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Introduction

It was proposed to use laser pulses in order to compress a deuterium-tritium target and ignite the nuclear fusion reactions. In this process the energy is transported from the critical surface to denser parts of plasma by electrons. This process plays a key role in the understanding of plasma phenomena such as, parametric [31,[START_REF] Epperlein | [END_REF] and hydrodynamic [39,46,[START_REF] Drake | Parametric instabilities of electromagnetic waves in plasmas[END_REF] instabilities, laser-plasma absorption [START_REF] Rozmus | A model of ultrashort laser pulse absorption in solid targets[END_REF][START_REF] Guisset | Limits of the M1 and M2 angular moments models for kinetic plasma physics studies[END_REF], wave damping [START_REF] Landau | On the vibration of the electronic plasma[END_REF][START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF], energy redistribution and hot spot formation [START_REF] Brantov | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF][START_REF] Marocchino | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF]. Lasers produce a collisional ionised hot plasma, where the electron-ion mean free path is small compared to the plasma characteristic spatial size and the distribution function is close to the isotropic Maxwellian function. The physics of laser plasma interaction is described within the hydrodynamic plasma model. However, the moment extraction of the electron kinetic equation leads to an unclosed hydrodynamic set of equations. The closure of the system requires to express the fluxes in terms of the hydrodynamic variables and electron plasma transport coefficients. Spitzer and Härm first derived the electron plasma transport coefficients solving numerically the kinetic Fokker-Planck-Landau equation using the expansion of the electron mean free path over the temperature scale length. Their results have been reproduced in other works [START_REF] Braginskii | Reviews of Plasma Physics[END_REF][START_REF] Balescu | Transport Processes in Plasma[END_REF][START_REF] Shkarofsky | The Particle Kinetics of Plasmas M[END_REF] using the early works of Chapman [8,[START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF] and Enskog [START_REF] Enskog | Kinetische Theorie der Vorgänge in Mässig Verdünnten Gasen[END_REF] for neutral gases. However, the Spitzer-Härm theory is valid in the local regime where the electron flux is proportional to the temperature gradient. Indeed the electron transport plasma coefficient were derived in the case where the electron distribution function remains close to the isotropic Maxwellian function. However, in the context of inertial confinement fusion, the plasma particles may have an energy distribution far from the thermodynamic equilibrium so that the classical transport description is not adapted [START_REF] Ph | A practical nonlocal model for heat transport in magnetized laser plasmas[END_REF]. Moreover kinetic effects like the non local transport [START_REF] Brantov | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF][START_REF] Marocchino | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF], wave damping or the development of instabilities [START_REF] Drake | Parametric instabilities of electromagnetic waves in plasmas[END_REF] can be important over time scales shorter than the collisional time so that fluid simulations are insufficient. Therefore, a kinetic description is more appropriate for the study of inertial confinement fusion processes. However such a kinetic description is computationally expensive for describing real physical applications. Kinetic codes are limited to time and length much shorter than those studied with fluid simulations. It is therefore an essential issue to describe kinetic effects by using reduced kinetic codes operating on fluid time scales.

Angular moments models can be seen as a compromise between kinetic and fluid models. On one hand, they have an advantage to be less computationally expensive than full kinetic models since less variables are involved and, on the other hand, they provide results with a higher accuracy than fluid models. Grad [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF], initially proposed a moment closure hierarchy which leads to a hyperbolic set of equations for close equilibrium flows. The hierarchy proposed is based on a polynomial series expansion of a distribution function close to the Maxwellian equilibrium. However, the truncation of this expansion leads to a loss of the positivity of the distribution function and to unrealisable moments. In [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF][START_REF] Minerbo | Maximum entropy Eddigton Factors[END_REF][START_REF] Muller | Rational Extended Thermodynamics[END_REF][START_REF] Struchtrup | Macroscopic Transport Equations for Rarefied Gas Flows[END_REF][START_REF] Alldredge | High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem[END_REF], closures based on entropy minimisation principles are investigated. It has been shown that this closure choice enables to preserve fundamental properties such as the positivity of the underlying distribution function, the hyperbolicity of the model and an entropy dissipation condition [START_REF] Groth | Towards physically-realizable and hyperbolic moment closures for kinetic theory[END_REF][START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF][START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF]. In this work, the moment model is based on an angular moments extraction. The kinetic equation is integrated only with respect to the velocity direction while the velocity modulus is kept as a variable. The closure used based on an entropy minimisation principle gives the angular M 1 model. The angular M 1 model is used in numerous applications such as radiative transfer [START_REF] Turpault | Multigroup half space moment appproximations to the radiative heat transfer equations[END_REF][START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF][START_REF] Dubroca | Entropic moment closure hierarchy for the radiative transfert equation[END_REF][START_REF] Turpault | A consistent multigroup model for radiative transfer and its underlying mean opacity[END_REF][START_REF] Charrier | Multigroup model for radiating flows during atmospheric hypersonic re-entry[END_REF][START_REF] Ripoll | An averaged formulation of the M1 radiation model with presumed probability density function for turbulent flows[END_REF][START_REF] Ripoll | A factored operator method for solving coupled radiation-hydrodynamics models[END_REF], radiotherapy [START_REF] Pichard | Relaxation schemes for the M1 model with space-dependent flux: application to radiotherapy dose calculation[END_REF] or electron transport [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF][START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF][START_REF] Guisset | Limits of the M1 and M2 angular moments models for kinetic plasma physics studies[END_REF][START_REF] Guisset | Asymptoticpreserving scheme for the Fokker-Planck-Landau-Maxwell system in the quasi-neutral regime[END_REF]. This model satisfies fundamental properties and recovers the asymptotic diffusion equation in the limit of long time behaviour when collisions dominate [START_REF] Dubroca | Étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif[END_REF].

The electronic M 1 model is derived integrating with respect to the velocity direction the Fokker-Planck-Landau equation. However, since the electron-electron collision operator is nonlinear, the moments extraction is complex. A possibility could be to approximate the electronelectron collision operator assuming the main contribution of the distribution function comes from its isotropic part [START_REF] Yu | Conservative finite-difference schemes for the Fokker-Planck equation not violating the law of increasing entropy[END_REF]. However, as mentioned in [START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF], the collisional electronic M 1 model obtained by angular integration does not ensure the preservation of the admissibility states, that is the angular moments derive from a positive underlying distribution function. Therefore, a new electron-electron collision operator was proposed in [START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF]. In this model, the angular integration leads to a electron-electron collision operator for the electronic M 1 model which preserves the admissible states. In this work, we start to recall the main results established in [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF][START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF] and complete them with an important result characterising the equilibrium states of the collision operators. Such fundamental properties make the model interesting for practical applications. In addition, to complete the validation of the considered collisional electronic M 1 model, we derive the electron transport coefficients. It is shown that in the high ion charge (Z >> 1) limit the electronic M 1 model and the Fokker-Planck-Landau equation coincide in the close-equilibrium case. The electron transport coefficients derived from the electron-electron collision operator used for the electronic M 1 model are compared with the ones obtained using the electron-electron collision operator for the Fokker-Planck-Landau equation.

The paper is organised as follows: first in Section 2, we introduce the collisional electronic M 1 model. The kinetic Fokker-Planck-Landau equation from which the model is derived is recalled. Then, the main properties of the collision operators are presented and completed by the characterisation of the equilibrium state. In Section 3, the electron transport coefficients are derived using the collisional electronic M 1 model and compared with the ones obtained from the Fokker-Planck-Landau equation. The strategy proposed, based on an expansion on the Laguerre polynomials [START_REF] Braginskii | Reviews of Plasma Physics[END_REF][START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF], is particularly efficient since the stiffness in 1/ζ 3 in the electron-ion collision operator is removed. It is shown that accurate electron plasma transport coefficients are obtained. Finally, Section 4 presents our conclusions.

Electronic M 1 model and collisional operators

This section provides a detailed description of the electronic M 1 model [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF][START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF], which is derived from the kinetic Fokker-Planck-Landau equation [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF].

Kinetic model

The kinetic Fokker-Planck-Landau equation reads

∂ t f (t, x, v) + v.∇ x f (t, x, v) + q m E(t, x).∇ v f (t, x, v) = C ee (f, f ) + C ei (f ) ( 1 
)
where f is the electron distribution function, E is the electric field, q = -e and m are the charge and the mass of electron and C ee and C ei are the electron-electron and electron-ion collision operators. Their expression is given by

C ee (f, f ) = α ee div v v ∈R 3 S( v -v )[∇ v f ( v)f ( v ) -f ( v)∇ v f ( v )]d v , (2) 
C ei (f ) = α ei div v S( v)∇ v f ( v) , (3) 
where

S( u) = 1 | u| 3 (| u| 2 Id -u ⊗ u) (4) 
is the Landau tensor and Id is the unit tensor. The parameters α ee and α ei are positive physical parameters given by

α ee = e 4 Λ 8πε 2 0 m 2 , α ei = Zn 0 e 4 Λ 8πε 2 0 m 2 (5) 
where Z is the ion ionisation degree and n 0 the ion density which is considered as a known function of space. The coefficients Λ and ε 0 are respectively the Coulombian logarithm and the vacuum permittivity. The force acting on electron from the magnetic field is not considered in this paper.

Collisional electronic M 1 model

The electronic M 1 model [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF][START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF] is derived performing an angular moment extraction from the Fokker-Planck-Landau equation [START_REF] Alldredge | High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem[END_REF]. For the sake of clarity, we omit in the following, the x and t dependence of the distribution function. If S 2 is the unit sphere, Ω = v/| v| represents the direction of propagation of the particle. By setting ζ = | v|, the distribution function f writes in the spherical coordinates in the phase space f ( Ω, ζ). Three first angular moments of the distribution function are given by

f 0 (ζ) = ζ 2 S 2 f ( Ω, ζ)d Ω, f 1 (ζ) = ζ 2 S 2 f ( Ω, ζ) Ωd Ω, f2 (ζ) = ζ 2 S 2 f ( Ω, ζ) Ω ⊗ Ωd Ω. (6)
In [START_REF] Touati | [END_REF][START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF], the derivation of the transport part of the electronic M 1 model is detailed. The collisional operators studied here are introduced in [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF][START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF]. In this work, the following collisional electronic M 1 model is considered

     ∂ t f 0 (ζ) + ∇ x .(ζ f 1 (ζ)) + q m ∂ ζ ( f 1 (ζ). E) = Q 0 (f 0 ), ∂ t f 1 (ζ) + ∇ x .(ζ f2 (ζ)) + q m ∂ ζ ( f2 (ζ) E) - q mζ (f 0 (ζ) E -f2 (ζ) E) = Q 1 ( f 1 ) + Q 0 ( f 1 ), (7) 
where the collisional operators Q 0 and Q 1 are given by

Q 0 (f 0 ) = 2α ee 3 ∂ ζ ζ 2 A(ζ)∂ ζ ( f 0 ζ 2 ) -ζB(ζ)f 0 , (8) 
Q 0 ( f 1 ) = 2α ee 3 ∂ ζ ζ 2 A(ζ)∂ ζ ( f 1 ζ 2 ) -ζB(ζ) f 1 , (9) 
Q 1 ( f 1 ) = - 2α ei ζ 3 f 1 . (10) 
The coefficients A(ζ) and B(ζ) write

A(ζ) = ∞ 0 min( 1 ζ 3 , 1 ω 3 )ω 2 f 0 (ω)dω, (11) 
B(ζ) = ∞ 0 min( 1 ζ 3 , 1 ω 3 )ω 3 ∂ ω ( f 0 (ω) ω 2 )dω. ( 12 
)
Next we set,

F 0 (ζ) = f 0 (ζ) ζ 2 , F 1 (ζ) = f 1 (ζ) ζ 2 . ( 13 
)
As remarked in [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF], inserting expressions ( 11) and ( 12) into ( 8) and [START_REF] Charrier | Multigroup model for radiating flows during atmospheric hypersonic re-entry[END_REF] gives the following equivalent expressions for Q 0 (f 0 ) and

Q 0 ( f 1 )          Q 0 (f 0 ) = ∂ ζ ζ ∞ 0 J(ζ, ζ ) F 0 (ζ ) ζ ∂ ζ F 0 (ζ) - F 0 (ζ) ζ ∂ ζ F 0 (ζ ) ζ 2 dζ , Q 0 ( f 1 ) = ∂ ζ ζ ∞ 0 J(ζ, ζ ) F 0 (ζ ) ζ ∂ ζ F 1 (ζ) - F 1 (ζ) ζ ∂ ζ F 0 (ζ ) ζ 2 dζ , (14) 
with

J(ζ, ζ ) = 2α ee 3 min( 1 ζ 3 , 1 ζ 3 )ζ 2 ζ 2 . ( 15 
)
In this work, both equivalent forms ( 11)-( 12) and ( 14) are used.

The collisional electronic M 1 model ( 7) is not directly obtained by moment extraction of the kinetic equation [START_REF] Alldredge | High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem[END_REF]. Indeed, the collisional operators ( 8) and ( 9) are not directly derived from the angular integration of (2). The moment extraction of the electron-electron collision operator ( 2) is complex because of its non-linearity. In [START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF], instead of using (2) the following electron-electron collision operator was proposed

Q ee (f ) = 1 ζ 2 ∂ ζ ζ ∞ 0 J(ζ, ζ ) F 0 (ζ ) ζ ∂ ζ f (ζ) - f (ζ) ζ ∂ ζ F 0 (ζ ) ζ 2 dζ . (16) 
This operator satisfies mass and energy conservation properties and an entropy dissipation property. Also it preserves the realisability domain [START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF]. The angular integration of this operator leads to the definitions [START_REF] Dubroca | Étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif[END_REF].

The fundamental point of the moments models is the definition of a closure, which writes the highest moment as a function of the lower ones. This closure relation corresponds to an approximation of the underlying distribution function, which the moments system is constructed from. In the M 1 model ( 7), we need to define f2 as a function of f 0 and f 1 . The closure relation originates from an entropy minimisation principle [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF][START_REF] Minerbo | Maximum entropy Eddigton Factors[END_REF]. The underlying distribution function f is obtained as a solution of the following minimisation problem min

f ≥0 { H(f ) / ∀ζ ∈ R + , ζ 2 S 2 f ( Ω, ζ)d Ω = f 0 (ζ), ζ 2 S 2 f ( Ω, ζ) Ωd Ω = f 1 (ζ) }, (17) 
where H(f ) is the Boltzmann entropy defined by

H(f ) = S 2 (f ln f -f )d Ω. ( 18 
)
The solution of ( 17) writes [START_REF] Dubroca | Étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif[END_REF][START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF] 

f ( Ω, ζ) = exp( a 0 (ζ) + a 1 (ζ) . Ω ), (19) 
where a 0 (ζ) is a scalar and a 1 (ζ) a real valued vector. An important parameter is the anisotropy parameter α defined with

α = f 1 f 0 . ( 20 
)
Then the moment f2 can be calculated [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF][START_REF] Dubroca | Entropic moment closure hierarchy for the radiative transfert equation[END_REF] as a function of f 0 and f

1 f2 = f 0 1 -χ( α) 2 Īd + 3χ( α) -1 2 f 1 | f 1 | ⊗ f 1 | f 1 | (21) 
where χ( α) is approximated [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF] by

χ( α) = 1 + α 2 + α 4 3 . ( 22 
)
The definition [START_REF] Guisset | Limits of the M1 and M2 angular moments models for kinetic plasma physics studies[END_REF] enables to close the problem [START_REF] Brantov | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF]. The set of admissible states [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF] is defined by

A = (f 0 , f 1 ) ∈ R × R 3 , f 0 ≥ 0, | f 1 | < f 0 ∪ (0, 0). ( 23 
)

Properties of the collisional operators

In this part, we briefly recall important results established in [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF][START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF], then we characterise the equilibrium state of the collisional operators ( 8)- [START_REF] Charrier | Multigroup model for radiating flows during atmospheric hypersonic re-entry[END_REF] which is given by an isotropic Maxwellian, similarly to the Landau collision operator. It is pointed out that this property is an important new result for the model. Firstly, it was demonstated in [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF][START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF] that the realisability domain A is conserved by the collisional operators ( 8)- [START_REF] Charrier | Multigroup model for radiating flows during atmospheric hypersonic re-entry[END_REF]. Secondly, the quantity E = α 0 f 0 + α 1 . f 1 is an entropy for the system in the case without electric field. More precisely, from system [START_REF] Brantov | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF], in the case without electric field we can derive the following inequality

∂ t E + ∇ x . F ≤ 0, ( 24 
)
where F is the entropy flux given by

F = α 0 f 1 + f2 α 1 .
Thirdly, the collisional operators ( 8)-( 10) satisfy mass and energy conservation properties. Here, we complete these results characterising the equilibrium state of the collisional operators (8)- [START_REF] Charrier | Multigroup model for radiating flows during atmospheric hypersonic re-entry[END_REF] which corresponds to an isotropic Maxwellian function.

Theorem 1. The solution (f 0 , f 1 ) of the following system

Q 0 (f 0 ) = 0, Q 0 ( f 1 ) + Q 1 ( f 1 ) = 0, ( 25 
)
is given by

f 0 = ζ 2 K 1 exp(-K 2 ζ 2
) and f 1 = 0 where K 1 and K 2 are two positive real constants.

Proof. We first start to prove the following intermediate results

+∞ 0 α 0 Q 0 (f 0 )dζ + +∞ 0 α 1 . Q 0 ( f 1 )dζ ≤ 0, (26) 
and

+∞ 0 α 1 . Q 1 (f 1 )dζ ≤ 0. ( 27 
)
The definition of Q 1 ( f 1 ) and the fact that α 1 . f 1 ≥ 0, (see [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF]), directly lead to [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF]. Next, to prove [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF] we use a Green formula in the expression of

+∞ 0 α 0 Q 0 (f 0 )dζ to obtain +∞ 0 ∂ ζ ζ +∞ 0 J(ζ, ζ ) f 0 (ζ ) ζ 2 1 ζ ∂ ζ ( f 0 (ζ) ζ 2 ) - f 0 (ζ) ζ 2 1 ζ ∂ ζ ( f 0 (ζ ) ζ 2 ) (ζ ) 2 dζ α 0 dζ = - +∞ 0 +∞ 0 J(ζ, ζ ) 1 ζ F 0 (ζ )∂ ζ F 0 (ζ) - 1 ζ F 0 (ζ)∂ ζ F 0 (ζ ) ∂ ζ α 0 ζ (ζ ) 2 dζdζ . (28) 
Next we compute 13) and ( 6), we get the relation

1 ζ F 0 (ζ )∂ ζ F 0 (ζ)- 1 ζ F 0 (ζ)∂ ζ F 0 (ζ ). From (
∂ ζ F 0 (ζ) = S 2 ∂ ζ α 0 (ζ) exp(α 0 (ζ) + α 1 (ζ). Ωd Ω + S 2 Ω.∂ ζ α 1 (ζ) exp(α 0 (ζ) + α 1 (ζ). Ω)d Ω. ( 29 
)
The expressions of F 0 and

∂ ζ F 0 give 1 ζ F 0 (ζ )∂ ζ F 0 (ζ) - 1 ζ F 0 (ζ)∂ ζ F 0 (ζ ) = S 2 S 2 exp(α 0 (ζ) + α 1 (ζ). Ω) exp(α 0 (ζ ) + α 1 (ζ ). Ω ) ∂ ζ α 0 (ζ) ζ + Ω ζ .∂ ζ α 1 (ζ) - ∂ ζ α 0 (ζ ) ζ - Ω ζ .∂ ζ α 1 (ζ ) d Ωd Ω .
Next by setting

K(ζ, ζ , Ω, Ω ) = J(ζ, ζ ) ζ 2 ζ 2 exp(α 0 (ζ) + α 1 (ζ). Ω) exp(α 0 (ζ ) + α 1 (ζ ). Ω ), (30) 
δ(ζ) = ∂ ζ α 0 (ζ) ζ , β(ζ) = ∂ ζ α 1 (ζ) ζ . ( 31 
)
and by using equality [START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF] in [START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF] we get

- +∞ 0 ζ 2 +∞ 0 ζ 2 J(ζ, ζ )( 1 ζ F 0 (ζ )∂ ζ F 0 (ζ) - 1 ζ F 0 (ζ)∂ ζ F 0 (ζ )) ∂ ζ α 0 (ζ) ζ dζdζ = - +∞ 0 +∞ 0 S 2 S 2 K(ζ, ζ , Ω, Ω ) δ(ζ) -δ(ζ )δ(ζ)dζdζ d Ωd Ω + +∞ 0 +∞ 0 S 2 S 2 K(ζ, ζ , Ω, Ω ) Ω. β(ζ) -Ω . β(ζ ) δ(ζ)dζdζ d Ωd Ω . The change of variables (ζ, ζ ) → (ζ , ζ) leads to - +∞ 0 ζ 2 +∞ 0 ζ 2 J(ζ, ζ )( 1 ζ F 0 (ζ )∂ ζ F 0 (ζ) - 1 ζ F 0 (ζ)∂ ζ F 0 (ζ )) ∂ ζ α 0 (ζ) ζ dζdζ = - 1 2 +∞ 0 +∞ 0 S 2 S 2 K(ζ, ζ , Ω, Ω ) δ(ζ) -δ(ζ ) 2 dζdζ d Ωd Ω + 1 2 +∞ 0 +∞ 0 S 2 S 2 K(ζ, ζ , Ω, Ω ) Ω. β(ζ) -Ω . β(ζ ) δ(ζ) -δ(ζ ) dζdζ d Ωd Ω . (32) 
Next, for the remaining term

+∞ 0 Q 0 ( f 1 ). α 1 (ζ)dζ = - +∞ 0 ζ 2 +∞ 0 J(ζ, ζ )( 1 ζ F 0 (ζ )∂ ζ F 1 (ζ) - 1 ζ F 1 (ζ)∂ ζ F 0 (ζ )) . ∂ ζ ( α 1 ) ζ (ζ ) 2 dζdζ ,
we proceed as previously. The expression of F 1 given in ( 13) leads to

∂ ζ F 1 (ζ) = S 2 Ω∂ ζ exp(α 0 (ζ) + α 1 (ζ). Ω)d Ω + S 2 Ω 2 ∂ ζ α 1 (ζ) exp(α 0 (ζ) + α 1 (ζ). Ω)d Ω. ( 33 
)
Therefore by using expressions ( 29) and ( 33), we get

- +∞ 0 ∞ 0 J(ζ, ζ ) ζ 2 ζ 2 F 0 (ζ ) 1 ζ ∂ ζ F 1 (ζ) -F 1 (ζ) 1 ζ ∂ ζ F 0 (ζ ) . ∂ ζ ( α 1 ) ζ dζdζ = +∞ 0 ∞ 0 S 2 S 2 K(ζ, ζ , Ω, Ω ) δ(ζ) -δ(ζ ) Ω. β(ζ) dζdζ d Ωd Ω + +∞ 0 ∞ 0 S 2 S 2 K(ζ, ζ , Ω, Ω ) β(ζ ). Ω -β(ζ). Ω Ω. β(ζ) dζdζ d Ωd Ω . Then the change of variables (ζ, ζ ) → (ζ , ζ) gives - +∞ 0 ∞ 0 J(ζ, ζ ) ζ 2 ζ 2 F 0 (ζ ) 1 ζ ∂ ζ F 1 (ζ) -F 1 (ζ) 1 ζ ∂ ζ F 0 (ζ ) . ∂ ζ ( α 1 ) ζ dζdζ = 1 2 +∞ 0 ∞ 0 S 2 S 2 K(ζ, ζ , Ω, Ω ) δ(ζ) -δ(ζ ) Ω. β(ζ) -Ω . β(ζ ) dζdζ d Ωd Ω - 1 2 +∞ 0 ∞ 0 S 2 S 2 K(ζ, ζ , Ω, Ω ) β(ζ ). Ω -β(ζ). Ω 2 dζdζ d Ωd Ω . (34) 
Finally, we add the right-hand sides of ( 32) and [START_REF] Ph | A practical nonlocal model for heat transport in magnetized laser plasmas[END_REF] and by using the inequality

(δ(ζ) -δ(ζ ))( β(ζ). Ω -β(ζ ). Ω ) ≤ 1 2 ((δ(ζ) -δ(ζ )) 2 + ( β(ζ). Ω -β(ζ ). Ω ) 2 ), (35) 
we obtain [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF].

Next, multiplying the first equation of ( 25) by α 0 and projecting the second on α 1 , adding the two equalities and integrating over ζ gives

+∞ 0 α 0 Q 0 (f 0 )dζ + +∞ 0 α 1 . Q 0 ( f 1 )dζ + +∞ 0 α 1 . Q 1 ( f 1 )dζ = 0.
Since, we proved ( 26) and ( 27), it comes

α 1 . Q 1 ( f 1 ) = 0. It follows that f 1 = 0.
Multiplying the first equation of ( 25) by ln(F 0 ) and integrating over ζ gives

+∞ 0 ∂ ζ (ζ +∞ 0 J(ζ, ζ ) ∂ ζ F 0 (ζ) F 0 (ζ)ζ - ∂ ζ F 0 (ζ ) F 0 (ζ )ζ ζ 2 F 0 (ζ)F 0 (ζ )dζ ln(F 0 (ζ))dζ = 0.
By integration by part, it comes

- +∞ 0 +∞ 0 K(ζ, ζ ) ∂ ζ F 0 (ζ) F 0 (ζ)ζ - ∂ ζ F 0 (ζ ) F 0 (ζ )ζ ∂ ζ F 0 (ζ) F 0 (ζ)ζ dζ dζ = 0. with K(ζ, ζ ) = ζ 2 ζ 2 F 0 (ζ)F 0 (ζ ). The change of variables (ζ, ζ ) → (ζ , ζ) leads to - +∞ 0 +∞ 0 K(ζ, ζ ) ∂ ζ F 0 (ζ ) F 0 (ζ )ζ - ∂ ζ F 0 (ζ) F 0 (ζ)ζ ∂ ζ F 0 (ζ ) F 0 (ζ )ζ dζ dζ = 0.
Summing the two previous equations gives

+∞ 0 +∞ 0 K(ζ, ζ ) ∂ ζ F 0 (ζ ) F 0 (ζ )ζ - ∂ ζ F 0 (ζ) F 0 (ζ)ζ 2 dζ dζ = 0.
It follows that

F 0 (ζ) = K 1 exp(-K 2 ζ 2 ),
and so

f 0 (ζ) = ζ 2 K 1 exp(-K 2 ζ 2 ).
Since the integral of f 0 in ζ must be positive and finite, K 1 and K 2 are positive real constants.

These results demonstrate that the electron-electron collisional operator used for the electronic M 1 model satisfies fundamental properties. In the next section, the derivation of the plasma transport coefficients using this operator is investigated in the framework of the classical transport theory.

3 Derivation of the electronic transport coefficients

Electron collisional hydrodynamics

It has been shown that the equilibrium state of system ( 25) is given by an isotropic Maxwellian distribution function. Therefore, in this analytical derivation we consider a distribution function close to the equilibrium

f (t, x, ζ, Ω) = M f (ζ, T e (t, x), n e (t, x)) + εF (t, x, ζ, Ω) (36) 
where the Maxwellian distribution function reads

M f (ζ, T e (t, x), n e (t, x)) = n e (t, x) m e 2πT e (t, x) 3/2 exp - m e ζ 2 2T e (t, x) (37) 
and the Knudsen number ε = λ ei /L is a small parameter which corresponds to the ratio between the mean free path λ ei and the macroscopic scale lenght L. The perturbation F is seeked under the form

F (t, x, ζ, Ω) = F 0 (t, x, ζ) + F 1 (t, x, ζ). Ω (38) 
According to the Chapman-Enskog approach, the density and temperature macroscopic quantities are defined as

n e (t, x) = 4π +∞ 0 f (t, x, ζ, Ω)ζ 2 dζ, (39) 
T e (t, x) = 4πm e 3n e k B +∞ 0 f (t, x, ζ, Ω)ζ 4 dζ. (40) 
Therefore the isotropic part of the perturbation verifies the following relations Equation for the density and temperature are following from the integration over ζ of the electronic M 1 model ( 7) and definitions (39-40)

       ∂n e ∂t + ∇ x .
(n e u e ) = 0,

∂T e ∂t + u e .∇ x (T e ) + 2 3 T e ∇ x .( u e ) + 2 3n e ∇ x .( q) = 2 3n e j. E (42) 
where we retained only linear terms in the Knudsen number ε. The temporal evolution of n e and T e in these equations is driven by the fluxes of the particles and energy that are expressed through the electric current density and the electron heat flux defined by j = -en e u e = -4πeε 3

+∞ 0 F 1 ζ 3 dζ, q = 2πm e ε 3 +∞ 0 F 1 ζ 5 dζ. (43) 
In order to close the hydrodynamic system [START_REF] Struchtrup | Macroscopic Transport Equations for Rarefied Gas Flows[END_REF], one needs to express the electric current and the heat flux [START_REF] Touati | [END_REF] in terms of the macroscopic variables n e , T e . More precisely, the term F 1 should be derived explicitly in terms of the gradients of n e and T e , then definitions [START_REF] Touati | [END_REF] give the electric current and the heat flux. In the quasi-stationary case (∂/∂t << ν ei ) the second equation of the electronic M 1 model ( 7) reads

∇ x .(ζ f2 ) + q m ∂ ζ ( f2 E) - q mζ (f 0 E -f2 E) = Q 1 ( f 1 ) + Q 0 ( f 1 ). ( 44 
)
Using the fact that f2 = f 0 /3 Īd according to equation [START_REF] Rozmus | A model of ultrashort laser pulse absorption in solid targets[END_REF], the previous equation leads to

ζ 3 ∇ x (f 0 ) - e E 3m e ∂f 0 ∂ζ + 2e E 3mζ f 0 = Q 1 ( f 1 ) + Q 0 ( f 1 ) (45) 
which also rewrites

ζ 3 ∇ x f 0 - e Eζ 2 3m e ∂ ∂ζ f 0 ζ 2 = Q 1 ( f 1 ) + Q 0 ( f 1 ). ( 46 
)
Then using in the place of f 0 the Maxwellian distribution [START_REF] Ripoll | A factored operator method for solving coupled radiation-hydrodynamics models[END_REF], the previous equation gives

M f ζ e E * T e + 1 2T e ∇ x (T e )( m e ζ 2 T e -5) = - 2α ei ε ζ 3 F 1 + ε ζ 2 Q 0 (ζ 2 F 1 ), ( 47 
)
with E * = E + (1/en e )∇ x (n e T e ). In the following we note α ei and α ee instead of α ei ε and α ee ε. In the dimensionless case a parameter 1/ε appears in front of the collisional operators, therefore considering the development [START_REF] Ripoll | An averaged formulation of the M1 radiation model with presumed probability density function for turbulent flows[END_REF], the parameter ε vanishes.

In order to obtain F 1 , one should solve the integro-differential equation ( 47). The resolution of this equation is challenging, however it is a linear equation in F 1 and the form of the left hand side indicates that the solution is a linear combination of terms proportional to the generalized forces E * and ∇(T e )/T e which can be represented as follows

F 1 = ζ e E * T e φ E + ∇ x (ln T e )φ Q M f ( 48 
)
where φ E and φ Q are defined below. Inserting this expression into (43) one obtains the following relations [START_REF] Balescu | Transport Processes in Plasma[END_REF] 

j = σ E * + α∇ x T e , (49) 
q = -αT e E * -χ∇ x T e ( 50 
)
where α, σ and χ are called the plasma transport coefficients defined by

σ = - 4πe 2 3T e ∞ 0 ζ 4 φ E M f dζ, χ = 2π 3 ∞ 0 ζ 4 (5 - m e ζ 2 T e )φ Q M f dζ, (51) 
α = - 4πe 3T e ∞ 0 ζ 4 φ Q M f dζ = 2πe 3T e ∞ 0 ζ 4 (5 - m e ζ 2 T e )φ E M f dζ. ( 52 
)
The coefficients α, σ and χ are respectively called the electrical conductivity, the thermoelectric coefficient and the thermal conductivity. In the case of a homogeneous plasma (with no density nor temperature gradients) relation (49) simplifies into the Ohm's law j = σ E and equation (50) leads to q = -αT e E. One can define the heat conductivity coefficient κ, which is a combination of the other three coefficients

κ = χ -α 2 T e /σ. (53) 
Equation ( 47) has been established from the collisional electronic M 1 model ( 7). This equation is identical to the one obtained using the full Fokker-Planck-Landau equation ( 1), (see [START_REF] Balescu | Transport Processes in Plasma[END_REF]) with the exception of the electron-electron collisional operator. Therefore, the possible differences in the plasma transport coefficients between the collisional electronic M 1 model ( 7) and the Fokker-Planck-Landau equation ( 1) are due to the electron-electron collisional operator. More precisely, the approximations made to derive the electron-electron collisional operator ( 8)- [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF] for the electronic M 1 model ( 7) may lead to different plasma transport coefficients. The aim of the following subsections, is to derive the plasma transport coefficients using the collisional electronic M 1 model ( 7) and to compare them to the ones obtained using the Fokker-Planck-Landau equation (1).

Transport theory in Lorentzian plasma

In the case of a Lorentzian plasma the ions are highly charged therefore one can neglect the electron-electron collision operator in equation (47). As explained in the previous section, in this case (Z >> 1), the plasma transport coefficients are the same in the collisional electronic M 1 model ( 7) and in the Fokker-Planck-Landau equation ( 1). An explicit expression of F 1 and the basic functions φ E and φ Q are easily derived

F 1 = ζM f e E * T e - ζ 3 2α ei + ∇ x (ln(T e )) ζ 3 4α ei 5 - m e ζ 2 v 2 Te , (54) 
and

φ E = - ζ 3 2α ei , φ Q = ζ 3 4α ei 5 - m e ζ 2 v 2 Te . (55) 
Inserting (55) into expressions (51) and (52) gives the transport coefficients for a high Z plasma [START_REF] Balescu | Transport Processes in Plasma[END_REF] 

Here the subscript 0 corresponds to the high Z limit. In Figure 1, the electric current and heat flux are displayed in terms of y = v/v Te using the definition (54).

Transport theory with electron-electron collisions

In the case of low Z plasmas the calculation presented in the previous section overestimates the transport coefficients because the electron-electron collision operator is not taken into account.

In this case, one should solve the full equation (47). Spitzer and Härm [START_REF] Spitzer | [END_REF] solved it numerically in the case of the Fokker-Planck-Landau equation (1). Braginskii [START_REF] Braginskii | Reviews of Plasma Physics[END_REF] derived an approximate analytical solution by expanding F 1 onto a series of the Laguerre polynomials following ideas used in the kinetic theory of neutral gases [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF]. In the present work, we apply the latter method for the case of the electronic M 1 model [START_REF] Brantov | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF]. Following (48), using a decomposition of f 1 with the two functions φ E and φ Q in equation (47) reads

1 ζ 2 Q 0 (ζ 2 ζM f φ A ) - 2α ei ζ 2 M f φ A = ζM f S A (57) 
where

S A = e E * T e S E -∇ x ln(T e )S Q , (58) 
Figure 1: Representation of the velocity-dependent particle flux, j V = -ζ 3 f 1 in red and the electron energy flux q V = m e f 1 ζ 5 -5T e f 1 ζ 3 in green in the case Z >> 1 (Lorentzian approximation).

with

S E = 1, S Q = 1 2 ζ 2 v 2 Te -5 . (59) 
Following Chapman [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF] and Braginskii [START_REF] Braginskii | Reviews of Plasma Physics[END_REF], we expand F 1 over the Laguerre polynomials [START_REF] Abramowitz | Handbook of Mathematical functions[END_REF] 

L (3/2) n (x), with x = ζ 2 /2v 2
Te . Indeed, the source term in the right hand side of (57) is a combination of the two first Laguerre polynomials

S E = L 3/2 0 (x) and S Q = -L 3/2 1 (x). We represent the basic function φ A as φ A (ζ) = +∞ m=0 φ A m L (3/2) m (ζ 2 /2v 2 Te ), (60) 
multiply (57) by

ζ 3 L (3/2) n (ζ 2 /2v 2 
Te ) and integrate over ζ. The electron-ion collision term gives

+∞ 0 - 2α ei ζ 2 M f φ A ζ 3 L (3/2) n (ζ 2 /2v 2 Te )dζ = -2α ei +∞ m=0 φ A m +∞ 0 M f v 2 Te L (3/2) m (x)L (3/2) n (x)dx.
Using the definition [START_REF] Ripoll | A factored operator method for solving coupled radiation-hydrodynamics models[END_REF], it comes

+∞ 0 - 2α ei ζ 2 M f φ A ζ 3 L (3/2) n (ζ 2 /2v 2 Te )dζ = -2α ei n e v Te (2π) 3/2 +∞ m=0 φ A m +∞ 0 L (3/2) m (x)L (3/2) n (x)e -x dx.
The computation for the source term reads A similar derivation applies to the electron-electron collision operator

+∞ 0 ζM f S A ζ 3 L (3/2) n ζ 2 2v 2 Te dζ = n e v 2 Te π √ π ∞ 0 x √ xe -x e E * T e + 1 T e ∇ x (T e )(x - 5 
+∞ 0 1 ζ 2 Q 0 (ζ 2 ζM f φ A )ζ 3 L (3/2) n ζ 2 2v 2 Te dζ = n e v 2 Te π √ π +∞ m=0 φ A m +∞ 0 L (3/2) n (x)Q 0 (x √ xe -x L (3/2) m (x))dx.
A direct calculation finally gives the following set of equations

Z -1 +∞ m=0 ce nm φ A m - +∞ m=0 ci nm φ A m = ν -1 ei S A n . (61) 
Here, ce nm and ci nm are the matrices of the integrals of the electron-electron and electron-ion collision operators. They are defined by

ci nm = +∞ 0 L (3/2) n (x)L (3/2) m (x)e -x dx, ( 62 
)
ce nm = 2 (3/2) v 3 Te Y ee +∞ 0 L (3/2) n (x)Q 0 (x √ xe -x L (3/2) m (x))dx, (63) 
with

Y ee = Z -1 Y ei and Y ei = (3π/2)ν ei v 3 Te .
The term S A n reads

S A n = e E * T e δ 0n - 5 2 1 T e ∇ x (T e )δ 1n . (64) 
The vector S A n has only two non-zero components. Therefore, only two first expansion coefficients φ A 0 and φ A 1 contribute to the transport coefficients (51)-( 52)

σ = - e 2 n e m e φ E 0 , α = - en e m e φ Q 0 = 5 2 en e m e φ E 1 , (65) 
χ = 5 2 n e v 2 Te φ Q 1 , κ = 5 2 n e v 2 Te (φ Q 1 -φ Q 0 φ E 1 /φ E 0 ). (66) 
In the limit Z >> 1, the first term in (61) vanishes and the model simplifies into the case of a Lorentzian plasma. In this case the first expansion coefficients read

φ E 0 = -32/3πν ei , φ E 1 = 32/5πν ei , φ E 2 = -32/35πν ei , φ Q 0 = φ Q 2 = -16/πν ei and φ Q 1 = 80/3πν ei .
Multiplying (47) by ζ 3 one obtains an equation more suitable for numerical integration. Indeed, the term 1/ζ 3 in the electron-ion collision operator makes the equation (47) very stiff when ζ becomes close to zero.

The computation of ci nm using (62) is straightforward. However, the derivation of ce nm using (63) is more challenging. The coefficients A(ζ) and B(ζ) in [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF] and [START_REF] Drake | Parametric instabilities of electromagnetic waves in plasmas[END_REF] are involved in the definition of the electron-electron collision operator Q 0 . Using the variable x = ζ 2 /2v 2 Te a straight calculation gives

A(x) = n e 2 √ πx √ xv Te 3 √ π √ 2 erf( √ x) -e -x (3 √ 2x + 2 √ 2x √ x) + 2 π n e v Te e -x , (67) 
B(x) = - 3n e 4 √ πv 3 Te x √ x √ 2π erf( √ x) -2 √ 2xe -x - 2 π n e v 3 Te e -x , (68) 
where erf is the error function. Next, inserting the definition of Q 0 (8) and expressions (67) and ( 68) into (63) a long but straight calculation leads to the following expression for ce nm

ce nm = +∞ 0 L (3/2) n (x) √ x∂ x 2 erf( √ x) - 4 √ x √ π e -x ∂ x g(x) (69) 
+ 2 erf( √ x) - e -x √ π [4 √ x - 8 3 x √ x ] g(x) dx where g(x) = √ xe -x L (3/2) m (x).
Using definitions (62) and (69), each component of the matrices ci nm and ce nm can be computed numerically and the set of equations ( 61) can be solved.

The accuracy of the solution of (61) increases with the number of coefficients φ A n chosen. The minimum number is two since the first two coefficients φ 0 and φ 1 contribute to the transport coefficients. Such a two polynomial approximation was considered by Braginskii [START_REF] Braginskii | Reviews of Plasma Physics[END_REF] for the Fokker-Planck-Landau equation ( 1). The four-polynomial approximation provides results beyond the need of experimental plasma physics. Kaneko [22] used 6 Laguerre polynomials and the high accuracy of transport coefficients he obtained was confirmed in [23] and [24] with 50 Laguerre polynomials. In this work, 6 Laguerre polynomials were used to ensure a high accuracy of the transport coefficients. The sixth polynomial expansion leads to the following approximations The velocity-dependent flux functions presented in Fig. 2 show that the electron-electron contribution decreases as Z increases. We introduce the following dimensionless coefficients γ σ , γ α , γ χ , γ κ defined by

φ E 0 ≈ -ν -
γ σ = σ/σ 0 , γ α = α/α 0 , γ χ = χ/χ 0 , γ κ = κ/κ 0 (70) 
where the index 0 denotes the case of the Lorentzian approximation (Z >> 1). The computation of these coefficients shows that all of them are inferior to 1, that is, the Lorentzian approximation (Z >> 1) overestimates the electron transport coefficients for low-Z plasmas. The coefficients γ σ , γ α , γ χ , γ κ are displayed in Figs. 3 and4 in function of Z for the electronelectron Landau collision operator C ee given in (4) and for the electron-electron M 1 collision operator ( 8)-( 9) using six Laguerre polynomials. According to Fig. 3, the electron-electron collision operator (8)-( 9) used for the electronic M 1 model underestimates the thermoelectric coefficient σ. In the large Z limit (Lorentzian approximation), the collisional M 1 model and the Fokker-Planck-Landau equation coincide. However, despite the correct tendency, the curve obtained using the M 1 collisional model underestimates the thermoelectric coefficient σ with a largest error of 43% in the case Z = 1. Also, the two curves of γ α , obtained with the M 1 model and the Fokker-Planck-Landau equation, as a function of Z are very close. In Figure 4, one observes that the curves representing the coefficients γ χ and γ κ overlap. The electron-electron collisional operator (8)-( 9) recovers the correct χ and κ plasma transport coefficients.

In conclusion, the electron-electron collisional operator ( 8)-( 9) used for the electronic M 1 model recovers the correct χ and κ plasma transport coefficients and is very accurate for the coefficient α. The main error is made with the coefficient σ with a maximum error of 43% in the case Z = 1. These results demonstrate the correct behaviour of the electron-electron collision operator (8)-( 9) which can be used for practical applications. 

Conclusion

In this work, the fundamental properties of the electron-electron and electron-ion collision operators used for the electronic M 1 model have been studied. It is shown that their equilibrium states is given by an isotropic Maxwellian distribution function. In addition, in the Lorentzian approximation, the electronic M 1 model and the Fokker-Planck-Landau equation coincide. The electron transport coefficients are derived using the electron-electron collision operators proposed for the electronic M 1 model. Despite, the approximations used, accurate plasma transport coefficients have been obtained. The correct χ and κ plasma transport coefficients are recovered and the coefficient α is very close to the one obtained with the Fokker-Planck-Landau equation. The main error is made with the thermoelectric coefficient σ in the case Z = 1. In spite of this error, these results show that the electron-electron collision operator is a good candidate for physical applications. It may be possible to improve this operator in order to obtain a more accurate σ coefficient. However, since the angular extraction of the kinetic electron-electron collision operator is complex, such an issue seems challenging.
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 2 Figure 2: Representation of the velocity-dependent particle flux, j V = -ζ 3 f 1 , in the case Z = 1 (blue), Z = 4 (yellow), Z = 16 (green) and Z >> 1 (Lorentzian approximation) in red.
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 3 Figure 3: Representation of γ σ (left) and γ α (right) as a function of Z for the Landau (red) and the M 1 (green) collision operators using six Laguerre polynomials.
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 4 Figure 4: Representation of γ χ (left) and γ κ (right) as a function of Z for the Landau (red) and the M 1 (green) collision operators using six Laguerre polynomials.
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