The first signs of coordinated differential gene expression appeared at t=48h
after cytokine stimulation. At this stage, two distinct gene expression patterns emerged
from the highly variable background of earlier stages. The two clusters are clearly
distinguishable on the tSNE plot (Fig.1B) and identified by gap statistics. They are also
easily seen on the heat-map representing gene expression levels (FiglC). Cluster#2
comprised cells with simultaneous expression of genes characteristic of erythro-myeloid

progenitors (CMP) such as GATA1 and EPOR [7]. The expression profile of the cells in
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cluster#1 was characterized by the strong expression of genes reported for multipotent
cells, CD133, GFI1, KLF4 or FLT3 and the lack of expression of GATA1 and EPOR.
Although this pattern is reminiscent of a self-renewing, multipotent profile, it is difficult
to determine the exact identity of these cells at the level of resolution used in our study
[25]. Typical genes for pluripotent stem cells NANOG and OCT4 were expressed at
moderate level in many cells from both clusters (Fig.1C and Fig.S1). Randomly selected
genes were also good predictors for the two groups of cells. Only a small fraction of cells
could not be classified in one of the two main clusters at t=48h (Fig.1B). The tendency
observed at t=48h was further reinforced by t=72h. The cells in cluster #2 with CMP-like
profile represented more than the half of all cells (Fig.1B-C). We observed a strong but
transient increase in the number of highly correlated genes in this group (Fig.1D)
indicating a state transition with the coordinated increase of the expression of some
genes leading to a committed cell state. Indirectly, this suggested that the cluster#1
profile was more in continuity with the previous profile observed at t=24h and that the
cluster#2 profile at t=48h represented a transition to a new pattern.

Taken together, these single-cell gene expression observations revealed that the
cell-fate decision process in cytokine stimulated CD34+ cord blood cells occurred during
the first two days. Initially, each cell responds to cytokine stimulation by an
uncoordinated change in gene expression, which is followed by the emergence of two
distinct gene expression patterns reminiscent of the two known major types of
hematopoietic progenitor cells. Although indications of this second change may appear
as early as 24 hours after stimulation, the two distinct gene expression patterns are
clearly distinguishable at 48 hours and consolidated by 72 hours. By this stage almost

every cell seems to have adopted one profile or the other.

Time-lapse tracking studies

In order to integrate the gene expression snapshots into a dynamic scenario, we made
time-lapse records of individual CD34+ cells under in vitro conditions identical to those
in the single-cell gene expression studies. We imaged individual cells in microwells at a
rate of 60 frames per hour for 7 days (Fig.2A). Using a semi-automatic image analysis
approach we established individual clonal pedigrees, and recorded cell cycle durations
and major morphological changes. As shown in Fig.2B,C, the pedigrees of individual

clones were highly variable but shared some general features. Some clones produced
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only a few cells during the observation period, while others proliferated faster and
produced up to 30-40 siblings. We focused our attention on the first three generations.
As reported for cells cultured in early acting cytokines [26], the first cell cycle was
exceptionally long in all clones. The division of the founder cell occurred between 35 to
80 hours after the start of culturing with the median cell cycle length being 58 hours
(Fig.2). We questioned whether the culturing of isolated cells in microwells where direct
contact with the other cells was not possible - influenced cell cycle length. To measure
the division rate in a population context, the cells cultured together were labelled using
Cell Trace Violet. The results (Fig.S3) showed that the cells had similar division profile
regardless of whether they were cultured individually or in population. The unusually
long first cell cycle was particularly important when interpreting results. It implied that
the transition from the initial to the multi-lineage primed transcription profile followed
by one of the two types of progenitor-like profiles observed at 24 and 48 hours after
CD34+ cell stimulation occurred during the life of the founder cell, before the first

mitosis.

Time (h)

801 -+

I

40 i

Time (h)
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Fig.2 Time-lapse tracking of individual clones.
A These frames extracted from a representative time-lapse record, show a microwell containing
a single founder cell, which divides to produce a clone. Each individual cell was tracked and their
morphological characteristics were recorded.
B Two representative lineage pedigrees obtained from the time-lapse record. The strong
difference in clone size observed at the end of the record is established gradually after the third
cell division.
C. Box-plot representation of cell cycle lengths obtained from the time-lapse records of every
clone. Note the long first cell cycle. Subsequent cell cycles have comparable lengths with a slight
tendency to become shorter.
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Previous studies have demonstrated that there is a connection between cell
morphology and the differentiation potential of CD34+ cells. Two major morphological
forms have been described in the CD34+ cord blood cell fraction. Polarized cells are
capable of active motion with the help of lamellipodia and possess, on their opposite
end, large protrusions called uropods. These cells have been found to retain primitive
self-renewing and stem cell functions [27,28]. The second morphological type is round.
These cells have been considered as already engaged in differentiation [27,28].

Time-lapse records revealed that the two cell morphologies were not permanent;
most cells were able to switch between forms several times during the cell cycle. After
recovering from the stress of isolation and manipulation, founder cells acquired
polarized morphologies within a few hours, developing uropod and starting to move
actively (see Movies 1 to 3 in the Supplemental information section). During the first cell
cycle, cells mostly conserved the polarized form and switches between the two
morphologies were rare. As indicated above, the first cell division occurred on average
at 58 hours and the average lengths of subsequent cell cycles were around 20 to 22
hours. The daughter (second generation) and granddaughter (third generation) cells
were able to switch between the two morphologies at much higher frequency compared
to the founder cells. In order to quantify these events, we manually tracked each cell and
recorded each switch. Representative profiles are presented on Fig.S4.

In order to compare quantitatively the dynamic phenotype of cells we calculated
three parameters based on their dynamic profile. The first parameter was calculated as
a ratio of the time a given cell spent as a round shape compared to the time spent as a
polarized shape. This parameter was close to 0 for stable polarized cells, and 1 for stable
round cells. Intermediate values correspond to the fraction of time cells spent in round
shape. The second parameter was the frequency of morphological switches during the
cell cycle. This parameter expressed the cell’s ability to maintain a stable morphology.
The third parameter was the cell cycle length. When cells were represented as individual
points in the space determined by the three parameters, we identified three major
categories (Fig.3A). The first category included cells with mainly polarized shapes; the
second category was composed of cells with predominantly round shapes. The cells in
the third category switched shape frequently, generally fluctuating between both

morphologies (Fig.3A)

10
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Fig.3. Quantitative analysis of dynamic phenotypes as determined by time-lapse data.

A. Association between the morphology, switch frequency, cell cycle length and the type of cell
divisions of second and third generation cells. Each point represents a single cell. Siblings with
different switch behavior and morphology (in green) are usually characterized by high switch
frequencies and frequently derived from the asymmetric division of the maternal cell.
Symmetric divisions more frequently resulted in daughter cells (in blue) with similar dynamic
behavior and morphologies. Division symmetry/asymmetry in the context of this work refers to
the dynamic phenotype of the cells. The morphology is given as a ratio of time spent in
round/polarized shape by a cell during the cell cycle. Switch frequency is given in number of
morphological transformations per hour. Cell cycle length is in hours.

B. Dynamic phenotype change during the first two cell divisions as determined on the basis of
time-lapse records. Three different dynamic phenotypes were identified: stable polarized,
frequent switchers and stable round. Cells tended to transmit dynamic phenotypes to daughter
cells during cell division. Polarized and frequent switchers produced round cells, frequent
switchers always produced by polarized mothers. Phenotypic change is not associated with
asymmetric division; it can occur at any time in the cell cycle. Since round cells always produce
round daughters, the whole process is biased and the proportion of this phenotype increases.

When sister cell pairs were examined, it became obvious that many displayed
very similar dynamic phenotypes. In some cases, periods of stable morphology and
switching events coincided almost perfectly (Fig.S4). We considered these cells were
produced by symmetric cell division. In other cases, division was asymmetric and the
two sister cells behaved differently. In the most extreme cases, one sister cell adopted a
stable round form and the other a stable polarized form immediately after division.
However, most of the asymmetric divisions produced siblings with obviously different
dynamic phenotypes. Based on the above-mentioned parameters, we used k-means
clustering to classify cells derived from a symmetric or asymmetric division (Fig.3A).
This classification confirmed that most asymmetric divisions produced cells with highly
fluctuating dynamic phenotypes.

We calculated the frequency with which a cell with a given dynamic phenotype
was produced by a mother cell with similar or dissimilar phenotype (Fig.3B). Maternal

cells clearly tended to transmit the dynamic phenotype to daughter cells. We also
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observed regularity with which phenotype changes occurred in daughter cells. Polarized
cells were systematically produced by polarized cells. At lower probabilities, both
polarized and fluctuating cells could produce stable round phenotype cells. Round cells
always gave rise to round siblings (Fig.3B). Following these simple rules, the cumulative
outcome of the process was the gradual increase of round cells in the population. Cells
with fluctuating morphologies appeared to be intermediate form between polarized and
round cells. Since 25% of daughter cells conserved this phenotype, the fluctuating
intermediate cells persisted in the population. On static snapshots however this
category remained undetectable: only polarized and round cells were observed. A
polarized form was considered to be a feature of multipotent cells and the round form a

committed myeloid progenitor phenotype [27,28].

Coupling the molecular and cellular scales

The dynamically fluctuating behaviour we have described here for the first time
represent a transition between the two states and reflect a “hesitant” but incomplete
fate determination process. Since we detected only two major transcription profiles but
observed three different dynamic behaviours, it is possible that “hesitant” cells are not
characterized by a clearly distinct transcription pattern. Morphology fluctuations may
be accompanied by fluctuations in the transcript or protein levels of at least some key
genes.

To test this assumption, we took advantage of the observation that the gene
coding for the CD133 cell surface protein was expressed preferentially in one of the two
transcription patterns detected at 48 hours (Fig.1B and C). Previous reports have
established that CD133 protein is typically present in cells with polarized forms and
accumulates in the uropod [27-29]. We confirmed this using image cytometry and
immunohistochemistry on fixed cells (Fig.S5). Cells expressing high levels of CD133
were mostly polarized, while those with low levels of CD133 were round (Fig.S5). This
observation explicitly established the link between the cell morphology and the
transcription patterns detected by single-cell RT-PCR.

We used the CD133 protein as a proxy for the isolation of a cell fraction enriched
either in polarized or round cells and recorded their dynamic phenotype. The “high” and
“low/negative” CD133-expressing cell fractions were sorted 48 hours after cytokine

stimulation, put in culture and tracked using time-lapse microscopy for an additional 48
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hours. The cell-cycle length, switch frequency and division asymmetry were calculated.
The “high CD133-expressing” cells and their progeny reproduced the three types of cells
observed previously but in different proportions (Fig.4). Most of the cells displayed
stable polarized morphologies or were frequent switchers; only a few cells displayed
stable round morphologies (Fig.4). By contrast, the “low/negative” cells produced either
stable round progeny or cells with fluctuating morphologies (Fig.4). The frequency of
asymmetric division (in terms of dynamic behaviour) was higher in the “high CD133”

population than in the “low CD133” population (78% versus 59%).

Cell sorting 48h
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Fig. 4. Isolation of polarized high CD133-expressing and round low CD133-expressing cells and
time-lapse analysis of their dynamic phenotype.

A. Cell sorting strategy to isolate cells with defined morphology on the basis of the CD133
surface protein level. The isolated cells were tracked by time-lapse microscopy. They produced
cells with polarized, round or fluctuating dynamic phenotype (illustrated by the middle panel).
Examples of cells with different morphology are shown on the right, as detected by confocal
microscopy. Red: CD133 protein. Green: actin filaments detected by phalloidine. Blue: DNA. Note
the preferential localisation of the CD133 protein in the uropode of polarized cells. Actin is
concentrated in lammelipodia or evenly distributed in the periphery of round cells.

B. Quantitative evaluation of the morphology, switch frequency and cell-cycle length of daughter
and granddaughter cells derived from sorted “high CD133” (left panel) and “low CD133” (right
panel) cells. Each point represents a single cell. The color code for symmetric and asymmetric
division are the same as in Fig.3A. Note the higher frequency of frequent switchers and cells
derived from asymmetric division of “high CD133” mothers.
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These observations confirmed the idea that cells with stable round shape were
derived from cells with polarized shapes and high CD133 levels, following a gradual
transformation process that involved a transition period with fluctuating phenotype.
The process of transformation did not correlate with the cell cycle; some cells reached a
stable morphology rapidly while others fluctuated over several cycles. The process was
accompanied by a gradual decrease in CD133 protein level in cells. We found no

evidence that asymmetric divisions played a direct role in this process.

Single-cell transcription profile of the multipotent stage.

In order to determine which of the observed phenotypes correspond to the multipotent
stage, we took advantage of recent observations demonstrating that the inhibition of
histone deacetylase (HDAC) activity with a pharmacologic agent resulted in a substantial
increase in their incidence in the cord blood CD34+ population [12,30,31]. We
anticipated that this would increase the proportion of cells with transcription profile
typical of the multipotential phenotype. Since valproic acid (VPA) was shown to be the
most efficient [30], we used this agent to treat CD34+ cord blood cells stimulated by
cytokines as above, before sampling transcription profiles. The increase of the CD90
marker, as analysed by flow cytometry confirmed that the VPA effect was already visible
after 24 hours and gradually grew stronger during subsequent steps (Fig.5A and Fig.S6).
The expression of CD34 and CD38 markers remained unchanged (Fig.S6). Although we
did not analyse the in vivo potential of these cells, based on previous reports, we
considered them enriched for bona fide multipotent cells. We performed single-cell RT-
PCR 0, 24, 48 and 72 hours after the start of the experiment, as in control cells. At all
four time points, cell populations were very heterogeneous. At each time point, the cells
displayed a unique transcription profile (Fig.5B) and no identifiable transcription
patterns appeared during the 72 hours of the experiment despite slight profile
evolutions. Overall, transcription patterns in individual cells were reminiscent of the
uncoordinated multi-lineage primed profile detected in control cells at 24 hours, but the
two groups clustered separately on tSNE maps (Fig.5C). Since the cells did not divide
during the first 48 hours, the increase observed in the multipotent cell fraction could not
result from the selective proliferation of an initially small subpopulation of cells. Instead,
this occurred because cells already present in the population changed the expression of

many genes in response to the valproic acid.
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Fig.5 Transcriptional profile of cord blood-derived CD34+ cells treated with valproic acid (VPA)
at t=0h, t=24h, t=48h and t=72h after the beginning of the experiment as compared to untreated
normal control cells.

A. A cytometric analysis of the effect of VPA on cord blood CD34+ cells shows increase in the
CD90 protein in most cells while the CD34 and CD38 markers remain essentially unchanged.

B. Heat-map representation of the expression levels of 90 genes as determined by single-cell
gRT-PCR in VPA treated cells at t=0h, t=24h, t=48h and t=72h. The colour codes for the time
points of cells are indicated on the right, the color code for expression levels are indicated below
the heat-map. Note the high heterogeneity and lack of clear clustering of the expression patterns.
C. tSNE plot representation of transcription data obtained for VPA treated- compared to
untreated normal cell (data for these cells are the same as in Figl.). The gene expression data
obtained in the two experiments were mapped together. Each point represents a single cell and
the cells at t=0h, t=24h, t=48 and t=72h are highlighted separately in the four panels. The color
codes for VPA-treated (VPA+) and untreated (VPA-) are indicated below the panels. The clusters
#1 and #2 identified at t=48 and t=72h in VPA- cells (see Figl.) are indicated on the t=72h panel.
Note the clear separation of the VPA+ and VPA- cells at every time-point except t=24h. Note also
that VPA+ cells do not contribute to clusters #1 and #2 indicating that they do not acquire
expression profiles typical of these cells.
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Discussion

In the present study we aimed to identify the initial stages of fate commitment in the
CD34+ cell fraction of human cord blood and determine the typical time scale for these
events. Without cytokine stimulation, CD34+ cells remain quiescent and die after a few
days in culture. Early-acting cytokines allow these cells to survive, become metabolically
active and enter the cell cycle [32] without showing overt signs of differentiation during
the first few days. This creates ideal conditions for studying early events. Our
experimental design combined continuous time-lapse observations with snapshots of
high-resolution single-cell transcriptome analysis. The data can be integrated in a
dynamic fate decision process scenario. Fate decision is necessarily accompanied by a
change in the gene expression pattern. This is a multistep process. Firstly, upon
stimulation, cells rapidly reach the multiprimed state, which is characterized by
promiscuous gene expression pattern and predominantly polarized morphologies. This
is an unstable phase and two distinct transcription profiles start to emerge before the
end of the first cell cycle. The process by which cells relax from a multiprimed to more
stable state is continuous and of variable length. Some cells reach stable morphology
and coherent lineage-affiliated transcription profile by the end of the first cell cycle,
which they transmit to daughter cells. Other cells divide into unstable daughter cells
with dynamic “hesitant” behaviour. This behaviour is characterized by fluctuations
between polarized, actively moving, amoeboid and round morphologies over several cell
cycles, suggesting that instability can be transmitted mitotically. Although we have no
formal evidence that the transcriptome of these cells also fluctuates, two observations
suggest that this could be the case. Firstly, we only found two established transcription
profiles that presumably correspond to polarized and round morphologies with high
and low CD133 expression levels (Fig.1C). However, we observe three dynamic
phenotypes, one of which is fluctuating. Secondly, cells isolated on the basis of high
CD133 protein level were either polarized or fluctuating and low expressing cells were
either round or fluctuating. This suggests that fluctuating cells may have intermediate
levels of the CD133 protein and represent a transition between the stable polarized
morphology and round morphology. This dynamic scenario reconciles assumption of a
stochastic multi-lineage primed state with the idea of fluctuating transcriptomes [14,16]
by suggesting that relaxation from the metastable multi-lineage primed state to the

stable lineage committed state involves an uncertain “hesitant” phase of variable length.
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Increased stochastic variation in gene expression may be responsible for the
rapid shift away from the initial quiescent state and lead to the uncommitted multi-
lineage primed state [11,14,15]. Cell division is not required for this process; it occurs
during the first cell cycle following stimulation. Cells engaged on the path toward the
new phenotype represent the committed state. The critical moment in this process is the
transition between the two phenotypes when the old gene network has broken down
but the new network is not yet assembled. We consider that cells with fluctuating
morphologies represent this transition state. The rapidity of the transition may be
dependent on the time required for the new gene expression network to settle to a
stable state. Since phenotypic stability of a cell lineage largely depends on the frequency
of transcription initiation and the stability of the resulting mRNA-s and proteins [33,34],
the observed “hesitant” phenotype might be the consequence of rapid mRNA and
protein turnover. The consolidation of the chromatin structure appears to be an
essential element in this process, because, as shown in single cell transcription studies
the HDAC inhibitor valproic acid delays the transition and blocks cells in a promiscuous
gene expression pattern typical of multi-lineage primed state. Indeed, HDAC inhibitors
have been shown to increase gene expression stochasticity by increasing chromatin
acetylation [35].

In summary, in the current study we identified the earliest phases of fate
commitment in human cord blood CD34+ cells and assigned a time scale to this process.
We demonstrated that the rapid initiation of the process occurs within a single cell cycle
and is followed by a dynamic transition state of variable length that may span several
cell cycles. Since experimental conditions were constant, the changes observed are likely
to reflect cell-intrinsic processes whereas the convergence toward a similar endpoint
may reflect the constraints imposed by these conditions. From this perspective and in
accordance with earlier theoretical and experimental work [36-40], fate decision
appears to be a process of spontaneous variation/selective stabilisation reminiscent of
trial-error learning, where each cell explores many different possibilities at its own
rhythm by expressing a large variety of genes before finding a stable combination

corresponding to the actual environment.
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Materials and methods

Human sample and cell culture

Human cord blood (UCB) was collected from placentas and/or umbilical cords obtained
from Etablissement Francais du Sang (EFS), Saint Louis Hospital, France or from Centre
Hospitalier Sud Francilien, Evry, France in accordance with international ethical
principles and French national law (bioethics law n°2011-814) under declaration N° DC-
201-1655 to the French Ministry of Research and Higher Studies. Human CD34+ cells
were isolated from the mononuclear fraction of UCB samples using the autoMACSpro
(Miltenyi Biotec, Paris, France) immunomagnetic cell separation system. They were then
cryopreserved in Cryostor (StemCell, Paris, France) and stored in liquid nitrogen or used
directly without freezing.

Cells were cultured at 37°C in a humidified atmosphere containing 5% CO: in a 24-well
plate in X-VIVO (Lonza) supplemented with 100 U/ml penicillin, 100 pg/ml
streptomycin (Gibco, Thermo Scientific), 50 ng/ml h-FLT3, 25 ng/ml h-SCF, 25 ng/ml h-
TPO, 10 ng/ml h-IL3 (Miltenyi Biotec, Paris, France) final concentration. Valproic acid
(VPA) (Sigma Aldrich) was used at final concentration of 1,25mM.

Single cell qRT-PCR

Single-cell qRT-PCR was carried out using the Fluidigm BioMark platform. DELTAgenes
assays (life technologies) were used at a final concentration of 500nM for each of the 96
assays. Individual cells were sorted directly into a RT mix solution and spikes (life
technologies) in a 96-well plate. RNA was denatured and reverse transcribed. of
Premplification (20 cycles) of 96 specific cDNA was performed by denaturing the cDNA
at 96°C for 5 secondes followed by annealing and extension at 60°C for 4 minutes.
Unincorporated primers were removed by Exonuclease I and the preamplified products
were diluted 5-fold. Amplification was performed with EvaGreen Supermix with Low
ROX and inventoried DELTAGenes assays in 96.96 Dynamic Arrays on a Biomark System
(Fluidigm). Ct values were calculated from the system’s software (BioMark Real-Time
PCR Analysis, Fluidigm).

Single cell Data Normalization

Ct values obtained from the Biomark System were normalized with the help of two
externally added controls (spike 1 and spike 4, life technologies) according to a set of
rules provided below. For each gene, inconsistent readings or “failed” quality control
readings were removed. Cells with failed or inconsistent detection of spikes were
removed. Expression values were calculated by subtracting the gene Ct value from the
geometric average of Ct values from spike 1 and spike 4 in the corresponding cell. An
arbitrary dCt value of -17 was assigned for all the genes with a dCt value of less than -17.

Single cell QRT-PCR data analysis

Analyses of qRT-PCR single cell data were performed with R software (R Core Team
(2012). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-
project.org/) using Heatmap3, factomineR, kmeans, ggplot2 packages. Correlation
calculations were performed using custom R scripts. t-SNE and gap statistics
calculations were performed as described by Grun et al. [41]

Confocal microscopy
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Images were obtained with a spectral confocal LEICA SP8 scanning microscope (Leica
Microsystems, Germany). 5.10% cells were cultured in a 48-well plate in 200uL
prestimulation medium. After 72h, 100uL of 3% glutaraldehyde was added to the cell-
containing well (1% final) for 15 minutes. Cells were washed twice with PBS 1X and
incubated two hours with 2mg/mL NaBH4 at room temperature. Fcx receptors were
saturated with Gamma Immune (Sigma Aldrich) for 5 min at 4°C (1:2 dilution). The cells
were permeabilized with the fix/perm kit (BD-Biosciences), labeled for 20 minutes at
4°C with a 1:10 dilution of the mouse anti-humanCD133-APC antibody (clone Ac133 -
Miltenyi Biotec), a 1:1000 dilution of phalloidin-TRITC (Sigma Aldrich) and stained with
DAPI.

The images were acquired using a 63X PL APO CS2 1.40 NA oil immersion objective
(Leica Microsystems, Germany). DAPI was excited with a 405nm, TRITC with a 552nm
and APC with a 635nm laser. Finally, images were processed with a contrast
enhancement algorithm (histogram equalization) and a home-designed background
substraction algorithm.

Micro-grid cell culture

A polydimethylsiloxane (PDMS) micro-grid array (Microsurfaces, Australia) of 1024
micro-wells (125 pm width, 60 pm-depth) was placed in specialized culture dish divided
into 4 parts (Hi-Q4, Ibidi, Germany). Each part of the dish was filled with cell culture
medium. A suspension of 5 x 103 cells per case was added at a concentration likely to
lead to a high number of wells with a single cell.

Time-lapse microscopy

The time-lapse microscopy protocol was previously described [42]. Time-lapse
acquisitions were performed with the Biostation IM time-lapse microscope (Nikon
Instruments, Europe). 20 field positions were recorded covering 4 micro-wells each.
Images were acquired every minute for 7 days using a 20X magnitude phase contrast
objective. Only micro-wells containing a single cell were considered in the analyses.

Image analyses

Images were analysed using Image] 1.47g 64-bits software (Rasband, W.S., Image], U.S.
National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-
2014.). Cell tracking was performed manually using the Image] TrackMate plugin. The
morphologies of first, second and third generation cells were analyzed semi
automatically with Fiji (Image] 1.50e). A cell counter plugin was used to identify the
moment when the cell switches from a round to a polarized morphology.

Time-lapse data analyses

Analyses of time-lapse data were performed using R software. Cell lineage
representations, cycle length, roundness and switch frequency were calculated with
custom R made scripts. Euclidean distances of the last three parameters (cycle length,
roundness and switch frequency) between the two sister cells were calculated. Cells
were classified into 2 groups using the kmeans algorithm: derived from symmetric or
asymmetric division. Boxplot representation combined with individual points was
calculated with the beeswarm package (Aron Eklund (2016). beeswarm: The Bee Swarm
Plot, an Alternative to Stripchart. R package version 0.2.3. https://CRAN.R-
project.org/package=beeswarm).
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Proliferation assay

CD34+ cells were labeled with 2,5uM of CellTrace Violet (CTV) (Life technologies) at
t=0h and analyzed using flow cytometry (LSRII - BD biosciences, France) after 24h, 48h
and 72h with ModFit LT software as described previously by Neildez et al. [43]

Image flow cytometry assay

Image flow cytometry analysis was performed using Image Stream MKII (Amnis,
Proteigen, Merk Millipore). 5.10% cells were cultured in a 48-wells plate in 200uL
prestimulation medium. After 72h, 100uL of 3% glutaraldehyde was added to the cell-
containing well (1% final) for 15 minutes. Glutaraldehyde offers good preservation of
cell shape. Cells were washed twice with PBS 1X and incubated two hours with 2mg/mL
NaBH4 at room temperature. Fcy receptors were saturated with Gamma Immune (Sigma
Aldrich) for 5 min at 4°C (1:2 dilution). Cells were labeled for 20 minutes at 4°C with a
1:10 dilution of mouse anti-human CD133-APC antibody (clone AC133 - Miltenyi
Biotec). Cell were then suspended in PBS and analysed with the image flow cytometer.
Bright Field and APC channels were recorded (Bright Field: 745nm laser - APC: 642nm
laser) with the 40X magnitude objective. Analyses of image stream data were performed
with IDEAS® (Amnis, Proteigen, Merk Millipore).

Cell sorting analysis

The CD34+CD133high and CD34+*CD133low/neg cells were sorted at t=48h. Prior to labeling,
Fc receptors were saturated with Gamma Immune (Sigma Aldrich). The CD34+ cells
were labeled with CD34-PE (Miltenyi Biotec), CD45-APC-H7 (Beckman Coulter) and
CD133-APC (clone AC133, Miltenyi Biotec) antibodies and 7-AAD marker (Sigma
Aldrich). Isotype controls were used for the gating strategy. Cells were purified using a
MoFlo® Astrios cell sorter (Beckman Coulter, France) and analysed with Kaluza
software.

Flow cytometric assay

The CD34+ cells were labeled using the following cell-surface markers: CD34-PE
(Miltenyi Biotec), CD38-Pacific Blue (Beckman Coulter) and CD90-APC-Cy7 (Beckman
Coulter) antibodies and 7-AAD marker (Sigma Aldrich). Isotype controls were used for
gating strategies. Cells were analysed at 72h after prestimulation by flow cytomety
(LSRII - BD biosciences, France) and analysed with FlowJo (v10.1) software.
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Supplemental Information

CD133.F CTCTTGAATGAAACTCCAGAGCAA hgPPARD.R CGTGCCATTCACCAACTGCTTCC
CD133.R ATTCCGCCTCCTAGCACTGA hgRACL.F (CGACTCCTGTAGTCGCTTTGCCTA
CD38.F ACTAGAGGCCTGGGTGATACATG hgRACL.R CGTAGAACATCGTCAGCACTAGCA
cD38.R CAGGTCTGTAGATATTCTTGCAGGAA hERARS.F CGAAGCTGCTACTGTGTGGAGAA
CDASFF AAAGTCTCGTTCCTGTTCCTGCTA hgRARS.R CGTCAGCATACGCCACATGTTCA
cDasFR TTACTTAGGTTTTTCTTTGGACTC hgTBP.F CGATGCCCGAAACGCCGAATATA
CD90.F ATGAACCTGGCCATCAGCAT heTBP.R CGTCGTGGTTCGTGGCTCTCTTA
CD90.R CGTTAGGCTGGTCACCTTCTG heTCF7.F CGATAAGGAGAGCGCTGCCATCA
ATPI3A3.F TGTCCATAGTATCAATCGTAAGCTCACT hgTCF7.R CGTTTGCGGGCCAGCTCATAGTA
ATP13A3.R GGTACTATGAGTTGCCACCATGTC hgTCF7L2.F CGACGCTTTGGCCTTGATCAACA
BAKLF TCCGCAGCTACGTTTTTTACC heTCF71L2.R CGTCCTTCACCTTGTATGTAGCGAAC
BAKLR CCCCATGGTGCTGCTAGGT hgTOP2B.F CGAGATGCTGCAAGCCCTCGTTA
C220rf28.F CCTGTAGTTATGTTCTTACTGGCACTGA hgTOP2B.R CGTGGTTGTCATCCACAGCAGGAA
C220rf28.R CCAGATITTGCTCGGGACAA hgUSMGS.F CGAACTGGCCACATATGGAAGCA
CCDCasF A AACTAGGAGCCCATCACCTARAR hgUSMGS.R CGTCAGATGAGGTTAAGAACCGTAGACA
cCDCA9.R TCTGGTGTATCCGGGAGCAT hCD34.F TGAAGCCTAGCCTGTCACCT
OWRLE T GCTCTTTGTCI ACGCAGATRTT hcD34.R CGCACAGCTGGAGGTCTTAT
CYYRLR CCATCACAGCAGTAAGATTTGCA hCD71.F TGGACAGCACAGACTTCACC
DARSZ.F AAGGACCACCCAACCGATCT :233;1: :giicéfég—grgggfxc
DARS2.R AACGCAACTCTCCACATGTGTT COraR CATACHOGTGaCATICT
|GFBP7.F AGTGCCATGCATCCAATTCC hCSF2RAF GAGGTTTGACTCCAGGACGA
IGFBP7.R AGGCATCAACCACTGTAATTTTTG CSF2RAR T CACGAAATGTGCACGAAC
RHOBTB3.F CCAGTGTGTGGACGTGGTATTT EETY T CCAGECCCTTCAGTATGAG
RHOBTE3 R AACGATCTTGTGGGCCTCTACA hCSF3R.R CCACCATGTGTCCAGTCTGA
SNX1L.F AGGGCTCCTGGAACTCTTATGTG OCIF SGCTTGATCAGCAAGGACTC
SNX11.R TCTTGGCAGTAAAGGCTTTGC hCXCR2.R GGACATGAGGCTTGGAATGT
ACPS.F CAATTTTTACTTCACTGGTGTGCAA HOCRAF CCGTGGCARACTGGTACTIT
ACPS.R GGGAGCGGTCAGAGAATACG hCXCRAR TTTCAGCCAACAGCTTCCTT
COCH.F AGCCGCTCCCATTGCTATC hDNMT3A.F AAGCCCAAGGTCAAGGAGAT
COCH.R GACATCTGCTTTCTCTTTCCTGATG hDNMT3A.R GTTCTTGCAGTTTTGGCACA
CSRPLF GCACCCTCAGCACTGACAAG hEPOR.F CACCCATGACGTCTCACATC
CSRPLR GGGCAAATTTGGATGCATTG hEPOR.R AGGTTGCTCAGCACACACTC
HLA-C.F GGTTGTCCTAGCTGTCCTTGGA hERG.F GACGACTTCCAGAGGCTCAC
HLA-CR CACCTGAGCTCTTCCTCCTACAC hERG.R TAGCATGCATTAACCGTGGA
HPCALLF CGGAGAAGCGCACAGACA hFLILF CAACACGGAAGTGCTGTTGT
ICAM1.F CAGACAGTGACCATCTACAGCTTTC hFLT3.F TGTGAGCAAAAGGGTCTTGA
ICAMLR CACCTCGGTCCCTTCTGAGA hFLT3.R TGGTAAATTGGGCATCATCA
ICAM2.F CCAGGATCGGATGAGAAGGTAT hFOGL.F GTGAAGAAGGAGCCAGCAGA
\CAM2.R GCTCAACCGCCAGCTTCTT hFOGLR GGTACCAGATGCCACAGTCC
RCTDLE ECCCACCLTCACCARATAC hGATALF AGGCCACTACCTATGCAACG
KCTD1.R TGGGCTCTGTACCATCAAAAAGT hGATALR GGCAGTTGGTGCACTGAGTA
KIAAI383.F AAAAAGCCAGTCACCACAAACA hGATA2.F (GCAACCCCTACTATGCCAAC
KIAA1383.R GACATTAAGTTCGGACACATTTGAA hGATAZR CAGAGAGGGCTGCTTTGE
MACRODL.F CATTACTTCTGCAAGGACTTTGTCA :gi:i; igfgfgg’;ﬁg’;‘é;ii&c
wacrooin_|ccaccccrrescoatcr_ A oo e
hKIT.R TCTTTGTGATCCGACCATGA
MYADM.R GCCGCCATACTTCTCATCGA IVILF AACTCrCCACCCTo AT
NMES.F TGCTTGAAGGACTCACAGAGCTT hLYLLR AGCTCACAGTGGCITOGTCT
NMES.R GTTTGGGTTTGTTAGGATTATITITCAG hMEISLF ACGGCATCTACTCGTTCAGG
PARP12.F GCTGAGAACTCATGGCGTTGA
PARP12.R GGTCCATCTCCTTTGTTGTAATGTT hMEIS1.R ACGCTTTTTGTGACGCTTTT
RCSDLF GCGAGCCACCCTCCTAAATT nMIF.F GTTCCTCTCCGAGCTCACC
A T
RFTNLF GTGCAGCCCACCCATGAG - "
RFTNLR S GAACAGCAATCTAATTCCAAGATG hMLL_KMT2AR _|TTGCCGAATGAAGAAGGACT
RGS14.F TGGACACTCTTCCAGGTGTGAA nMPL.F CTGCCACTTCAAGTCACGAA
RGS14.R ATGGGTGGCCTTATCCTGAGTT :x:ELZRF Zigicg:ggiﬁi’;’;i:gﬂ
SERPINBO.F ACAAGGCTGGCACACAGTACCT NFELR COAGETCCARGGTATGOAG
SERPINBY.R TGGTAGAATTGAAGACAGGATTCCT IR T
TSPYLS.F AGGAATATGGGTGTGGTCCTTCT PULSPILR | ATQGGTACTGRAGGCACATC
TsPYLs.R GGAGCCACTGGATTGGAGTAGA RARAF R CTCTCCACCARGS GCATCA
ZNFG65.F GAGAAGCGTTCTACACGGTGAA hRARAR GTCCGAGAAGGTCATGGTGT
ZNF665.R GGAAGGACAAGCCTACAGTGTCA RONXLF T eCACAACTTCCAGTCE
ZNF785.F CGCGCTGGGATTTTCAGTT hRUNXL.R GTCGGGGAGTAGGTGAAGG
ZNF785.R ATCCCTGGATCCTGCTTCCT hTALLF ACCTTCCCCCTATGAGATGG
hgACTB.F CGACCAACCGCGAGAAGATGAC WTALLR CCGAGGATCTCATTCITGCT
hgACTB.R CGTTAGCACAGCCTGGATAGCAA TTET3F CCCACARGATCARGCAGEAC
hgADAR.F CGAGCACTGTTGACCCACTTCC hTET3.R AGCACCGAGTAGCTCTCCAC
hgADARR CGTCAGATGCCCTTGGCTGAAAA CyIoAF CCCACCOTGTTCTTCGACAT
hgAXINLF CGACAAGGAGCTGCTGACCAAAA CycloAR CCAGTGCTCAGAGCACGAAA
hgAXINLR CGTCACCACCCCACAGTCAAAC Iaiat GATGAACTGACCAGGCACTA
hgBTRC.F CGATAAGCGGCCTTCGAGACAA Ifa-R GTGGGTCATATCCACTGTCT
hgBTRC.R CGTAACCTGTATGGCCTGTGAGAA Nanog ¥ CAAAGGCAAACAACCCACTT
hgCASP2.F CGAAACTGCCCAAGCCTACAGAA Nanog-R TCTGCTGGAGGCTGAGGTAT
hgCASP2.R CGTTTGGTCAACCCCACGATCA OCTA-F CCTCACTTCACTGCACTGTA
heCTNNBLF CGAAGCTCTTACACCCACCATCC ocTa-R CAGGTTTTCTTTCCCTAGET
[hgcTnNBLR CGTTGCATGATTTGCGGGACAAA SOX17-F CCTGGGTTTTTGTTGTTGCT
heDVL2.F CGATGCCTCCCGCCTCCTTAA sox17-R TGAATGTGTCCCAAAACAGC
hgDVL2.R CGTTGACGCTGCTGAAGGATGAC
hgFOXOL.F CGAGGTGTCAGGCTGAGGGTTA
hgFOXOL.R CGTTTCTCTCAGTTCCTGCTGTCA
hgFOXO3.F CGACACTGAGGAAGGGGAAGTGG
hgFOX03.R CGTGAGAGCAGATTTGGCAAAGGG
hgFRZB.F CGACCTCTGCCCTCCACTTAATGTTA
hgFRZB.R CGTCAGCTATAGAGCCTTCCACCAA
hgGADDASA.F  |CGAGCGACCTGCAGTTTGCAATA
hgGADDASAR __|CGTTTTGCTGAGCACTTCCTCCA
hgGAPDH.F CGAACACCATGGGGAAGGTGAAG
hgGAPDH.R CGTGTGACCAGGCGCCCAATA
hgHDACS.F CGAGGGCCAACTGGAAGTGTTAC
hgHDAC9.R CGTATGCGTTGCTGTGAAACCA
heLDLR.F CGACACCACGGTGGAGATAGTGAC
hgLDLR.R CGTTTCTCATTTCCTCTGCCAGCAA
hgMET.F CGACAGAGACTTGGCTGCAAGAA
hgMET.R CGTCATGTCTCTGGCAAGACCAAA
hgMINPPLF CGATCCTCCAGTTTGGTCATGCA
hgMINPPLR CGTTGTACGCTGTTAGGGGTTCC i i
hgMYC.F CGACTCCTTGCAGCTGCTTAGAC
I Table 1. List of genes analyzed and primer sequences used
hgPOLR2A.F CGACTCGCCTCTTCTACTCCAACA . oy :
oA |coraocaaTcccanTocoanma for single-cell QRT-PCR amplification.
hePPARD.F CGAGGCAAAGCCAGCCACAC
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Fig.S1. Full set of gene expression data obtained using single-cell qRT-PCR in cord-blood
CD34+ cells cultured in vivo with early-acting cytokines.

A. Extended heat map of the transcriptional profiles of cord blood-derived CD34+ cells at
t=0h, t=24h, t=48h and t=72h after the beginning of the experiment. The color codes for
the time points of cells are indicated on the right, the color code for expression level are
indicated below the heat-map. Note the tendency of cells with the same time-points to
cluster.

B. Violin plot representation of individual gene expression levels at the four time-points.
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Fig.S2. Principal component analysis of single-cell expression profiles.

A. 2D PCA plot. Each point represents a single cell and the different time-points are
coloured differently. Color codes are in the box to the right of the plot.

B. Contribution of individual genes to principal component 1 and 2. Only the 40 highest
contributions are indicated.
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Fig.S3. Analysis of cell division rates.

A. The number of cells at t=24h, t=48h and t=72h as observed by time-lapse microscopy.
The cells of different generations are color coded in the histogram. Note that none of the
cells has divided after 24 hours and only 11 of the 32 cells underwent one division after
48 hours. At t=72h, three of the founder cells had not undergone division.
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B. Cell division analysis using Cell Trace Violet labelling. Cells were labelled at t=0h (not
shown) and analyzed using flow cytometry at t=24h, t=48h and t=72h. When divided,
the average fluorescence intensity of the two daughter cells is reduced by half compared
to the maternal cell. Therefore, the peak on the right represents the parental generation.
The number of the peaks to the left indicates the number of cell generations in the
culture and the size of the peaks is indicative of the number of cells in each generation.
Note that after 24h no cell division is detected and after 72h a fraction of undivided cells
can still be detected. Most of the cells underwent one or two divisions. Overall, the
profile is very similar to that detected by time lapse.
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Fig.S4. Representations of morphological profiles of cells in three representative clones.
Each numbered panel represents a single clone. Each horizontal box in the three panels
represents the morphology of an individual cell. The cell morphology - polarized or
round - is shown with a horizontal line, the length of which is proportional to the time
spent in the corresponding form. Vertical lines show the transitions between forms. The
length of the horizontal lines is proportional to duration of the cell cycle and the time
scale in hours is the same for each cell. The founder cell is numbered Cell_1, the two
daughter cells Cell_11 and Cell_12 and granddaughter cell pairs as Cell_111, Cell_112 and
Cell_121, Cell_122 respectively. In clone number 1 the polarized founder cell gives rise
to frequent switcher daughters and granddaughters. Note the striking similarity of the
time profiles for the morphological switches that can be observed in sister cells. In clone
number 2 the polarized founder cell gives rise to stable polarized siblings. In clone
number 3 the founder cell and its progeny are round. The two daughter cells switch to
polarized shape for short periods. Note again the striking similarity of the sister cells’
switch profiles.
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Fig.S5. Cell morphology and CD133 localisation

Image-based cytometry analysis shows correlation between the CD133 protein
expression level and cell morphology at t=72h. The middle plot shows the CD133
protein density detected in glutaraldehyde-fixed cells. Representative examples of the
morphologies of “high” (upper frame) and “low” (lower frame) expressing cells are
shown on the left and right respectively.
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Fig.S6. Cytometry analysis of the effects of valproic acid on CD34+ cells. The histogram
in the left panel indicates the proportion of CD34+/CD38- cells in VPA+ and VPA- cell
cultures at different time points. Note that there is no substantial difference between the
two. The right panel indicates the proportion of CD34+/CD90+ cells in the same
cultures. Note the increasing proportion of CD34+/CD90+ cells in VPA+ culture. This
rapid increase cannot be explained by the selective proliferation of the CD90+ cells and
is the result of the de novo synthesis of the CD90 protein, because as indicated in Fig.2,
and Fig.S4, cells do not divide before 72h.

Movie 1. Time-lapse video of a cell clone with cells conserving polarized morphologies.
The video has been accelerated to 5 frames per second.

Movie 2. Time-lapse video of a cell clone with cells conserving round morphologies. The
video has been accelerated to 5 frames per second.

Movie 3. Time-lapse video of a cell clone with cells changing morphology at high
frequency (dynamic phenotype of frequent switchers). Note that individual snapshots
taken at different moments may show a population composed of only polarized, only
round or cells with mixed morphology. The video is accelerated to 5 frames/sec.
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