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THE M1 ANGULAR MOMENTS MODEL IN A MOVING
REFERENCE FRAME FOR RAREFIED GAS DYNAMICS

APPLICATIONS

S. GUISSET∗, D. AREGBA† , S. BRULL† , AND B. DUBROCA∗

Abstract. In the present work the M1 angular moments model in a moving reference frame
is presented for rarefied gas dynamics applications. First of all, the derivation of the angular M1

moments model in the particles mean velocity frame is introduced. The choice of the mean velocity
framework in order to enforce the Galilean invariance property of the model is highlighted. In addi-
tion, it is shown that the model rewritten in terms of the entropic variables is Friedrichs-symmetric.
Also, the derivation of the associated conservation laws and the zero mean velocity condition are de-
tailed. Secondly, a suitable numerical scheme, preserving the realisable requirement of the numerical
solution for the angular M1 moments model in the mean velocity frame is proposed. Thirdly, some
numerical results obtained considering several test cases in different collisional regimes are displayed.

Key words. Angular moments models, entropy minimisation closure, Galilean invariance, HLL
schemes.
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1. Introduction. Kinetic descriptions are known to be very accurate to describe
the transport of particles in rarefied gas dynamics [15], neutron transport [36], plasma
physics [23, 26] or radiative [3]. However, they are also known to be computationally
expensive to describe most realistic physical applications. An alternative way consists
in considering fluid descriptions based on averaged physical quantities. However, such
macroscopic descriptions are often not sufficiently accurate. The studied particles may
have an energy distribution far from the thermodynamic equilibrium so that the fluid
description is not adapted. Moreover kinetic effects can be important over time scales
shorter than the collisional time so that fluid simulations are insufficient and kinetic
codes have to be considered to capture the physical processes. Kinetic approaches
are usually limited to times and lengths much shorter than those studied with fluid
simulations. It is therefore an important challenge to describe kinetic effects using
reduced kinetic codes operating on fluid time scales [10, 21].
The angular moments models represent an alternative method situated in between
the kinetic and the fluid models. They require computational times shorter than
kinetic models and provide results with a higher accuracy than fluid models. They
originate from an angular moments average [28, 32] of the kinetic equations. The idea
is to keep the velocity modulus (denoted ζ in this work) as a variable. That allows
to consider the particle distributions in energy far from equilibrium, while using a
simplified description of particle angular distribution. Such models are obtained by
integration of the kinetic equation in angle (integration on the unit sphere). Thus a
hierarchy of moments equations can be obtained. There exist several moment models
whose differences come from the choice of the closure relation. In this document we
consider the angular moments models [7] based on an entropy minimisation principle.
The entropy minimisation problems have been widely studied in [25, 28, 30, 38, 1]. The
underlying distribution function is given by an exponential of a polynomial function
depending on the particle energy and it is therefore non negative. Moreover, these
closures verify fundamental mathematical properties [25, 37, 22] such as hyperbolicity
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and entropy dissipation. However, their solutions could be rather different from the
solution of the full kinetic equation. Moreover, from the numerical point of view,
even if the closure is well defined, computational challenges remain. In particular, the
resolution of the entropy minimisation problem can be very computationally costly
and we refer to [1] for a specific treatment.
The angular M1 model is largely used in the context of radiative transfer [40, 4, 8,
39, 6, 34, 35] and starts to be considered for others application fields such as plasma
physics [7, 19, 20, 18] or radiotherapy [31]. Here, the dynamic of neutral particles
is investigated. To achieve such an issue the velocity framework is centred on the
particles mean velocity. The choice of the velocity framework origin on the particles
mean velocity enables a reduction of the velocity grids and plays an important role on
the Galilean invariance property of the M1 angular model. This point is presented in
details in this study. The approach presented here is significantly different with the
previous studies, since the M1 angular model [9, 20, 19] has always been considered
in the laboratory framework. In addition to our knowledge it is the first time that
the M1 angular moments model is considered for rarefied gas dynamic applications.

In order to derive the M1 angular moments model in the mean velocity frame, a
velocity change is considered to derived the kinetic equation in a moving frame. Note,
that rescaled velocity approaches are largely used in different context see [12, 5, 29]
for example. However, the numerical treatment of the additional terms which appear
when considering such a procedure on the kinetic equation can be challenging. In [11],
in the context of granular flows, a numerical algorithm based on a relative energy
scaling is proposed. Then, a clever de-coupling with the hydrodynamics equation
is used to avoid the problems related to the change of scales in velocity variables.
Significant results on the derivation of Galilean invariant minimum entropy systems
have been obtained in [22]. It has been shown that polynomials weight functions
growing super-quadratically at infinity lead to unusable hyperbolic moment systems.
Indeed, in this case equilibrium states are boundary points of the admissible set with
possible singular fluxes [22]. In addition it has also been shown that non-polynomial
weight function can not be used without losing the Galilean invariance property of
the moments systems. Therefore, one understands here the difficulty in deriving
adapted Galilean invariant reduced models. We also mention [17, 27] where this issue
is addressed.

The present study is original for two main reasons. First of all, contrarily to
the previous works, angular moments are considered. The integration of the kinetic
equation is only performed in angle (on the unit sphere) while the velocity modulus
is kept as a variable. This partial integration leads to angular moments models which
do not suffer of the restrictions presented in [22]. However, it can be shown that
these resulting angular moments models are not Galilean invariant since they are
not invariant by translational transformations. Therefore, the second original idea
presented here to surpass this major drawback, is to work in the framework of the
particles mean velocity. In this work, it is shown that this choice of velocity origin
framework enables to recover the invariance property when considering translational
transformations. Therefore, in this paper, a Galilean invariant reduced model is
presented in the context of rarefied gas dynamics.

The plan of this study is the following. First of all, the derivation of the angular
M1 moments model in the mean velocity frame is introduced. The choice of the
mean velocity framework in order to enforce the Galilean invariance property of the
model is highlighted. In addition, it is shown that the model rewritten in terms of
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the entropic variables is Friedrichs-symmetric. Also, the derivation of the associated
conservation laws and the zero mean velocity condition are detailed. Secondly, a
suitable numerical scheme, preserving the realisability requirement of the numerical
solution for the angular M1 moments model in the mean velocity frame is proposed.
Thirdly, some numerical results obtained considering several test cases in different
collisional regimes are displayed. Finally, some conclusion and perspectives are given.

2. Derivation of the model. Velocity change of variables procedures are used
in various contexts (see [12, 11, 5, 29] for example) and can enable the simplification of
a collisional operator form or the reduction of the velocity grid size used for numerical
applications. In the context of angular moments models [7], it will be seen in the
next section that moving frame formulations play an important role in enforcing the
Galilean invariance property. In order to explain in details this point, in this section
we introduce the kinetic formulation in a moving frame from which the M1 angular
moments model studied is derived.

2.1. The kinetic equation in a moving velocity frame. We start consider-
ing the following kinetic equation written in the laboratory framework

(2.1)
∂f(α)

∂t
+ divx(vf(α)) = C(f(α)),

where f represents the particle distribution function and α = (t, x, v) ∈ R+
t ×R3

x×R3
v.

The form of the collisional operator C is not detailed here but only the properties
used in this study will be detailed.

Proposition 2.1. The kinetic equation (2.1) written in a moving velocity frame-
work writes

∂tg(t, x, c) + divx((c+ u)g(t, x, c))(2.2)

− divc
[
(∂tu+ ∂xu(c+ u))g(t, x, c)

]
= C(g(t, x, c)),

where the new velocity c is defined by

c = v − u(t, x),

with u a relative velocity which needs be specified.

Proof. We consider the vector F (α) ∈ R+
t × R3

x × R3
v defined as

F (α) =

 f(α)
vf(α)

0

 ,

then the kinetic equation (2.1) rewrites under the following form

divα(F (α)) = C(f(α)).

Introducing φ ∈ C∞c (R+
t ×R3

x ×R3
v;R), we consider the associated weak formulation∫

α∈R+
t ×R3

x×R3
v

(
divα(F (α))− C(f(α))

)
φ(α)dα = 0,
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which rewrites

(2.3)

∫
α∈R+

t ×R3
x×R3

v

∂αφ(α)F (α) + C(f(α))φ(α)dα = 0.

In order to derive the kinetic equation in a moving velocity frame the following set of
coordinates is considered

tβ = (τ, y, c) = (t, x, v − u(t, x)),

where u is a relative velocity which depends of time and space. In particular, we
define the C1-diffeomorphism Φ as

β = Φ(α).

We remark here that only the velocity coordinates are transformed while time and
space coordinates are kept unchanged. Eq. (2.3) considered in the new set of variables
rewrites∫

β∈R+
t ×R3

y×R3
c

[
∂αφ(Φ−1(β))F (Φ−1(β)) + C(f(Φ−1(β)))φ(Φ−1(β))

]
(2.4)

|det JΦ−1 |dβ = 0,

where det JΦ−1 is the determinant of the Jacobian matrix of the transformation. For
this transformation detJΦ−1 = 1, indeed the Jacobian matrix JΦ reads

JΦ =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

−∂tu1 −∂x1
u1 −∂x2

u1 −∂x3
u1 1 0 0

−∂tu2 −∂x1
u2 −∂x2

u2 −∂x3
u2 0 1 0

−∂tu3 −∂x1u3 −∂x2u3 −∂x3u3 0 0 1


.

The following quantities expressed in the mobile framework are introduced

G(β) = F (Φ−1(β)), g(β) = f(Φ−1(β)) and Ψ(β) = φ(Φ−1(β)).

In order to express ∂αφ(Φ−1(β)), one remarks that

∂βΨ(β) = ∂αφ(Φ−1(β))∂β(Φ−1)(β).

Then by derivation of a reciprocal function

∂βΦ−1(β) = (∂αΦ(Φ−1(β)))−1,

it follows that

∂αφ(Φ−1(β)) = ∂βΨ(β)(∂αΦ(Φ−1(β))).

Using the two previous equations, equation (2.4) rewrites∫
β∈R+

t ×R3
y×R3

c

∂βΨ(β)∂αΦ(Φ−1(β))G(β)) + C(g(β))Ψ(β)dβ.
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Finally for all Ψ(β) ∈ C∞c (R+
τ × R3

y × R3
c ;R)∫

β∈R+
t ×R3

y×R3
c

[
divβ(∂αΦ(Φ−1(β))G(β))− C(g(β))

]
Ψ(β)dβ = 0,

it follows that

divβ(∂βΦ(Φ−1(β))G(β)) = C(g(β)).

In the case of the present change of variables

∂βΦ(Φ−1(β))G(β) =

 g(β)
vg(β)

−(
∂u

∂t
+
∂u

∂x
v)g(β)

 .

Finally, using the fact that v = c + u(x, t), one obtains the kinetic equation in a
moving velocity frame

∂τg(β) + divy((c+ u)g(β))− divc
[
(∂τu+ ∂yu(c+ u))g(β)

]
= C(g)(β).

Since time and space are unchanged by the change of variable

∂tg(t, x, c) + divx((c+ u)g(t, x, c))− divc
[
(∂tu+ ∂xu(c+ u))g(t, x, c)

]
= C(g(t, x, c)).

Eq.(2.2) is used in the next sections to derive the angular M1 moments model in
a moving reference frame. Of course, an additional evolution equation is required to
compute the velocity u. In this work, the velocity u is chosen as the particles mean
velocity in the fixed frame (laboratory frame). This choice enables the reduction of
the size of the velocity grids and plays an important role in enforcing the Galilean
invariance property of the angular M1 model. This point is presented in details in the
next sections. In order to derive the evolution equation for u, the kinetic equation
(2.1) is integrated in velocity. This leads to the following conservation laws

∂n

∂t
+ divx(nu) = 0,(2.5)

∂(nu)

∂t
+ divx(

∫
v

fv ⊗ vdv) = 0.

Injecting the following expansion into (2.5)

v ⊗ v = (v − u)⊗ (v − u) + (v − u)⊗ u+ u⊗ (v − u) + u⊗ u,

and by using the following identities∫
v

u⊗ ufdv = nu⊗ u,∫
v

u⊗ (v − u)fdv = u⊗
∫
v

(v − u)fdv = 0,∫
v

(v − u)⊗ ufdv =

∫
v

(v − u)fdv ⊗ u = 0,
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one obtains the evolution equation for u expressed in the new frame quantities

(2.6)
∂(nu)

∂t
+ divx(nu⊗ u) + divx(

∫
v

g(c)c⊗ cdc) = 0,

where

n =

∫
c

g(c)dc.

The equations (2.5) and (2.6) will be used to compute the relative velocity u at each
time step.

2.2. M1 angular moments model in a moving frame. The M1 angular
moments model in a moving frame is derived by performing an angular moments
extraction of the kinetic equation (2.2). One defines the following three first angular
moments of the distribution function g

g0(ζ) = ζ2

∫
S2

g(Ω, ζ)dΩ, g1(ζ) = ζ2

∫
S2

g(Ω, ζ)ΩdΩ, g2(ζ) = ζ2

∫
S2

g(Ω, ζ)Ω⊗ΩdΩ,

where S2 is the unit sphere.
The complete derivation of the M1 angular moments model in a moving frame is
presented in appendix. Removing the collisional operators contribution, this model
reads

(2.7)



∂tg0 + divx(ζg1 + ug0)− ∂ζ
(du
dt
.g1 + ζ∂xu : g2

)
= 0,

∂tg1 + divx(ζg2 + u⊗ g1)− ∂ζ
(
g2
du

dt
+ ζg3

∂u

∂x

)
+
g0Id− g2

ζ

du

dt
+
(∂u
∂x
g1 − g3

∂u

∂x

)
= 0,

where
du

dt
is defined as

du

dt
=
∂u

∂t
+
∂u

∂x
u,

and the third order moments g3 as

(2.8) g3(ζ) = ζ2

∫
S2

g(Ω, ζ)Ω⊗ Ω⊗ ΩdΩ.

The evolution law (2.6) expressed in terms of the angular moments rewrites

(2.9)
∂(nu)

∂t
+ divx(nu⊗ u) + divx(

∫ +∞

0

g2(ζ)ζ2dζ) = 0.

In order to close the system (2.7), the higher order moments g2 and g3 must be
expressed in terms of g0 and g1. Following [7] and considering the M1 closure, the
distribution function from which the angular moments are derived writes

(2.10) g(t, x, ζ,Ω) = exp(a0(t, x, ζ) + a1(t, x, ζ).Ω),
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where a0 is a scalar function and a1 a vector valued function. The coefficients a0 and
a1 are the Lagrange multipliers associated to entropy minimisation problem [7, 25].
Then extending the ideas of [9, 7, 25] one can show that the closure relation for g2 is
given by

(2.11) g2 = g0

(3χ(α)− 1

2

g1

|g1|
⊗ g1

|g1|
+

1− χ(α)

2
Id
)
,

where

(2.12) χ(α) =
1 + |α|2 + |α|4

3
, α = g1/g0.

Similarly the higher order moment g3 reads

(2.13) g3 =
(3|g1| − χ2g0

2

) g1

|g1|
⊗ g1

|g1|
⊗ g1

|g1|
+
χ2g0 − |g1|

2

( g1

|g1|
∨ Id

)
,

with

χ2(α) =
3|α| − |α|3 + 3|α|5

5
,

and

g1

|g1|
∨ Id =

g1

|g1|
⊗ e1 ⊗ e1 + e1 ⊗

g1

|g1|
⊗ e1 + e1 ⊗ e1 ⊗

g1

|g1|

+
g1

|g1|
⊗ e2 ⊗ e2 + e2 ⊗

g1

|g1|
⊗ e2 + e2 ⊗ e2 ⊗

g1

|g1|

+
g1

|g1|
⊗ e3 ⊗ e3 + e3 ⊗

g1

|g1|
⊗ e3 + e3 ⊗ e3 ⊗

g1

|g1|
.

Before studying the models properties, the realisability conditions associated to the
model (2.7) are introduced

(2.14) A =
(

(g0, g1) ∈ R2, g0 ≥ 0, |g1| ≤ g0

)
.

Since the distribution function g is a nonnegative quantity the realisability conditions
(2.14) naturally needs to be satisfied. In addition, these conditions are related to the
existence of a nonnegative distribution function from which the angular moments can
be derived [32].

3. Model properties. In this section the main properties of the angular M1

model in a moving frame (2.7)-(2.9) are presented. It is first proved that the choice of
working in the mean velocity frame enables to ensure the Galilean invariance property
of the model. Secondly it is shown that this model, rewritten in terms of entropic
variables, is Friedrichs-symmetric. Finally, the derivation of the conservation laws is
detailed.

3.1. Galilean invariance property. Galilean invariance is a fundamental fea-
ture of the Boltzmann equation. Following [22], we start defining translational and
rotational transformations. For any vector s ∈ Rd and any rotation matrix R ∈ SO(d)

(Tsf)(v) = f(v − s), (TRf)(v) = f(Rv), v ∈ Rd.
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The following translational and rotational invariance properties of the collisional op-
erator C are considered

(3.1) TsC(f) = C(Ts(f)), TRC(f) = C(TR(f)).

Note that the Boltzmann collision operator or the BGK collision operator [16] satisfy
such properties. Using equation (3.1) the Galilean invariance property of the kinetic
equation (2.1) can be shown. Indeed, the reference coordinates system (t, x, v) and a
new set of coordinates (t, x̃, ṽ) can be linked by the following relations

(3.2) x̃ = Rx− st, ṽ = Rv − s,

for any constant vector s ∈ Rd. Distribution function f̃ in the moving frame is defined
as

f̃(t, x̃, ṽ) = f(t, x, v).

Consequently the following relations can be derived

∂tf(t, x, v) = ∂tf̃(t, x̃, ṽ)− s.∂xf̃(t, x̃, ṽ), ∂xf(t, x, v) = R∂x̃f̃(t, x̃, ṽ).

Therefore using (2.1), it follows that f̃ satisfies

(3.3) ∂tf̃(t, x̃, c̃) + divx̃(ṽf̃(t, x̃, c̃)) = C(f̃(t, x̃, c̃)),

which shows the Galilean invariance of (2.1).

The same property cannot be directly obtained when considering the M1 angular
moments model (2.7)-(2.9). Indeed, when integrating (2.1) on the unit sphere and
applying the change of variables (3.2) lead to unconvenient nonlinear terms and we
are not able to show that the form of the M1 model is invariant by translational
transformation. In order to overcome this drawback, in this study, we propose to not
derive the M1 angular moments model from the kinetic equation (2.1) but from the
kinetic equation (2.2) which is expressed in a mobile reference frame. In particular, in
this work the velocity u used in (2.2) is chosen as the particles mean velocity defined
by

(3.4) u =
1

n

∫
R3

f(v)vdv.

In order to show the advantage in deriving the M1 angular moments model from
the kinetic equation (2.2), the kinetic equation (3.3) is rewritten in its mean velocity
frame. This second kinetic equation expressed in a mobile frame reads

∂tg̃(t, x̃, c̃) + divx̃((c̃+ ũ)g̃(t, x̃, c̃))(3.5)

− divc̃
[
(∂tũ+ ∂x̃ũ(c̃+ ũ))g̃(t, x̃, x̃)

]
= C(g̃(t, x̃, c̃)),

where

(3.6) ũ =
1

n

∫
R3

f̃(ṽ)ṽdṽ.

The key point which will be useful when considering angular moments models is the
relation between the two kinetic equations (2.2) and (3.5). Indeed, the two relative
velocities u and ũ are linked through the following relation

(3.7) ũ = Ru− s.
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Therefore, we propose to consider the following change of variable

(3.8) x̃ = Rx− st, c̃ = Rc, ũ = Ru− s.

Indeed, by injecting the change of variable (3.7)-(3.8) into (2.2) and using the following
relations

(3.9)
∂tu = tR(∂tũ− (∂x̃ũ)s),

∂xu = tR(∂x̃ũ)R,

and

(3.10)

∂tg = ∂tg̃ − (∂x̃g̃)s,

∂xg = (∂x̃g̃)R,

∂cg = (∂c̃g̃)R,

a direct calculation enables to recover equation (3.5). The relationships between
the different studied frameworks are summarised on Fig 3.1. The starting point
is the kinetic equation (2.1) expressed in the fixed frame, denoted A0. Since this
kinetic equation is Galilean invariant, one obtains (3.3) denoted B0, by using (3.2).
Secondly, the kinetic equation in a mobile frame (2.2) denoted A has been derived. In
the present case u is the particles mean velocity defined in (3.4). The same procedure
can be applied on (3.3) to obtain (3.5), denoted B. Finally, one remarks that (2.2)
and (3.5), denoted A and B are linked by the change of variable (3.8). The change

x̃ = Rx− st
ṽ = Rv − s

x̃ = Rx− st
c̃ = Rc

ũ = Ru− s

A0 : fixed frame

∂tf + divx(vf) = C(f)

A : Mobile frame

∂tg + divx((c+ u)g)

−divc
[
(∂tu+ ∂xu(c+ u))g

]
= C(g)

B0 : Uniform translation frame

∂tf̃ + divx̃(ṽf̃) = C(f̃)

B : Uniform translation

mobile frame

∂tg̃ + divx̃((c̃+ ũ)g̃)

−divc̃
[
(∂tũ+ ∂x̃ũ(c+ ũ))g̃

]
= C(g̃)

c = v − u(t, x)

nu(t, x) =

∫
v

fvdv

c̃ = ṽ − ũ(t, x̃)

nũ(t, x̃) =

∫
ṽ

f̃ ṽdṽ

Fig. 3.1: Diagram presenting the relations between the different frames

of variables (3.8) makes the link between equations (2.2) and (3.5) relevant when
considering angular moments models. Indeed, this change of variable also enables to
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link the angular M1 model derived from the kinetic equation (2.2) to the angular M1

model derived from the kinetic equation (3.5). This point is detailed in the following
result.

Theorem 3.1. (Galilean invariance property)
The form of the M1 angular moments model (2.7) expressed in the mean velocity
frame is invariant by rotational and translational transformations.

Proof. Before showing the Galilean invariance property of the M1 angular mo-
ments model (2.7), we define the quantities in the new frame. Consider the velocity
modulus ζ̃ and Ω̃ the angular direction in the mobile frame

ζ̃ = |c̃|, c̃ = ζ̃Ω̃,

we define the two first angular moments g̃0 and g̃1 in the mobile frame

g̃0 = ζ̃2

∫
S̃2

g̃(t, x̃, c̃)dΩ̃, g̃1 = ζ̃2

∫
S̃2

g̃(t, x̃, c̃)Ω̃dΩ̃.

Using the fact that

(3.11) ζ̃ = ζ, Ω̃ = RΩ,

and the equations (3.10), the following relations can be derived

(3.12)

g̃0 = g0,

∂tg0 = ∂tg̃0 − ∂x̃g̃0s,

∂xg0 = ∂x̃g̃0R,

∂ζg0 = ∂ζ̃ g̃0,

and

(3.13)

g1 = Rg̃1,

∂tg1 = tR(∂tg̃1 − ∂x̃g̃1s),

∂xg1 = tR∂x̃g̃1R,

∂ζg1 = tR∂ζ̃ g̃1.

Using the definition of g̃2, we remark that

g̃2 = ζ̃2

∫
S̃2

g̃(t, x̃, c̃)Ω̃⊗ Ω̃dΩ̃

= ζ2

∫
S̃2

g̃(t, x̃, c̃)R Ω̃⊗ Ω̃ tRdΩ̃.(3.14)

Then injecting (3.12)-(3.13) into the first equation of (2.7) and using (3.14) and (3.9)
a direct calculation gives

∂tg̃0 + divx(ζ̃ g̃1 + ũg̃0)− ∂ζ̃
(dũ
dt
.g̃1 + ζ̃∂x̃ũ : g̃2

)
= 0.

In order to deal with the second equation of (2.7), we remark that using (3.11) the
ijkth component of the higher order moments g3 defined in (2.8) rewrites

(3.15) g3ijk =
∑
l,m,n

ζ̃2

∫
S̃2

tRil
tRjm

tRkn(Ω̃⊗ Ω̃⊗ Ω̃)lmndΩ̃.
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Therefore, using (3.14) and (3.15) a direct calculation gives

(3.16) divxg2 = tRdivx̃g̃2,

and

(3.17) g3
∂u

∂x
= tR g̃3

∂ũ

∂x̃
.

Consequently injecting (3.12)-(3.13) into the second equation of (2.7) and using the
relations (3.9)-(3.16) and (3.17), one obtains

∂tg̃1 + divx̃(ζ̃ g̃2 + ũ⊗ g̃1)− ∂ζ̃
(
g̃2
dũ

dt
+ ζ̃ g̃3

∂ũ

∂x̃

)
+
g̃0Id− g̃2

ζ̃

dũ

dt
+ (

∂ũ

∂x̃
g̃1 − g̃3

∂ũ

∂x̃

)
= 0.

3.2. Symmetrization property. In this section it is shown that the M1 model
in a moving frame (2.7)-(2.9) written in terms of the entropic variables is Friedrichs
symmetric. Following [25], the M1 model in a moving frame (2.7) can be rewritten
in terms of the entropic variables a0 and a1. This procedure is sometimes called a
Godunov’s symmetrisation [14].

Theorem 3.2. The M1 model in a moving frame (2.7)-(2.9) written in terms of
the variables a0 and a1 is Friedrichs symmetric.

Proof. Setting

tm = (1,Ω), tα = (α0, α1),

the distribution function (2.10) reads

g(t, x, ζ,Ω) = exp(α.m),

and the solution of (2.7)-(2.11)-(2.13) writes

t(g0, g1) = 〈ζ2 exp(α.m)m〉,

where the notation 〈.〉 refers to the angular integration on the unit sphere. Conse-
quently, after a direct calculation, the M1 angular moments model in a moving frame
(2.7) rewrites

A0(α)∂t

(
α0

α1

)
+
∑
j

Aj(α)∂xj

(
α0

α1

)
+B(α)∂ζ

(
α0

α1

)
+ S(x, ζ, α) =

(
0
0

)
,(3.18)

where

A0(α) =< exp(α.m)

(
1 tΩ
Ω Ω⊗ Ω

)
>,

Aj(α) =< (ζΩj + uj) exp(α.m)

(
1 tΩ
Ω Ω⊗ Ω

)
>,

B(α) =< −(ζ2 du

dt
.Ω + ζ3 ∂u

∂x
: Ω⊗ Ω) exp(α.m)

(
1 tΩ
Ω Ω⊗ Ω

)
>,
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and

S(x, ζ, α) =

 (divxu)g0 −
2

ζ

du

dt
.g1 − 3

∂u

∂x
: g2

∂u

∂x
g1 −

2

ζ
g2
du

dt
− 3g3

∂u

∂x
+
g0Id− g2

ζ

du

dt
+ (

∂u

∂x
g1 − g3

∂u

∂x
)

 .

SinceA0(α) is a positive-definite symmetric matrix andAj(α) andB(α) are symmetric
matrices, one obtains that the system (3.18) is Friedrichs-symmetric [13, 2].

3.3. Conservation laws. In this section the derivation of the conservation laws
derived from the angular M1 model in a moving frame (2.7) is detailed.
Before deriving the mass and energy conservation equations, we point out that in
this work the velocity u is chosen as the particles mean velocity. Therefore, in the
considered framework the mean velocity is equal to zero. This point is expressed by
the following condition

(3.19)

∫ +∞

0

g1(t, x, ζ)ζdζ = 0.

Multiplying the second equation of (2.7) by ζ and integrating in ζ, one shows using
Green’s formula that all the terms vanish two by two and that condition (3.19) is
preserved over times.
The derivation of the mass conservation equation can be directly obtained by direct
integration in ζ. Indeed, integrating the first equation of (2.7) in ζ, one obtains

(3.20) ∂tn+ divx(nu) = 0,

where condition (3.19) has been used.
In order to derive the energy conservation equation, one starts multiplying the first

equation of (2.7) by
m

2
ζ2 and integrate in ζ to obtain the following internal energy

equation

∂t(
1

2

∫ +∞

0

g0ζ
2dζ) + divx(

1

2

∫ +∞

0

g1ζ
3dζ + u

1

2

∫ +∞

0

g0ζ
2dζ)(3.21)

+ (∂xu :

∫ +∞

0

g2ζ
2dζ) = 0.

One notices that since the mean velocity frame is considered, only an equation on the
internal energy is obtained. The kinetic energy equation is derived from the evolution
equation (2.9) and writes

(3.22) ∂t(nu
2) + divx(

nu2

2
u) + u.divx(

∫ +∞

0

g2ζ
2dζ) = 0.

The energy conservation equation is directly obtained by summing equation (3.21)
with equation (3.22).

4. Numerical scheme. In this part an appropriate numerical scheme is pro-
posed for the M1 model in a moving framework in an one dimensional spatial geom-
etry considering a standard BGK collision operator [16]. In this case, the collisional
operator C(f) used in (2.1) is specified

C(f) =
1

τ
(Mf − f),
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with

Mf (v) =
n

(2πT )3/2
exp(− (v − u)2

2T
),

and τ is a collisional parameter which is fixed depending of the collisional regime
studied. In this case the M1 model in a moving framework (2.7) writes

(4.1)



∂tg0 + ∂x(ζg1 + ug0)− ∂ζ
(du
dt
g1 + ζ

∂u

∂x
g2

)
=

1

τ
(Mg0 − g0),

∂tg1 + ∂x(ζg2 + ug1)− ∂ζ
(du
dt
g2 + ζ

∂u

∂x
g3

)
+
du

dt

g0 − g2

ζ

+
∂u

∂x
(g1 − g3) = −1

τ
g1,

where

Mg0 = 4πζ2 n

(2πT )3/2
exp(− ζ

2

2T
).

4.1. Derivation of the numerical scheme. In order to derive a suitable nu-
merical scheme for the model (4.1) which preserves the admissibility of the solution,
the different terms of (4.1) are studied separately. Then the admissibility requirement
of the complete scheme is shown under a reduced CFL condition.

Step 1: the first intermediate state is the following

(4.2)

{
∂tg0 + ∂x(ζg1 + ug0) = 0,

∂tg1 + ∂x(ζg2 + ug1) = 0.

In order to derive a numerical scheme preserving the realisability of the numerical
solution, we consider an underlying kinetic model from which the system (4.2) can be
derived by direct angular moments extraction

(4.3) ∂tF (t, x) + ∂x(a(x)F (t, x)) = 0,

with F = ζ2f , a(x) = ζµ+ u(x) and µ ∈ [−1, 1]. Note that µ is the angular variable
in the case of one space dimension.

A natural conservative numerical scheme is proposed for the kinetic equation (4.3)

(4.4)
Fn+1
i − Fni

∆t
+
hni+1/2 − h

n
i−1/2

∆x
= 0,

with

hni+1/2 = a−i+1/2F
n
i+1 + a+

i+1/2F
n
i ,

and a± =
1

2
(a± |a|).

Rewriting equation (4.4) as a convex combination

Fn+1
i = Fni

(
1− ∆t

2∆x
(ai+1/2 − ai−1/2)−∆t

|ai+1/2|+ |ai−1/2|
2∆x

)
+ Fni+1

2∆t

∆x

(
|ai+1/2| − ai+1/2

)
(4.5)

+ Fni−1

2∆t

∆x

(
|ai−1/2| − ai−1/2

)
,
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it follows that the positivity of the numerical distribution function is ensured under
the following CFL condition

(4.6) ∆t1 ≤
∆x

2||u||∞ + ζ
.

The numerical scheme (4.5) rewrites on the following viscous form

Fn+1
i − Fni

∆t
+
ai+1/2F

n
i+1 + (ai+1/2 − ai−1/2)Fni − ai−1/2F

n
i−1

2∆x
(4.7)

−
|ai+1/2|Fni+1 − (|ai+1/2|+ |ai−1/2|)Fni + |ai−1/2|Fni−1

2∆x
= 0.

The angular integration can not be directly performed on the scheme (4.7) because
of the angular variable µ which appears in the term |a| in the numerical viscosity.
Therefore we modify (4.7) and consider the following scheme which is suitable for the
angular integration.

Fn+1
i − Fni

∆t
+
ai+1/2F

n
i+1 + (ai+1/2 − ai−1/2)Fni − ai−1/2F

n
i−1

2∆x
(4.8)

− ||a||∞
Fni+1 − 2Fni + Fni−1

2∆x
= 0.

Remark: Considering (4.8), one observes that the numerical viscosity of the scheme
is increased in order to enable the angular integration.Therefore the numerical scheme
still preserves the nonnegativity of the numerical solution under CFL condition (4.6).

The angular integration of the scheme (4.8) leads to a natural discretisation for
the intermediate state (4.2)

gn+1
0i − gn0i

∆t
+

(ζgn1i+1 + ui+1/2g
n
0i+1) + ((ζgn1i + ui+1/2g

n
0i)

2∆x

−
(ζgn1i + ui−1/2g

n
0i))− (ζgn1i + ui−1/2g

n
0i−1)

2∆x
− (ζ + ||u||∞)

gn0i+1 − 2gn0i + gn0i−1

2∆x
= 0,

gn+1
1i − gn1i

∆t
+

(ζgn2i+1 + ui+1/2g
n
1i+1) + ((ζgn2i + ui+1/2g

n
1i)

2∆x

(4.9)

−
(ζgn2i + ui−1/2g

n
1i))− (ζgn2i + ui−1/2g

n
1i−1)

2∆x
− (ζ + ||u||∞)

gn1i+1 − 2gn1i + gn1i−1

2∆x
= 0.

Remark: Computing gn+1
0 + gn+1

1 and gn+1
0 − gn+1

1 , one can show the scheme (4.9)
preserves the realisability requirement of the numerical solution under the CFL con-
dition (4.6).

Step 2: the second intermediate step we consider writes

(4.10)


∂tg0 − ∂ζ(

du

dt
g1 + ζ∂xug2) = 0,

∂tg1 − ∂ζ(g2
du

dt
+ ζg3∂xu) = 0.

Following the same procedure than for the first intermediate state, the following un-
derlying kinetic model is proposed

∂tF (ζ)− ∂ζ((
du

dt
µ+ ζ∂xuµ

2)F (ζ)) = 0,
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with the following corresponding scheme

Fn+1
j − Fnj

∆t
+
bj+1/2F

n
j+1 + (bj+1/2 − bj−1/2)Fnj − bj−1/2F

n
j−1

2∆ζ
(4.11)

− ||b||∞
Fnj+1 − 2Fnj + Fnj−1

2∆ζ
= 0,

with b =
du

dt
µ+ ζ∂xuµ

2. The CFL condition associated reads

(4.12) ∆t2 ≤
∆ζ

2(||du
dt
||∞ + ζ||∂xu||∞)

.

The angular integration of (4.11) leads to the following discretisation for the interme-
diate state (4.10)

gn+1
0j − gn0j

∆t
+

(
du

dt
gn1i+1 − ζj+1/2∂xug

n
2j+1) + (

du

dt
gn1j − ζj+1/2∂xug

n
2j)

2∆ζ

−
(
du

dt
gn1j − ζj−1/2∂xug

n
2j)) + (

du

dt
gn1j−1 − ζj−1/2∂xug

n
2j−1)

2∆ζ

− (|du
dt
|+ ||ζ||∞|∂xu|)

gn0j+1 − 2gn0j + gn0j−1

2∆ζ
= 0,

gn+1
1j − gn1j

∆t
+

(
du

dt
gn2j+1 − ζj+1/2∂xug

n
3j+1) + (

du

dt
gn2j − ζj+1/2∂xug

n
3j)

2∆ζ
(4.13)

−
(
du

dt
gn2j − ζj−1/2∂xug

n
3j)− (

du

dt
gn2j−1 − ζj−1/2∂xug

n
3j−1)

2∆ζ

− (|du
dt
|+ ||ζ||∞|∂xu|)

gn1j+1 − 2gn1j + gn1j−1

2∆ζ
= 0.

Remark: The scheme (4.13) preserves the realisability domain under the CFL con-

dition (4.12).

Step 3: the third state we consider is the following
∂tg0 = 0,

∂tg1 +
g0 − g2

ζ

du

dt
= 0.

We choose the following classical scheme for this first model
gn+1

0ij = gn0ij ,

gn+1
1ij = gn1ij −∆t

g0ij − g2ij

ζj
(
du

dt
)i.

Remark: This scheme preserves the realisability conditions under CFL conditions

∆t3 ≤
ζ

|du
dt
|

1 + α

1− χ(α)
,
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where α is defined by (2.12).

Proof. This result is directly obtained by computing gn+1
0i ± gn+1

1i .

Remark: The term
1 + α

1− χ(α)
does not tend to zero as α tends to −1. Indeed, using

the definition of χ given in (2.12), one can show that
1 + α

1− χ(α)
tends to 1/2 as α

tends to −1.

Step 4: the fourth intermediate step we consider writes{
∂tg0 = 0,

∂tg1 + ∂xu(g1 − g3) = 0.

Following the third step we propose{
gn+1

0i = gn0i,

gn+1
1i = gn1i + ∆t(∂xu)i(g1i − g3i).

Remark: This scheme preserves the realisability conditions under CFL conditions

∆t4 ≤
1

|∂xu|
1 + α

α− χ2(α)
.

Using the definition of χ2, we remark that
1 + α

α− χ2(α)
tends to −1/2 as α tends to

−1.
In order to derive a admissible numerical scheme for the complete model (4.1), we
propose to consider the following time semi-discretisation

(4.14) Un+1 = Un + ∆t

N∑
k=1

Fk(Un),

where

Un+1 =

(
gn+1

0

gn+1
1

)
.

Fk represents the discretisation proposed for the kth intermediate step and N is the
number of intermediate step considered. Equation (4.14) rewrites under the form of
a convex combination

(4.15) Un+1 =

N∑
k=1

1

N
[Un + (N∆t)Fk(Un)].

Setting ∆̃t = N∆t, one shows that if each intermediate step

Ũn+1 = Un + ∆̃tFk(Un),

preserves the realisability conditions of the numerical solution under CFL condition

∆̃t ≤ Ck.
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Therefore the general scheme (4.14) preserves the realisability conditions of the nu-
merical solution under the following CFL condition

∆t ≤ min
k

(
Ck
N

).

The following result is then obtained

Theorem 4.1. The general scheme (4.14) preserves the realisability conditions
under the following CFL condition

(4.16) ∆t ≤ 1

4
min(∆t1,∆t2,∆t3,∆t4).

Proof. Each step preserves the realisability conditions under CFL condition.
Therefore, by convexity of the admissible set, considering the convex combination
(4.15) and using the condition (4.1), we directly obtain that the general scheme (4.14)
preserves the realisability conditions under the CFL condition (4.16).

The discretisation of the collision operator is performed by using a standard implicit
scheme. For the numerical test presented in the next section, an usual second order
Van Leers slope limiter [24] is used.

4.2. Enforcement of the discrete energy conservation and zero mean
velocity condition. In this section, the enforcement of the discrete energy conser-
vation and zero mean velocity condition is discussed. In a recent work [33], a numerical
scheme has been proposed to enforce the discrete zero mean velocity condition con-
sidering a kinetic equation. However, this strategy does not directly apply in the
present case since a nonlinear set of equations (4.1) is considered associated to the
realisability conditions (2.14). The enforcement of the discrete energy conservation
and the zero mean velocity condition while preserving realisability conditions (2.14) of
the numerical solution is particularly challenging and beyond the scope of the present
study. However, in order to be able to present numerical results, in this section a
correction of the numerical solution is proposed.

In order to enforce the correct energy conservation, we start considering the fol-
lowing conservation laws associated to (4.1)

(4.17)


∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u+ p− s) = 0,

∂tE + divx((E + p− s)u+ q) = 0,

where E is the total energy. The pressure tensor p, the stress tensor s and the heat
flux q expressed in terms of the angular moments read

p− s =
m

2

∫ +∞

0

g2ζ
2dζ, q =

m

2

∫ +∞

0

g1ζ
3dζ.

At each time time step, the set of conservation laws (4.17) is numerically solved. Then
the numerical solution is corrected by using

g0p = α exp(βζp
2)ḡ0p, ∀p ∈ {1; ...; pf},
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where g0 is the corrected solution and ḡ0 the solution which requires a correction
computed with the scheme (4.14). The coefficients α and β are numerically computed
such that

m

pf∑
p=1

g0p∆ζ = ρ,
m

2

pf∑
p=1

g0pζ
2
p∆ζ = E − ρu2

2
,

where the quantities E, ρu2

2 and ρ are known at each time step since the set (4.17)
has been numerically solved. This procedure enables the enforcement of the correct
energy conservation. As it will be shown in the next section this correction is im-
portant for the numerical results, in particular in order to numerically capture shock
waves.

In order to enforce the zero mean velocity condition (3.19) at the discrete level, one
could think in proposing an adapted discretisation for the source terms which appears
in the second equation of (4.1). However, this procedure leads to an unsuitable CFL
condition when considering the realisability requirements (2.14) for the numerical
solution. Therefore the following correction is proposed based on the resolution of the
convex optimisation problem

min
g1∈Rpf

1

2
||g1 − ḡ1||2L2 = 0,

under equality constraint

pf∑
p=1

g1pζp∆ζ = 0,

where g1 is the corrected solution and ḡ1 the solution before correction given by
the scheme (4.14). One observes that this procedure does not enforce the realisable
conditions of the numerical solutions. In such unfortunate case, g1 is simply projected
on the realisable set.

5. Numerical results. In this section, several test cases are presented. De-
pending on the regime considered, the numerical results obtained with the scheme
introduced in the previous part for the angular M1 moments model in a moving
frame, denoted M1 mobile, are compared either with an exact solution or with a
kinetic reference solution. The results are given with and without the correction pro-
cedure. In the following, the kinetic solution has been obtained considering a standard
kinetic 1D3V BGK model using an usual Lax-Friedrichs scheme with the second order
Van Leers slope limiter [24]. The results obtained with this scheme are denoted BGK
1D3V. In addition, the results obtained considering a second order HLL scheme for
the Euler equations using the second order Van Leers slope limiter are also given.
These results obtained using this scheme are denoted Euler.

Test 1: Temperature gradient test case in different collisional regimes.

The first test case we study consists in considering a strong temperature gradient
at initial time and studying the temporal evolution of density, velocity and temper-
ature. The initial distribution function is supposed to be a Maxwellian distribution
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function defined by

fini(x, v) =
nini(x)

(2πTini(x))3/2
exp

(
− (v − uini(x))2

2Tini(x)

)
,

with

nini(x) = 1, uini(x) = 0, Tini(x) = 2− arctan(x).

The space range chosen is [−40, 40], and the velocity range [−15, 15]3. For the present
test case, 400 cells in space and 2003 cells in velocity have been considered for the
1D3V BGK kinetic approach. Also, 400 cells in space and 200 cells in velocity mod-
ulus have been considered for the M1 mobile scheme. Finally, 400 cells in space have
been considered for the Euler description.
Neumann boundary conditions are considered, the values in the boundary ghost cells
set to the values in the corresponding real boundary cells.

1.a Fluid regime.
The first regime we consider is the fluid regime. The collisional parameter τ is set equal
to zero. In Figure 5.1, the density, velocity and temperature profiles are displayed
at time t = 10 for the kinetic BGK 1D3V scheme in continuous blue, the M1 mobile
scheme in dashed green, the M1 mobile scheme with correction in dashed blue and for
the Euler scheme in dashed-point pink. It is observed that all the schemes converge
towards the same solution. This behaviour is expected since working in fluid regime
the distribution remains a Maxwellian distribution function and the three descriptions
give the same solution.
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Fig. 5.1: Test 1a - Solution profiles obtained for the temperature gradient test case with
τ = 0 at time t = 10.
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1.b Rarefied regime.
The second regime we consider is a rarefied regime where the collisional parameter τ is
set equal to 1. In Figure 5.2, the density, velocity, temperature and heat flux profiles
are displayed at time t = 10 for the kinetic BGK 1D3V scheme in continuous blue, the
M1 mobile scheme in dashed green, the M1 mobile scheme with correction in dashed
blue and for the Euler scheme in dashed-point pink. The Euler scheme gives the same
results than in the previous case 1a. This is expected since the description is not
able to distinguish the different regimes. In this case the heat flux is equal to zero.
One observes that M1 mobile scheme gives close results to the ones obtained with
the kinetic BGK 1D3V scheme. When looking at the heat flux profiles, one observes
that the general trends are qualitatively similar with some notable differences in the
amplitude reached. Since the heat flux is a high order velocity moment, the differences
between the models are particularly visible. The M1 model is accurate in collisional
regimes, however as pointed out in [20], it can be inaccurate in collisionless regimes.
The differences observed here, are due to the inaccuracy to the M1 model in rarefied
regime.
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Fig. 5.2: Test 1b - Solution profiles obtained for the temperature gradient test case with
τ = 1 at time t = 10.

1.c Non-homogeneous collisional parameter.
When considering realistic physical applications, the collisional parameter varies ac-
cording to the gas conditions. Therefore, in the third case we consider that the
collisional parameter τ is variable in space and is defined by

τ(x) =
1

2
(arctan(1 + 0.1x) + arctan(1− 0.1x)).

In Figure 5.3, the density, velocity, temperature and heat flux profiles are dis-
played at time t = 10 for the kinetic BGK 1D3V scheme in continuous blue, the M1
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mobile scheme in dashed green and for the Euler scheme in dashed-point pink. It is
observed that the profiles obtained using the M1 mobile sheme and the BGK 1D3V
scheme are very close. One also observes that even the heat flux profiles are very
similar. These results show the interest in using an angular moment model.
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Fig. 5.3: Test 1c - Solution profiles obtained for the temperature gradient test case
with variable collisional parameter at time t = 10.

Test 2: Sod tube test case in fluid regime

The second test case we study is the Sod tube test case in fluid regime. The initial
distribution function is supposed to be a Maxwellian distribution function defined by

fini(x, v) =
nini(x)

(2πTini(x))3/2
exp

(
− (v − uini(x))2

2Tini(x)

)
,

with

(nini(x), uini(x), Tini(x)) =

{
(1.00 · 10−4, 0, 4.80 · 10−3) if x < 0,

(1.25 · 10−5, 0, 3.84 · 10−3) if x > 0.

The space range chosen is [0, 0.6], and the velocity range [−20, 20]3. For the
present test case, 200 cells in space and 2003 cells in velocity have been considered
for the 1D3V BGK kinetic approach. Also, 200 cells in space and 200 cells in velocity
modulus have been considered for the M1 mobile scheme. Finally, 200 cells in space
have been considered for the Euler description. Neumann boundary conditions are
considered, the values in the boundary ghost cells are set to the values in the corre-
sponding real boundary cells. For this test case, we consider the fluid regime therefore
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Fig. 5.4: Test 2 - Sod tube test case with τ = 0 at time t = 7.34 · 10−2.

the collisional parameter τ is set equal to 0. For this test case an exact solution is
known, a rarefaction wave, a contact discontinuity and a shock wave appear. In Fig-
ure 5.4, the mass density, velocity and temperature solution profiles are displayed at
time t = 7.34 · 10−2. It is observed that the rarefaction wave (left side) is correctly
captured by the M1 mobile scheme (solution displayed in dashed green). However,
one remarks that the shock amplitude is not correctly captured. It has been observed
that this incorrect behaviour is due to the wrong discrete energy conservation. In-
deed, by using the correction procedure introduced in the previous part the results in
dashed blue are obtained, in this case the correct amplitude is recovered. We notice,
the importance of the correct discrete energy conservation for capturing shock waves.
This point is highlighted in the next test case.

Test 3: Double shock wave test case

The third test case we study is the double shock wave test case in fluid regime.
The initial distribution function is supposed to be a Maxwellian distribution function
defined by

fini(x, v) =
nini(x)

(2πTini(x))3/2
exp

(
− (v − uini(x))2

2Tini(x)

)
,

with

(ρ(x), u(x), T (x)) =

{
(1, 2, 0.4) if x < 0,

(1,−2, 0.4) if x > 0.
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Fig. 5.5: Test 3 - Double shock wave test case with τ = 0 at time t = 0.15.

The space range chosen is [0, 1], and the velocity range [−15, 15]3. For the present test
case, 200 cells in space and 2003 cells in velocity have been considered for the 1D3V
BGK kinetic approach. Also, 200 cells in space and 200 cells in velocity modulus
have been considered for the M1 mobile scheme. Finally, 200 cells in space have been
considered for the Euler description. Neumann boundary conditions are considered,
the values in the boundary ghost cells are set to the values in the corresponding real
boundary cells. For this test case, we consider the fluid regime therefore the collisional
parameter τ is set equal to 0. For this test case an exact solution is known, two shock
waves are created. In Figure 5.5, the mass density, velocity and temperature solution
profiles are displayed at time t = 0.15. Similarly as remarked in the previous test case,
it is observed that the M1 scheme does not capture the correct amplitude profile nor
the correct shock positions (results in dashed green). The results displayed in dashed
blue are obtained using the corrected scheme. It is observed that the correction enables
to correctly captures the shock profiles. This example confirms the importance of the
discrete energy conservation.

6. Conclusion. In this work, the M1 angular moments model in the particles
mean velocity frame has been derived. Several fundamental properties of the model
have been presented. In particular, the importance of working in the mean velocity
frame has been highlighted. Indeed, this choice of framework is relevant when con-
sidering the Galilean invariance property of angular moments models. The derivation
of the associated conservation laws has been detailed in addition to the zero mean
velocity condition. A numerical scheme preserving the realisable sets has been pro-
posed and validated with numerical test cases in different collisional regimes. Also,
the importance of the correct discrete energy conservation has been emphasized.

As a short term perspective, one needs to derive a numerical scheme enforcing the
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discrete energy conservation and the zero mean velocity condition. Such an issue is
challenging since it should be done preserving the realisable property of the numerical
solution. As long term perspective, it would be interesting to study the motion of
charged particles. One could consider the electron particle transport working in the
ion mean velocity framework. This choice would enable a great simplification of
the electron-ion collisional operator and an important step toward the multispecies
particle transport for plasma physics applications.

Appendix: derivation of the angular M1 model in a moving frame (2.7).
In this section, the derivation of the angular M1 model in a moving frame is detailed.
The kinetic equation (2.2) is considered for the angular integration. Introduce a test
function φ, we consider the integral∫

c

(
∂tg + divx((c+ u)g)− divc(

du

dt
g +

∂u

∂x
cg
)
φ(ζ)dc = 0.

By using the Green formulae and c = ζΩ∫
c

(∂tg + divx((c+ u)g))φ(ζ)dc+

∫
c

(
du

dt
g +

∂u

∂x
: Ω⊗ Ωζgζ)φ′(ζ)dc = 0.

In spherical coordinates the previous equation leads to∫
ζ

∫
S2

(∂tg+divx((c+u)g))φ(ζ)ζ2dΩdζ+

∫
ζ

∫
S2

(
du

dt
.gΩ+

∂u

∂x
: Ω⊗Ωζg)φ′(ζ)ζ2dΩdζ = 0.

By using the definitions of the angular moments∫
ζ

(∂tg0 + divx(ζg1 + ug0))φ(ζ)dζ +

∫
ζ

(
du

dt
.g1 +

∂u

∂x
: ζg2)φ′(ζ)dζ = 0.

Finally by integration by part,∫
ζ

(
∂tg0 + divx(ζg1 + ug0)− ∂

∂ζ

[du
dt
.g1 +

∂u

∂x
: ζg2

])
φ(ζ)dζ = 0.

This holds true for all test function φ then one obtains the first equation of (2.7)

∂tg0 + divx(ζg1 + ug0)− ∂

∂ζ

[du
dt
.g1 +

∂u

∂x
: ζg2

]
= 0.

Introduce a test function φΩ, we consider the integral∫
c

(
∂tg + divx((c+ u)g)− divc(

du

dt
g +

∂u

∂x
cg)
)
φ(ζ)Ωdc = 0.

By using the Green formulae∫
c

(
∂tg + divx((c+ u)g)

)
φ(ζ)Ωdc+

∫
c

∂φ(ζ)Ω

∂c
(
du

dt
g +

∂u

∂x
cg)dc = 0.

Using the fact that

∂φ(ζ)Ω

∂c
= φ′(ζ)Ω⊗ Ω + φ(ζ)

Id− Ω⊗ Ω

ζ
.
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Then the second term of the left side of the equation gives∫
c

∂φ(ζ)Ω

∂c
(
du

dt
g +

∂u

∂x
cg)dc =

∫
c

Id− Ω⊗ Ω

ζ

du

dt
gφ(ζ)dc+

∫
c

Id− Ω⊗ Ω

ζ

∂u

∂x
cgφ(ζ)dc

+

∫
c

Ω⊗ Ω
du

dt
φ′(ζ)g(c)dc+

∫
c

Ω⊗ Ω
∂u

∂x
cg(c)φ′(ζ)dc

The first term of the right side reads∫
c

Id− Ω⊗ Ω

ζ

du

dt
gφ(ζ)dc =

∫
ζ

g0Id− g2

ζ

du

dt
φ(ζ)dζ.

The second term of the right side writes∫
c

Id− Ω⊗ Ω

ζ

∂u

∂x
cgφ(ζ)dc =

∫
ζ

(
∂u

∂x
g1 − g3

∂u

∂x
)φ(ζ)dζ.

The third term of the right side leads to∫
c

Ω⊗ Ω
du

dt
φ′(ζ)g(c)dc = −

∫
ζ

∂g2

∂ζ

du

dt
φ(ζ)dζ.

The fourth term of the right side gives∫
c

Ω⊗ Ω
∂u

∂x
cg(c)φ′(ζ)dc = −

∫
ζ

∂ζg3

∂ζ

∂u

∂x
φ(ζ)dζ.

Finally one obtains the second equation of (2.7)

∂tg1 + divx(ζg2 +u⊗ g1)− ∂ζ
(
g2
du

dt
+ ζg3

∂u

∂x

)
+
f0Id− f2

ζ

du

dt
+ (

∂u

∂x
g1− g3

∂u

∂x

)
= 0.

REFERENCES

[1] G.W. Alldredge, C.D. Hauck, and A.L. Tits. High-order entropy-based closures for linear
transport in slab geometry II: A computational study of the optimization problem. SIAM
Journal on Scientific Computing Vol. 34-4 (2012), pp. B361-B391.

[2] S. Benzonie-Gavage and D. Serre. Multi-dimensonal Hyperbolic Partial Differential Equations.
Oxford Science Publications.

[3] C. Berthon, C. Buet, J.-F. Coulombel, B. Després, J. Dubois, T. Goudon, J. E. Morel, and
R. Turpault. Mathematical models and numerical methods for radiative transfer. Volume 28
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