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Simulations of ultrasonic wave propagation in concrete based on a two-

dimensional numerical model validated analytically and experimentally

Ting Yua,b,⁎, Jean-François Chaixa, Lorenzo Audibertb, Dimitri Komatitscha,
Vincent Garniera, Jean-Marie Hénaultb

a Aix Marseille Univ, CNRS, Centrale Marseille, LMA, 13453 Marseille, France
b Electricity of France Research and Development (EDF R&D), 78400 Chatou, France

Several non-destructive evaluation techniques to characterize concrete structures are based on ultrasonic wave propagation. The interpretation of the results is often

limited by the scattering phenomena between the ultrasonic wave and the high concentration aggregates contained in the cement matrix. Numerical simulations

allow for further insights. This study aims to build a two-dimensional numerical model in order to reproduce and interpret ultrasonic wave propagations in concrete.

The model is built in a spectral-element software package called SPECFEM2D. The validation of the numerical tool is based on the use of resin samples containing

different amount of aluminum rods from low (5%) to high concentration (40%), the last one being representative of aggregate concentration in concrete. These

samples are characterized using an ultrasonic testing bench (ultrasonic water tank) from 150 kHz to 370 kHz. The measured results are analyzed in terms of phase

velocity and attenuation which are the main parameters of coherent waves. As homogenization models such as the Waterman-Truell or Conoir-Norris models are

usually used to model coherent waves in two-phase systems, we also compare the experimental and numerical results against them. We confirm that the use of these

homogenization models is limited to low concentration of scattering phase, which is not adapted to applications to concrete. Finally, we use our numerical tool to

carry out a parametric study on scatterer concentration, shape, orientation and size distribution of aggregates in concrete. We show that aggregate orientation has an

influence on coherent wave parameters, but aggregate shape has not.

1. Introduction

Concrete has been used in buildings for many decades and is

nowadays one of the most common materials in civil engineering. To

optimize the durability and the maintenance of these structures, owners

must be able to use experimental techniques to control that their rea-

lization conforms to the standards and to assess possible degradation of

the materials with time. This is the reason why many Non Destructive

Evaluation (NDE) techniques have been developed. Among them, sev-

eral are based on ultrasonic wave propagation [1].

One phenomenon that is common to any wave propagation study

has to be considered: wave scattering in a heterogeneous medium.

Three regimes are distinguished, considering the ratio between the

wavelength λ and the scatterer size a: Rayleigh, stochastic and geo-

metric regimes. They are commonly characterized by the value of ka,

where k is wave number defined by =k π λ2 / . When the wavelength is

shorter than the geometric size of the structure but much longer than

the aggregate size ( ≪ka 1, 20–150 kHz for concrete), wave propagation

is in the so-called Rayleigh regime and the coherent wave dominates.

While the frequency increases, the wavelength is of the order of the

aggregate size ( ≈ka 1 for the frequency range 150 kHz up to 1MHz for

concrete) and wave propagation is in the so-called stochastic regime,

meaning that the coherent wave diminishes and that the incoherent

wave increases [2,3]. However, coherent wave properties can still be

studied by averaging a large number of wave fields. For higher fre-

quencies, in the geometric regime ( ≫ka 1), ultrasound waves are

heavily attenuated and are hardly used in applications.

Linear ultrasonic NDE techniques are used operationally to char-

acterize concrete on site [4–6]. The main analyzed parameters are the

coherent wave ones: phase velocity and attenuation [7]. Other techni-

ques based on the analysis of the incoherent waves, also called coda

waves, are being developed, but are not yet widely available in-

dustrially. In this study we choose to focus on the coherent wave

parameters that are strongly linked to the mechanical properties and

the ageing of concrete.

In many applications of wave propagation in a scattering media,

homogenization theory provides easy-to-use models. The aim of some

of these theories [8,17] is to define an equivalent medium which has

the same coherent properties as the real heterogeneous system. The

developed models are defined in both Rayleigh and stochastic regimes.
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These models can be separated into two groups: static and dynamic

models. The first ones are in direct relation with mechanical properties,

but are not able to describe the frequency dependence of wave propa-

gation. The second ones allow for the description of the frequency be-

havior of the wave parameters. It is worth mentioning that other

homogenization approaches, which often imply more involved nu-

merical calculations to obtain a heterogeneous homogenized medium,

are available in the literature [18,19].

In these dynamic models the coherent wave has an effective wa-

venumber which has a complex value. Its imaginary part accounts for

attenuation due to scattering in all directions. Foldy [8] first proposed

an expression for the effective wavenumber of isotropic point scatterers

for scalar waves. Based on this model, numerous subsequent models

have been proposed [9–17] to improve the Foldy theory. Among them,

the Waterman-Truell model [10], which is commonly used, considers

scattering both forward and backward and a second-order correction to

Foldy’s formula in terms of the scatterer concentration. With the use of

the quasi-crystalline approximation (QCA), Vander Meulen [13] in-

troduced the Percus-Yevick equation (QCA-PY) as a spatial pair-corre-

lation function between scatterers. Linton and Martin [14,15] derived

the two-dimensional counterpart of Lloyd and Berry’s model [12] for

spherical scatterers taking into account the boundary effect, as well as

the hole correction that is involved in the integral equation to transform

volume to surface integrals. Some models rely on one of the previous

models and use an iterative process in order to converge toward an

equivalent medium, for instance the Generalized Self Consistent Model

(GSCM) [16]. For elastic waves, more recently, Conoir and Norris [17]

generalized the formulas of Lloyd and Berry’s model for reflected and

transmitted waves in all the directions in order to take into account

mode conversions between pressure and shear waves.

Some researchers have attempted to show the applicability and

validity of these models based on experimental comparisons.

McClements [20] measured the velocity and attenuation in suspensions

of fluid particles in a fluid matrix to compare them with the WT model

and Lloyd-Berry model. Good agreement is obtained for both models in

a dilute emulsion (volume fraction < 13%). Meulen [13] studied the

WT model and the QCA-PY model for suspensions of solid particles in a

fluid matrix. In comparison with the experiments at a volume fraction

of 3%, good agreement for velocity is obtained for both models. Chaix

[21] validated the WT model experimentally in a cement-based

medium with air spheres up to 30% with a correction of matrix char-

acteristics (measured velocity and attenuation in the cement matrix).

Most of the experimental validations are performed in the case of a

fluid matrix, or of a solid matrix containing air or fluid scatterers, but

more rarely in the case of a solid matrix containing solid scatterers.

More recently, Chaix [22] compared two homogenization models, the

WT model and the GSCM, with the experiments in a cement matrix

including elastic or fluid scattering particles. In comparison with the

experiments in the cement matrix with 34% of glass beads, the GSCM

gives good agreement for velocity and for attenuation at low frequency,

while the WT model is less accurate.

However, concrete is a high-concentration scattering medium in the

frequency range used in our applications. Considering the possible

application of dynamic models to the case of concrete, taking into ac-

count the shape and the nature of the scatterers, there is thus lack of

knowledge of the limits of these models in terms of scatterer con-

centration and frequency. This fact leads to the need to resort to full-

wave numerical simulations. Moreover, numerical models will over-

come other limits of the homogenization models that do not take into

account other parameters such as scatterer shapes, the presence of a

steel frame, the interfacial transition zone between the scatterers and

the matrix, etc.

There are few studies available regarding numerical modeling of

ultrasonic wave propagations in concrete [23,24]. Chekroun [23] used

simulations performed based on a two-dimensional (2-D) finite differ-

ence modelling tool called PROSPERO. He studied the case of identical

circle aggregate scatterers in a cement matrix, up to an aggregate

concentration of 60%. He analyzed the results in terms of coherent

wave parameters. The numerical results were in agreement for the

phase velocity with the Waterman-Truell model up to a scatterer con-

centration of 10%, and with the Conoir-Norris model up to 25%.

Nevertheless, no experimental data were generated to validate the

numerical model.

The main objective of this study is thus to develop a 2-D plane strain

numerical model in order to predict and interpret ultrasonic wave

propagation in concrete, i.e. in a highly-heterogeneous medium. Using

a 2-D approximation is currently preferred to 3-D because of its very

significantly lower computational cost. Before using this numerical tool

for parametric studies, it is necessary to validate it for our application

condition: significant heterogeneity. And, as there is a lack of data with

a high concentration of solid scatterers in a solid medium, under well-

known conditions, an experimental study is mandatory.

This article is thus divided into four parts.

First, we present the experimental setup. We introduce the material

properties of concrete and we justify the concentrations of scatterers in

our samples by analyzing the aggregate size distribution coming from a

real concrete formulation. Several samples of aluminum rods in resin

are created to represent a highly-heterogeneous medium like concrete,

and characterized in an ultrasonic testing bench from 150 kHz to

370 kHz. The measuring results are analyzed in terms of phase velocity

and attenuation, which are the main parameters used to describe co-

herent waves. The data processing algorithm is presented.

We then present our numerical model. It is developed based on a

time-domain spectral-element software package called SPECFEM2D

[25]. Additional tools are Matlab codes or Python scripts developed

under the Salome platform [26] to generate heterogeneous media. The

mesh of the geometry is produced with the TRELIS [27] software

package. As our wave sources are wide-band Ricker (i.e., second deri-

vative of a Gaussian) functions, results can be processed to extract co-

herent wave parameters for each frequency.

The numerical tool is then validated step-by-step. We first consider

the simplest case of scattering: a single circular scatterer in a homo-

geneous matrix. In this configuration, analytical solutions are available

in the far field. Then, numerical results are compared to experimental

ones in the configurations of the aluminum/resin samples with different

concentrations of rods. As homogenization models such as the

Waterman-Truell or the Conoir-Norris models are usually used to model

coherent waves in two-phase systems, we also compare the experi-

mental results to them.

Finally, we use our validated numerical tool to carry out a para-

metric study of scatterer concentration, shape, orientation and size

distribution of aggregates in concrete.

2. Experimental setup

In this section, the experimental setup for the wave propagation in a

highly-heterogeneous medium like concrete is presented. We first recall

the properties of the type of concrete that we will use in the parametric

studies. We then introduce the measurement samples made of resin

matrix with metallic rods, which can represent media with strong

heterogeneity such as concrete. Let us note that these samples will be

used for all the experiments: analytical, numerical and experimental.

Finally, we give the measurement protocol and data processing meth-

odology in order to obtain the effective phase velocity and effective

attenuation corresponding to multiple scattering in the samples.

2.1. Concrete properties

Our application concerns ultrasonic wave propagation in concrete.

There are many types of concrete with different properties. We choose

to set the properties in our numerical study according to the values

given in [28]. The mortar is taken as the matrix, and characterized by a
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pressure (P) wave velocity cp1=3950m/s, shear (S) wave velocity

cs1=2250m/s, density ρ1=2050 kg/m3. The aggregate scatterers are

characterized by cp2 =4300m/s, cs2 =2475m/s, ρ2 =2610 kg/m3. In

all the document, the matrix of a heterogeneous medium is labelled 1

and the scatterers labelled 2, while pressure and shear waves are re-

spectively noted as P and S.

Size distribution of scatterers must also be representative of real

concrete. We choose to consider information coming from the EDF

VeRCoRs project, which is a 1/3-scaled experimental mock-up of a

containment building [29]. The aggregate distribution is shown in

Fig. 1. In all the document, we note a the radius of the scatterer (radius

of the effective circle with the same surface of a noncircular scatterer)

and k the wavenumber. A minimal threshold of aggregate size ≥a 1

mm is chosen in order to remain around the stochastic regime

( ≈k a 1p1 ). The smaller aggregates, which are not taken into account,

contribute very little to the scattering phenomenon since ≪k a 1p1

(Table 1) and we homogenize them in the mortar. In practice, all the

aggregates selected through a sieve of 2mm are considered in this study

and the corresponding volume concentration is 44% for VeRCoRs

concrete. This value will be the upper limit of scatterer concentration in

our study (see Table 2).

2.2. Sample fabrication

For the experimental measurements, the sample configuration is

imposed by the 2-D numerical simulation option that we have chosen.

The samples are composed of a homogeneous matrix containing ran-

domly-distributed cylinders. For practical reasons, the samples are not

made with concrete components: a resin (polyurethane-polyol) is used

as the matrix and rods of aluminum alloy (AlMg5-EM5356 – 95% alu-

minum and 5% magnesium) with a radius of 0.8mm are used as scat-

terers (Fig. 2). The microbubbles in the resin are ignored because of its

low-porosity nature. The samples are 7 cm wide and 35 cm long. The

length of the rods is equal to the 7 cm width, which is 80 times more

than its radius of 0.8mm, and thus they could be considered as infinites

in the Z axis direction. The cross section parallel to the XOY plane is

invariant along the Z axis direction, and thus wave propagation in this

cross section can be considered as a 2-D problem.

The material properties are cp1=2460m/s, cs1=1580m/s,

ρ1=1600 kg/m3 for the resin, and cp2 =6300m/s, cs2 =3200m/s,

ρ2 =2700 kg/m3 for the rods. We notice that the resin/aluminum

acoustic impedance contrast (ρ c ρ c/1 1 2 2 from 23% to 30%) is much

stronger than the one between the mortar and the aggregates (about

72%).

The thickness of samples is limited to 5 cm because of the chemical

properties of the resin during the pouring (too much heat being gen-

erated from the resin hardening reaction). Thus, the considered fre-

quency range starts at 150 kHz, which corresponds to about 3 wave-

lengths (λp1=16.4mm at 150 kHz) over the sample thickness of 5 cm.

The radius of the rods, 0.8 mm, is determined by k ap1 =1 at 500 kHz,

corresponding to about 10 wavelengths (λp1=4.9mm at 500 kHz) over

the sample thickness of 5 cm.

The random positions of the rods are analytically calculated with a

minimal distance of 0.2 mm so that the scatterer distribution is as

homogeneous as possible in the samples. The sample surfaces are po-

lished after resin hardening in order to keep them smooth and with one

surface parallel to the other.

Samples with four different scatterer concentrations of 5%, 20%,

30% and 40% are created to study the multiple scattering phenomena.

The highest concentration value is representative of aggregate con-

centration in concrete (44%).

Since the resin is not an elastic material, the velocity and the at-

tenuation of coherent waves are affected by inelastic dispersion in the

resin material in addition to the scattering phenomena by the metallic

rods. Thus, two samples without rods (with a thickness of respectively

35.0 mm and 49.3 mm) are also created to evaluate and separate the

contribution of inelastic dispersion.

2.3. Measurement protocol

An ultrasonic measurement setup (Fig. 3) is developed to obtain the

coherent wave across the samples. The measurements are performed in

the configuration of P wave transmission in immersion in a water tank.

The samples are fixed on a rotatable mount, which allows one to adjust

its horizontal and vertical angles, in order for the two largest surfaces of

the samples to be parallel to the transducer surfaces and their

Fig. 1. Size distribution of aggregates for VeRCoRs concrete.

Table 1

k ap1 for a radius of 1 mm and of 12mm.

k ap1 50 kHz 500 kHz

a=1mm 0.08 0.80

a=6mm 0.48 4.77

a=12mm 0.95 9.54

Table 2

Numerical values for different physical cases.

Physical case NX d∆ X (mm) NY d∆ Y (mm) N

Concrete (mortar/

aggregates)

100 4 50 12 for circular scatterers

of radius 6mm

8 for other cases

50

Resin/aluminum rods 60 0.8 30 2 30

Fig. 2. Example of one of the samples. (a) Rods in aluminum in the mold before

pouring the resin. (b) The same, after the hardening of resin.
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translations. The sample is located in the far field of the transmitter to

obtain a stable and reproducible plane wave.

Onepairs of transducers is used: Imasonic 9223–250 kHz with a

diameter of 46mm. Their total passbands are found ranged from

150 kHz to 370 kHz at −6 dB.

The signals are emitted thanks to an impulse generator and received

through an amplifier and a digital oscilloscope. For one measurement of

any given sample, the transducers target the middle of the sample in its

width direction, and 10 acquisitions are recorded along the length di-

rection every 25mm (Fig. 2(b)). We average these 10 acquisitions as

the received signal to obtain the measured coherent wave. We repeated

eight times the measurements of the three samples (without rods and

with rods at the concentration of 20%) in order to estimate the mea-

surement uncertainty.

Over the frequency range, the received signals after Fourier trans-

form have a maximum amplitude around 300 kHz instead of 250 kHz

(the dominant frequency of transducers). This might be linked to the

strong impedance contrast between resin and aluminum and a large

wave mode conversion. When the wavelength in the matrix of con-

verted S wave is equal to the perimeter of the rods, as

= =k a πa λ2 / 1s s1 1 at 300 kHz, it might lead the rods to resonate.

2.4. Data processing

The data processing is based on the assumption that the averaged

signal represents the measured coherent wave.

If the emitted signal is denoted by s t( )0 , the averaged signal s t( ) can

be expressed as:

= ∗ ∗ ∗ ∗ − ∗ ∗s t s t g t e t h d t h D d t e t g t( ) ( ) ( ) ( ) ( , ) ( , ) ( ) ( )e e w r r0 (1)

where g t( )e , g t( )r , e t( )e , e t( )r are respectively the response functions in

the time domain for the generator and the transducers in emission and

in reception, h d t( , ) is the response function concerning propagation in

the sample having a thickness of d, and −h D d t( , )w is the response

function concerning propagation in the water, the distance between

two transducers being D.

After a Fourier transform, the averaged signal in the frequency

domain is then:

̂ ̂̂ ̂ ̂ ̂̂ ̂= −s ω s ω g ω e ω h d ω h D d ω e ω g ω( ) ( )· ( )· ( )· ( , )· ( , )· ( )· ( )e e w r r0 (2)

with

̂ ̂− = =−h D d ω e h d ω e T T( , ) , ( , ) · · ,w
iω D d c ik ω d

w s s w
( / ) ( )

/ /
w sample

where Tw s/ , Ts w/ are respectively the transmission coefficients at the

water/sample and sample/water interfaces, cw is the velocity in the

water, which is assumed to be constant in the frequency range used,

and ksample is the complex wavenumber corresponding to the propaga-

tion in the sample affected by both inelastic dispersion in the resin and

the rods scattering phenomena.

For the coherent wave, we use ̂ =s ω A ω e( ) ( )· iϕ ω( ). Data processing

then relies on two steps.

The first step consists in comparing the results obtained with the

resin samples without rods with two different thicknesses, d1 and d2.

The correction of beam divergence for the transducers is neglected

because of the weak difference between the two compared configura-

tions. For these samples, ksample includes only the dispersion in the resin,

and can be expressed as = = +k k ω c i α/ ·sample res res res with the phase

velocity c ω( )res and the attenuation α ω( )res of resin. Their expressions

are:

= − = + −
−α ω

d d

A ω

A ω c ω c

ϕ ϕ

d d ω
( )

1
ln

( )

( )
,

1

( )

1

( )
res

res w2 1

1

2

2 1

2 1 (3)

where A1 and A2 are the amplitudes, and ϕ1 and ϕ2 are the phases of the

measured coherent waves for the two samples without rods.

The second step is performed between a sample without rods (la-

belled 1 below) and a sample with rods (labelled 2). The correction of

beam divergence for the transducers is also neglected for the same

reasons. For the sample with rods, the ksample that is present in the re-

sponse function of the sample represents not only the dispersion in the

resin but also the multiple scattering phenomenon. It can be expressed

as = + ∗k k ksample res . Thanks to c ω( )res and α ω( )res obtained in (3), the

effective parameters corresponding to the effect of multiple scattering

phenomenon can be calculated as:

= ⎡
⎣⎢ − − ⎤

⎦⎥ = − + −

− −
∗ ∗α ω

d

A ω

A ω
α ω d d

c ω

ϕ ϕ

d ω

d d

c d

d d

c ω d

( )
1

ln
( )

( )
( )( ) ,

1

( )

( )

( )

( )

res
w

res

2

1

2
2 1

2 1

2

2 1

2

2 1

2 (4)

By means of the results over the eight repeated measurements of the

samples without rods and with rods at the concentration of 20%, the

uncertainties within three standard deviations of the means can be re-

duced at each ω and the maxima over the range from 150 kHz to

370 kHz are ±23.7 m/s for the velocity ∗c ω( ) and ±7.0 Np/m for the

attenuation ∗α ω( ).

3. Numerical model

All the simulations are carried out in the SPECFEM2D software

package [25], which is an open-source code for wave propagation in 2-

D media in the time domain based upon a spectral-element method.

In the numerical simulation, we evaluate the parameters of ∗c ω( )

and ∗α ω( ) based on several classical hypotheses:

- viscosity (viscoelastic attenuation) and heat conduction are ne-

glected;

- all the materials inside a given domain are considered homo-

geneous, linear elastic, and isotropic;

- the scatterers are never in contact (a small exclusion distance is

enforced when generating the random media to study);

- the contact at the interface between the matrix and the scatterers is

considered perfect;

- wave propagation in 2-D is performed in the plane strain formula-

tion.

3.1. Geometry of the models considered

The 2-D numerical medium that we consider is a rectangular plane

consisting of a heterogeneous region ×X Y[ ] located between two

homogeneous matrix regions ×X Y[ ' ] (Fig. 4). Circular or polygonal

scatterers are randomly distributed in the heterogeneous region. The

Fig. 3. Ultrasonic experimental setup in immersion in a water tank used in our

experiments. The waves propagate along the X axis.
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homogeneous region is needed in order to be able to easily generate the

initial field for the incident plane wave. Along each edge we enforce an

absorbing boundary condition of the Bielak and Christiano [30] type,

which is exact for such a plane wave, in order to mimic an infinite

medium and avoid spurious reflections coming back from the artificial

edges of the domain.

In the simulations of wave propagation in concrete (mortar/ag-

gregates), we define X =400mm, Y =600mm for the case with cir-

cular scatterers of radius 6mm, and Y =400mm for other cases. The

length of heterogeneous region in the propagation direction

X =400mm corresponds to about 5 maximum wavelengths over the

considered frequency range (λp1=79.0mm at 50 kHz).

However, in the simulations of wave propagation in resin with

metallic rods to compare with the measurements, we adapt the model

to the dimensions of the measured samples and we thus define

X =50mm, Y =100mm. Let us note that the positions of rods are the

same as in the samples.

3.2. Wave source

Considering classical aggregate sizes in concrete, a minimum fre-

quency of about 50 kHz corresponds to the stochastic regime in the case

of a large aggregate size (effective radius a around 12mm, Fig. 1), and

the upper limit in terms of frequency is about 500 kHz, at which point

the coherent wave loses most of its energy and coda (incoherent wave)

phenomena become dominant. Consequently, a pressure Ricker (i.e.,

second derivative of a Gaussian) plane wave with a dominant frequency

of 250 kHz is selected as incident wave, most of whose energy is thus

distributed over a frequency range of about 50–500 kHz (Fig. 5).

On the other hand, in the simulations of wave propagation in resin

with metallic rods, a pressure Ricker plane wave with a dominant fre-

quency of 300 kHz is selected as incident wave. In order to reduce the

total number of simulations to perform, the choice is adapted to the

observed energy concentration around 300 kHz of received signals in

the measurements, in order to explore a frequency range as large as

possible (cf. Section 2.3).

3.3. Mesh, accuracy of the numerical calculations, and numerical stability

Mesh generation is performed using quadrangular elements in the

commercial software package TRELIS [27]. A quadrilateral element

type with second-order polynomial shape functions and thus with nine

geometrical control nodes, often called QUAD9, is used to describe the

curved interfaces. The average mesh size l∆ must comply with two

conditions: (1) ≤l λ∆ (wavelength =λ c f/ ) for numerical accuracy of

wave propagation based on the spectral-element method [31], and (2)

accurate geometrical description of the smallest scatterers (for example,

aggregate scatterers of a=1mm in the concrete case and rods

of a=0.8mm in the resin/aluminum case). We have thus performed a

numerical convergence study in order to determine the mesh size

needed and verify compliance with these two conditions. Moreover,

mesh quality was checked in terms of size and element skewness before

each simulation.

The time step t∆ needed for these explicit, time-domain, con-

ditionally-stable simulations is linked to the minimal mesh size in ac-

cordance with the Courant-Friedrichs-Lewy (CFL) stability condition:

≤t c l n∆ ·max( /∆ ) CFL, where nCFL is a constant that is about 0.5 in the

case of explicit 2-D spectral-element techniques in heterogeneous media

[31].

3.4. Data processing

A set of sensors (receivers) that record displacement is placed in the

heterogeneous medium region ×X Y[ ] in order to record the wave field

(Fig. 4): NX receivers along the X direction with an even spacing of d∆ X ,

and NY rows of receivers with row spacing d∆ Y in the Y direction.

In order to compare with the homogenization models and monitor

the wave propagation, we choose the same effective parameters, phase

velocity and attenuation. They could be obtained from the direct nu-

merical results in terms of displacements by the following data pro-

cessing.

The coherent field of scattered P waves s t d( , )n is obtained by

averaging the displacements in the X direction of N signals at position

dn, and it is then processed by Fourier Transform:

̂→ =s t d s ω d A ω d e( , ) ( , ) ( , )n

FT

n n
iϕ ω( )n (5)

where ̂s ω d( , )n is the coherent field in the frequency domain at position

dn, and A and ϕn are respectively the amplitude spectrum and the phase

spectrum at position dn.

The attenuation ∗α of the coherent field can be obtained by mea-

suring the change of the amplitude spectrum, which is assumed to de-

crease exponentially with propagation distance as in a homogeneous

medium:

= − ∗
A ω d A ω e( , ) ( )n

α d
0

n (6)

where A ω( )0 is the initial amplitude of the wave source at ω. Even

though the attenuation can be calculated based on the amplitudes re-

corded at two positions by using the expression

= −∗α A d A d d dln[ ( )/ ( )]/( )m n n m , the final value is obtained by curve

fitting based on the amplitudes measured at all the positions, in order to

increase the accuracy of the attenuation estimated.

In order to obtain the effective phase velocity of the coherent field,

we use the −p ω transform method [32]. In that method, a summation

function is defined as:

∑=
=

F p ω
e

e
e( , ) ,

n

N iϕ ω

iϕ ω
iωpd

1

( )

( )

x
n

n

1 (7)

where p is the slowness of the propagating wave in the matrix, =p c1/ .

For a given angular frequency ω, the summation function is calcu-

lated based on a group of different values for p over the range from c1/ p1

to c1/ p2. The phase velocity of the coherent wave ∗c then corresponds to

the p ( =p c1/ ) that gives the maximum of F p ω( , ).

A convergence study is carried out to determine N , the number of

averaged signals that is needed to obtain the coherent field. We have

used 500 rows of receivers in the simulations of 10 different config-

urations, in which circular scatterers of identical radius 6mm at a

Fig. 4. Example of 2-D numerical configuration in SPECFEM2D for the case of a

scatterer concentration of 24%: the black circles represent the circular rods, the

green dots the receivers. The receiver positions dn are defined by the propa-

gating distance of the plane wave, as dn = dX1 + (n− 1)·Δdx (dX1 the distance

between the first receiver in each row and the plane wave at =t 0. d∆ X the

spacing along the X direction, ∈n N[1, ]X ).
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concentration of 12% are randomly and differently distributed. We then

compare the phase velocity and attenuation obtained based on the

averaged fields from 50 rows and 450 rows. The comparisons show that

the curves corresponding to 50 rows are close to those corresponding to

450 rows, whose curves are however a bit smoother. The maximal

differences between the cases with 50 rows and with 450 rows are

2.5 m/s for the phase velocity and 0.2 Np/m for the attenuation over

the range from 50 kHz to 500 kHz. Therefore, N =50 is then used to

obtain the coherent field in order to reduce the computational cost.

4. Numerical model validation

The aim of this section is to validate the numerical model in a step-

by-step procedure. First, we consider the simplest case of scattering: a

single circular scatterer in a homogeneous matrix. In this configuration,

analytical solutions are available in the far field. Numerical results are

then compared to experimental ones in the configurations of the resin/

aluminum samples. Two homogenization models, the Waterman-Truell

and Conoir-Norris models are also compared and discussed.

4.1. Scattering by a single circle

In a 2-D plane, in the case of plane strain, an ultrasonic harmonic

plane wave at the pulsation =ω πf2 (frequency f ) propagating in an

elastic matrix, and its interaction with an elastic circle of radius a can

be described based on a modal representation of the wave field. The

propagation media in the matrix and in the circle are characterized

respectively by P wave velocities cp1, cp2, S wave velocities cs1, cs2, and

densities ρ1, ρ2. The wavenumbers for the P and S waves in the matrix

are defined respectively by =k ω c/p p1 1, =k ω c/s s1 1. Using the far-field

approximation ≫k r np1 , ≫k r ns1 (the distance of observation being r ,
the mode order integer ∈ +∞n [0, ]), the scattering pattern functions in

the matrix for an incident harmonic plane wave in the frequency do-

main with unit amplitude can be expressed as follows [33,34]:

⎧
⎨
⎩

= ∑ ∊
= ∑ ∊

⎧
⎨
⎩

= ∑ ∊
= ∑ ∊

−
=

+∞

−
=

+∞

−
=

+∞

−
=

+∞

f θ ω a a nθ

f θ ω a b nθ

f θ ω a c nθ

f θ ω a d nθ

P wave

( , , ) cos

( , , ) sin
, S

wave

( , , ) sin

( , , ) cos

pp
i

πk n n n

ps
i

πk n n n

sp
i

πk n n n

ss
i

πk n n n

1
1

0

1
1

0

1
1

0

1
1

0

p

s

p

s

1

1

1

1 (8)

where fpp1, fss1 are the scattering pattern functions of the scattered wave

without mode conversion in the matrix, and fps1, fsp1 the scattering

pattern functions of the converted wave in the matrix. ∊n is the Neu-

mann factor with ∊0 =1 and ∊n =2 for n > 0. an, bn, cn, dn are nth-

order modal expansion coefficients for the scattered and converted

waves in the matrix. θ is the angle in cylindrical coordinates, and the

incident wave propagation direction is defined as θ=0, while =θ π is

the direction of back-scattering. In this study we use 20 as the max-

imum value of n to consider only the first 20 modes in the series in Eq.

(8), because we have validated that such a value is sufficient for con-

vergence and stability of the calculation of the scattering function.

The scattering cross-section is commonly used to represent the en-

ergy distribution after scattering in terms of the scattering direction:

=σ θ f θ( ) | ( )|type type,1 ,1
2

(9)

For the numerical simulations, we consider a Ricker pressure plane

wave with a dominant frequency of 250 kHz scattered by a single circle

of radius a=6mm in a homogeneous medium (Fig. 6). The material

properties are those of concrete presented in Section 2.1. The acquisi-

tion setup is modified to adapt it to scattering pattern functions that

depend on the scattering angles. The receivers are located at the dis-

tance of r from the center of the scatterer, at discrete angular positions

θ, limiting ourselves to the range ° ≤ ≤ °θ0 180 only because the pro-

blem is symmetrical. The angular distance between two successive re-

ceivers is = °θ∆ 2 . A distance r =200mm was chosen based on a

convergence study in order to be in the far-field approximation regime,

which imposes that ≫k r np1 , ≫k r ns1 . That distance leads to =k r 80p1

and =k r 140s1 far greater than 20 which is the chosen maximum value

of n, at f=250 kHz, thus satisfying the far-field condition. The calcu-

lated radial and tangential displacements represent respectively the

scattering patterns of scattered P waves and of converted S waves for a

Ricker wave.

Fig. 5. Ricker (i.e., second derivative of a Gaussian) wave with a dominant frequency of 250 kHz in the time domain (a) and its corresponding amplitude spectrum in

the frequency domain (b).

Fig. 6. Sketch of our numerical experiment to study elastic scattering by a

single aggregate circle in a cement homogeneous matrix.
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The analytical scattering patterns for a Ricker wave with a dominant

frequency of 250 kHz are approximated based on a weighted sum: after

a Fourier transform of the Ricker wave, 60 discrete frequencies are

taken over the frequency range 0 to 800 kHz, and then the scattering

pattern functions in (8) at each discrete frequency =f ω π/2 are

weighted by the corresponding amplitude and phase and finally

summed.

We have calculated the scattering cross-sections from the scattering

patterns for both the numerical results (at r =200mm) and the ana-

lytical solution (at infinite distance). Their amplitude at each θ is nor-

malized by the maximum amplitude to highlight the energy distribution

after scattering that we are interested in. The comparison is shown in

Fig. 7. The curves are superposed and the excellent agreements validate

the numerical tool SPECFEM2D for such an application.

4.2. Multiple scattering

4.2.1. Comparison between experimental and numerical results

For comparison with the experimental measurements, we simulate

numerically wave propagation in all the configurations described in

Section 2.2. We use the exact positions of the rods, which were fixed

before creating the samples. We simulate a 100mm×50mm region of

the samples. The incident wave is a Ricker pressure plane wave with a

dominant frequency of 300 kHz, corresponding to the maximum am-

plitude of the experimental signal (Section 2.3). Data processing de-

scribed in Section 2.4, is used to obtain the phase velocity and the at-

tenuation corresponding to multiple scattering from the numerical

results.

The comparison in terms of the variation of velocity and attenuation

with frequency between experimental results and numerical simula-

tions at all the scatterer concentrations of 5%, 20%, 30% and 40% is

shown in Fig. 8.

Regarding the phase velocity in Fig. 8(a), the numerical and ex-

perimental results almost remain constant and exhibit a quantitative

agreement at a scatterer concentration of 5% in spite of a small dif-

ference over the whole frequency range going from 150 kHz to 370 kHz.

For scatterer concentrations of 20%, 30% and 40%, the numerical re-

sults exhibit a monotonous decaying behavior with respect to fre-

quency, qualitatively similar to what is observed in the experiments.

However, the simulations overestimate the velocity values compared to

experimental ones, and this underestimation tends to increase with

scatterer concentration.

Regarding attenuation, the experimental curves cross each other in

the frequency range going from 150 kHz to 370 kHz and exhibit sig-

nificant experimental uncertainties, especially at low frequency

(< 270 kHz) (Fig. 8(b)). At high frequency (> 270 kHz), the strongest

attenuation is observed at a scatterer concentration of 20%, and the

attenuation at concentrations of 30% and 40% are close in amplitude,

the latter being slightly smaller. We observe a similar phenomenon in

the numerical results of Fig. 8(c), where error bars of the experimental

results are removed for clarity. However, for all the scatterer con-

centrations, the numerical simulations underestimate attenuation

compared to the measurements, and the differences are almost constant

over the frequency range. The differences are smaller at a scatterer

concentration of 5% than at 20%, 30% or 40%. For the lowest per-

centage of scatterers, the agreement is quantitative because the nu-

merical values are included in the uncertainty range of the experi-

mental one. For the other concentrations, the agreement is only

qualitative.

These differences between the experiments and the numerical si-

mulations could be explained by two reasons. The first one is that the

material properties are not correctly evaluated for the simulations.

Secondly, the differences are maybe due to imperfect bonding at the

interfaces between the resin and the rods in the experiments, while

bonding is assumed to be perfect in the numerical simulations. To be

more specific, the resin/air coupling appears at the imperfect bonding

and its acoustic impedance is extremely strong. It prevents the waves

from propagating directly through aluminum rods where the wave

velocity is faster than in resin, and it leads to more scatterings in all the

directions. The imperfect bonding thus results in a smaller effective

phase velocity and a stronger attenuation than perfect bonding in the

simulations.

The relative variations of phase velocity and attenuation can be

considered as identical between numerical and experimental results.

Therefore the comparisons validate the numerical model and confirm

that it permits a good description of multiple scattering phenomena in

such a highly-heterogeneous medium.

4.2.2. Comparison with homogenization models

Let us first briefly recall the Waterman-Truell (WT) and Conoir-

Norris (CN) homogenization models.

In order to describe wave propagation in a heterogeneous medium

having multiple scatterers, homogenization principles suggest to focus

on the propagation of the coherent wave, which is the statistical

average based on all possible configurations of the scatterers. This de-

fines an equivalent homogeneous attenuating medium corresponding to

the coherent wave propagation, and the medium is dispersive with a

complex effective wave number ∗k that is frequency dependent:

= +∗ ∗ ∗k ω
ω

c
i α( ) · ,

(10)

where ∗c ω( ) is the effective phase velocity and ∗α ω( ) the effective

Fig. 7. Analytical (in solid lines) versus numer-

ical (in dashed lines) comparisons of scattering

cross-sections of the diffracted P waves (in blue)

and the converted S waves (in red) for elastic

scattering of a pressure Ricker plane wave with a

dominant frequency of 250 kHz by a single circle

of radius 6 mm. (For interpretation of the refer-

ences to colour in this figure legend, the reader is

referred to the web version of this article.)
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attenuation.

The Waterman-Truell (WT) model is a homogenization model that

considers forward and backward scattering based on scattering pattern

functions. In the case of an incident P wave at ω scattered by identical

circles of radius a, it gives the expansion expression of ∗k up to second

order in the concentration as follows [10]:

= + +∗k k δ n δ n( )p p
2

1
2

1 0 2 0
2

(11)

with

= + = − −δ
πk

i
f δ

π i

k
f f π

4

1
(0),

2 ·
([ (0)] [ ( )] )

p

pp
p

pp pp1

1

1 2
1

1
2

1
2

where =n v πa/0
2 is the number of scatterers per surface unit, v is the

scatterer concentration and n0 is supposed to be constant if scatterers

are homogeneously distributed.

If scatterers are of different sizes, the WT model can take the size

distribution into account by replacing f θ( ) with the effective scattering

pattern 〈 〉f θ( ) :

∫〈 〉 =f θ f θ a p a a( ) ( , )· ( ) d
a (12)

where a is the radius of the scatterers and p a( ) is their size dis-

tribution.

The LM model [14] provides, based on Loyd and Berry model [12],

a mathematical proof of its validity and the new value of δ2, coefficient

of second order in the concentration. The Conoir-Norris (CN) model

builds on the LM model by incorporating mode conversation effects.

These effects induce the following modification of the second-order

correction term [17]:

∫
∫

= ⎛
⎝

⎞
⎠ −

+ − + −
− +

δ
i

k
θ

θ d

dθ
f θ f θ

i k k θ
f θ f θ f θ f θ

k k k θ k

4
d cot

2
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4 d
( ) ( ) ( ) ( )

2 cos
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p s

π ps sp ps sp

s p s p

2
1 0 1 1

1 1
0

1 1 1 1

1
2

1 1 1
2

(13)

For the calculation of δ2, in practice, we used the initial expression

in [17] as following:

∑ ∑= − − −− −δ
k

D k T T
iπ

k k
N k T T

16
( )

8
( )

p m n

m n p m
pp

n
pp

p s m n

m n
s

p m
sp

n
sp

2
1
2

,

(0)
1

1
2

1
2

', '

' ' 1 ' '
(14)

where m n m n, , , '' are integers, Ti
αβ is the i-th modal scattering ampli-

tudes with ∈α β p s, [ , ] representing the wave mode in Fourier series of

the scattering pattern functions f θ( )αβ in the T-matrix approach, the

functions Di
(0) and Ni

s are defined in [17] by using Hankel and Bessel

functions.

Let us first compare the experimental results with the results ob-

tained using the WT model and the CN model (Fig. 9).

Regarding phase velocity (Fig. 9(a)), the two models overestimate

the velocity compared to the experiments (solid lines with error bars)

for all the scatterer concentrations. At a concentration of 5%, the two

Fig. 8. Experimental (solid line with error bars or crosses) and numerical (solid line with circles) (a) velocity and (b)&(c) attenuation with respect to frequency in the

case of pressure wave propagation in a medium composed of 5%, 20%, 30% and 40% of rods in resin. The measured attenuations in (c) are the same as the ones in

(b), with the error bars removed for clarity.
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models almost overlap and exhibit a good agreement with the experi-

ments in spite of a small difference over the whole frequency range

going from 150 kHz et 370 kHz. For the other scatterer concentrations,

the WT model (solid line with squares) predicts similar decaying be-

havior with respect to frequency as observed in the experiments, except

in the case of 30% concentration, and the difference between the WT

model and experiments increases with scatterer concentration. The CN

model (solid line with triangles) leads to a decaying behavior that is

much more important than for the WT model, and differs more from the

experiments.

Regarding attenuation (Fig. 9(b)), only the results at a concentration

of 5% are shown for the CN model (solid lines with triangles) because

attenuation at other concentrations obtained by this model is negative,

which is unphysical, and which thus means that the model fails. For a

concentration of 5%, both models exhibit similar curves as the experi-

ments (solid lines with crosses) and their values are globally smaller

over the whole frequency range. The WT model (solid lines with

squares) performs better, leading to a smaller difference with the ex-

periments. For scatterer concentrations between 20% and 40%,

nevertheless, the attenuation predicted by the WT model is greatly

over-estimated compared to the experiments and increases with scat-

terer concentration, while in experiments the attenuation at a scatterer

concentration of 20% is the strongest.

According to the analytical versus experimental comparison, we can

thus confirm the quantitative validity of the WT model in our case of

solid scatterers in solid matrix at a concentration of 5%, which is in the

range of validity limit suggested, and the CN model performs similarly

to the WT model at a concentration of 5%, but not above.

In comparison with the experimental results of wave propagation in

resin with aluminum rods, these homogenized models are unable to

predict phase velocity and attenuation of multiple scattering in a

highly-heterogeneous media such as concrete, while full-wave numer-

ical simulations can overcome these limits; for such media it is thus

necessary to switch to such numerical tools.

5. Parametric study for concrete cases using the numerical model

For the continuation of this work, we accept that the numerical

model allows a qualitative description of the evolutions of the phase

velocity and the attenuation in case of scatterer concentration up to

40%, which is representative of applications to concrete. We can now

use it to perform a parametric study of ultrasonic wave propagation in a

heterogeneous medium. We will first consider the case of concrete

containing aggregates with a circular shape, in order to study the in-

fluence of scatterer concentration. We will then use polygonal shapes

for scatterers to investigate the impact of scatterer shape (comparing

the results with those obtained for the case of a circular shape) and of

their privileged direction. We will finally compare and discuss results

for different size distributions of circular scatterers.

5.1. Scatterer concentration of circular scatterers

The numerical model being validated qualitatively, let us now study

the influence of scatterer concentration in the case of circular scatterers.

Two cases are simulated: identical circles, and circles of various radii. In

the case of identical circles, a radius of a=6mm is chosen for the

concrete aggregates because it is the mean size value observed in

VeRCoRs concrete, in which aggregate sizes typically range between 1

and 11mm. The size distribution in the case of various circles is ob-

tained as follows: in an infinite 3-D volume containing spheres whose

radii correspond to the aggregate size distribution of VeRCoRs concrete

(Fig. 1), the probability of a circular radius exceeding 1mm in a

random cut plane can be calculated, and then we take it as the size

distribution that we will use (dotted line in Fig. 10). The circle locations

are chosen randomly in the region ×X Y[ ], enforcing a minimal ex-

clusion distance between the circles of ≥∆ 0.5 mm.

For each case, we simulate the propagation of a Ricker pressure

plane wave with a dominant frequency 250 kHz in a mortar containing

12%, 24% or 42% of circular scatterers. The numerical results are post-

processed to obtain the effective phase velocity and attenuation with

respect to frequency (cf. Section 3.4).

In the case of identical circles (Fig. 11), the increase in scatterer

concentration leads to an increase in the velocity and attenuation va-

lues in the whole domain. Regarding phase velocity (Fig. 11(a)), am-

plitude variations are observed in the low frequency domain

( ≤f 200 kHz), and the magnitude of variations increases with scatterer

concentration. The maxima are found around k ap1 =1.4 ( =f 150 kHz).

Then, in the high-frequency domain ( ≥f 200 kHz), the velocity remains

almost constant. Regarding attenuation (Fig. 11(b)), two bumps are

observed at about k ap1 =1.2 ( =f 130 kHz) and k ap1 =3.2 ( =f
340 kHz) respectively, and become more obvious as the scatterer con-

centration increases. This might be linked to the presence of numerous

spaces of similar sizes between the identical circles. Even though the

scatterer positions are randomly distributed, this comes from the fact

that the arrangement of scatterers becomes increasingly closer to a

periodic arrangement as the concentration of scatterers increases for a

Fig. 9. Experimental (solid lines with error bars or crosses) versus homogenized velocity and attenuation with respect to frequency (solid lines with squares for the

WT model and solid lines with triangles for the CN model) in the case of pressure wave propagation in a medium composed of 5%, 20%, 30% and 40% of rods in

resin.
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region of finite size.

In the case of circles of various radii (Fig. 12), smoother curves are

observed in comparison with the previous case of identical circles only:

the amplitude variations at low frequency for the velocity and the two

bumps for attenuation disappear. This confirms the previous explana-

tion that the amplitude variations and the bumps are linked to the

presence of numerous spaces with similar sizes between the identical

scatterers. Regarding phase velocity (Fig. 12(a)), an increase with fre-

quency is observed over the whole frequency range, and the slope be-

comes steeper with scatterer concentration. Attenuation (Fig. 12(b))

exhibits a quasi-monotonous increase with respect to frequency, and a

nearly linear dependence on scatterer concentration in the frequency

domain above 200 kHz.

5.2. Scatterer shape and privileged direction: circular versus polygonal

scatterers

In the literature, studies have often applied the shape simplification

of using circular shapes only to represent scatterers. In order to

investigate the effect of scatterer shape and privileged direction on

wave propagation, in this section we will use scatterers of circular

shape, and then scatterers of polygonal shape.

In the case of polygonal scatterers, the geometry is generated by

extracting a cut plane from a 3-D model of a concrete block with

polyhedral aggregates: some polyhedra with a controlled shape (i.e.

length/width ratio, l w/ ) and orientation are generated, with their in-

scribed sphere radii corresponding to the aggregate size distribution of

concrete. Their center is then placed randomly in the cut plane, using a

minimal exclusion distance between the polyhedra of ≥∆ 0.5mm. The

polygons in the cut plane are then used as scatterers in the simulations.

In order to highlight the effects of scatterer shape, we simulate two

cases for polygons: usual shapes with l w/ about 2 (Fig. 14(a)), and

exaggerated shapes with l w/ about 3–4 (Fig. 14(b)). The former shape is

closer to the shape of observed aggregates in a real cut section of

VeRCoRs concrete. The scatterer concentrations are respectively 44%

and 42%, i.e. slightly different, because it is difficult to control the

concentration very precisely when the geometry is numerically gener-

ated. The size distributions of effective radii from circles with the same

surface as that of the respective polygons is shown for the two cases in

Fig. 10.

In the study of the influence of scatterer shape, the simulation of

each polygonal case is compared with a corresponding simulation with

circular scatterers, and each circle corresponds to a polygon having the

same surface. It is impossible to place all the circles at the same posi-

tions as the corresponding polygons, and thus they are instead ran-

domly positioned, nonetheless obtaining the same concentrations.

The results for velocity and attenuation are shown in Fig. 14. For

both polygonal shapes with l w/ of about 2 and of 3–4, the velocity

curves exhibit a good agreement with the corresponding simulations

performed with circles, and a similar shape of the velocity curve is

found, with a small difference coming from the slight concentration

difference. Regarding attenuation, the shapes of the curves versus fre-

quency are close for the two polygonal cases. The first bump appears

again, and is clearer in the corresponding simulations with circles. This

might be linked to size concentrations (many scatterers of a similar size)

that show up as significant slopes on the size distribution lines. For

polygons with l w/ about 3–4 (red line) and with l w/ about 2 (black line

in Fig. 10), the size concentrations are observed around effective radii

respectively of 4mm and 3mm. The case of the circular shape appears

to be much more sensitive to the size distribution than the case of the

polygonal shape regarding attenuation. This likely comes from the fact

that the regular shape of circles makes it more probable to create si-

milar intervals between the scatterers when there is a privileged size.

Fig. 10. Size distributions for the numerical cases with circles (dotted line) and

polygons with a ratio l w/ of about 2 (black solid line) and of about 3–4 (red

solid line). l w/ is defined by the ratio of the longest dimension of a polygon and

the largest width in its perpendicular direction. (For interpretation of the re-

ferences to colour in this figure legend, the reader is referred to the web version

of this article.)

Fig. 11. Variations of velocity and of attenuation versus frequency and versus k ap1 in the case of an incident pressure wave propagating in a mortar containing 12%,

24% or 42% of scatterers of radius 6mm in the case of full-wave numerical results.
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The circular shape gives a better description of velocity and attenuation

versus frequency for the polygonal shape at l w/ about 2 than at l w/

about 3–4.

Let us now analyze the influence of the direction of the polygons in

relation to the direction of the propagating incident plane wave. We

apply privileged directions of 0°, 45° and 90° with respect to the wave

propagation direction to the case with polygons of exaggerated shape

(Fig. 13(c), (d) and (e)). The comparisons are presented in Fig. 15.

Regarding velocity, a very similar behavior between the cases with

polygons of random directions and a privileged direction of 45° is ob-

served. When the length direction of the polygons is the same as that of

the incident wave propagation (case of 0°), there are fewer interfaces

along the same propagation distance, and a faster velocity is obtained.

We observe the opposite behavior in the case with a privileged direction

of 90°: a slower velocity is obtained because of the presence of more

interfaces. But the velocity in all four cases tends to converge to the

same value as frequency increases. Similar conclusions are found for

attenuation versus frequency. The opposite influence of interfaces re-

garding attenuation leads to larger amplitude for the case with a pri-

vileged direction of 90°, and smaller amplitude for 0° than those for 45°

as well as those for random directions. In general, attenuation appears

to be more sensitive to privileged directions.

5.3. Size distribution: case of circular scatterers

The above simulations have four different size distributions of

Fig. 12. Variations of velocity and of attenuation versus frequency and versus k ap1 in the case of an incident pressure wave propagating in a mortar containing 12%,

24% or 42% of scatterers of various radii in the case of full-wave numerical results.

Fig. 13. Geometry of the mortar containing scatterers of polygonal shape. Polygons with a length over width ratio l w/ of 3–4 with random directions (a), with a

privileged direction of 0° (b), 45° (c) and 90° (d), and with a length over width ratio l w/ of about 2 with random directions (e).
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circles at the same level of scatterer concentration (42–44%): identical

radius of 6mm, and various radii based on three different adaptations

for aggregates in VeRCoRs concrete (Fig. 10). In Sections 5.1 and 5.2

they were compared in terms of concentration and in terms of shape.

Here we compare them in terms of phase velocity and attenuation in

order to highlight the influence of size distribution on wave propaga-

tion. The comparisons are shown in Fig. 16. Regarding velocity, the

curves are at the same level of amplitude in spite of different shapes of

the variations. The three cases at a concentration of 42% (green, blue

and black lines) converge towards a similar value of velocity with fre-

quency, while the velocity in the case of a concentration of 44% (red

line) is generally slightly greater than the others. Regarding attenuation

(Fig. 16(b)), zero, one or two bumps are observed in the evolutions for

the four cases, and the locations of bumps depend on size distribution.

It seems that attenuation converges to a similar value around 500 kHz.

As in the previous cases, attenuation appears to be more sensitive to the

size distribution of scatterers.

6. Conclusions and perspectives

In this study, we have built a 2-D plane strain numerical model

based on a spectral-element time-domain full-wave software package

called SPECFEM2D in order to simulate ultrasonic wave propagation in

concrete, i.e. in a highly heterogeneous medium. After some processing,

the simulation results have enabled us to obtain the effective properties

of the heterogeneous medium from the averaged coherent field, i.e., to

obtain the effective phase velocity and attenuation with respect to

frequency.

We validated the numerical model in two steps. First, we compared

the numerical results to analytical formulation in the case of scattering

by a single circle. Second, the numerical model was then validated by

comparing its results to experimental ones obtained with a set of

samples made of aluminum rods in resin with increasing scatterer

concentration up to 40%, which is representative of applications to

concrete. The experimental results obtained for these samples were also

compared to the results obtained with two commonly-used homo-

genization models, the Waterman-Truell and Conoir-Norris models.

They were confirmed to be valid and leading to similar results at a

scatterer concentration of 5%, and started to fail above (from 20% to

40%).

After that qualitative validation of the numerical model, we used it

for parametric studies for applications to concrete. In the case of cir-

cular aggregates of identical radius, or of varying radii, at concentration

levels of 12%, 24% or 42%, the phase velocity and attenuation were

found to increase with scatterer concentration.

When comparing the case of polygonal scatterers with that of

Fig. 14. Comparison of the variations of velocity and of attenuation versus frequency in the case of an incident plane pressure wave propagating in a mortar

containing polygons oriented randomly (solid lines) or circles (dotted lines). Two different polygonal shapes are used: with a length over width ratio l w/ of 3–4 at a

concentration of 44% (red lines) and with a length over width ratio l w/ of about 2 at a concentration of 42% (black lines).

Fig. 15. Comparison of the variations of velocity and of attenuation versus frequency in the case of an incident plane pressure wave propagating in a mortar

containing 44% of scatterers of polygonal shape (oriented randomly (red line) or with a privileged direction of 0° (blue line), 45° (green line) or 90° (black line)). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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circular scatterers, we found little influence on the phase velocity and

only a small difference for attenuation if the polygons are randomly

oriented. If the polygon shape is not exaggerated, i.e. if the length over

width ratio remains below 3 or 4 typically, a shape approximation

(simplification) based on circles is thus acceptable.

When comparing the case of polygonal scatterers with and without a

privileged direction, a large influence of the privileged orientation was

found both for velocity and for attenuation.

In the case of circular aggregates with four different size distribu-

tions at the same level of concentration (42–44%), the phase velocity

and, especially, attenuation were found to be highly sensitive to the size

distribution of scatterers, resulting in the presence or absence of am-

plitude variations at low frequency for phase velocity, and the presence

or absence of bumps for attenuation.

In future work, characterization experiments for mortar corre-

sponding to the VeRCoRs concrete will have to be conducted, and will

allow us to take into account the dispersion behavior of mortar (coming

from viscoelastic attenuation) in the numerical model. We also think

that Interfacial Transition Zones (ITZs) between the mortar and the

aggregates should be introduced in the numerical model in order to

obtain a more realistic approximation of concrete. Finally, the numer-

ical approach should be used to simulate Non Destructive Testing

measurement configurations, so as to better interpret the results and

optimize the measuring configurations; in such a case, it will be worth

investigating if switching to three-dimensional simulations instead of a

two-dimensional plane strain configuration could be necessary.
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