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Abstract Particle transport in radiation therapy can be modelled by akinetic equation
which must be solved numerically. Unfortunately, the numerical solution of such equations
is generally too expensive for applications in medical centers. Moment methods provide a
hierarchy of models used to reduce the numerical cost of these simulations while preserving
basic properties of the solutions. Moment models require a closure because they have more
unknowns than equations. The entropy-based closure is based on the physical description of
the particle interactions and provides desirable properties. However, computing this closure
is expensive. We propose an approximation of the closure forthe first two models in the
hierarchy, theM1 andM2 models valid in one, two or three dimensions of space. Compared
to other approximate closures, our method works in multipledimensions. We obtain the ap-
proximation by a careful study of the domain of realizability and by invariance properties of
the entropy minimizer. TheM2 model is shown to provide significantly better accuracy than
theM1 model for the numerical simulation of a dose computation in radiotherapy. We pro-
pose a numerical solver using those approximated closures.Numerical experiments in dose
computation test cases show that the new method is more efficient compared to numerical
solution of the minimum entropy problem using standard software tools.
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1 Introduction

The aim of radiation treatments is to destroy tumor cells by prescribing a certain quantity of
energy, called the dose, to the tumor cells. This dose is produced by radiation which can be
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modelled by the transport of particles (photons, electrons, protons, hadrons, depending on
the type of radiation).

A large range of numerical approaches has been proposed in the literature to compute the
dose. Dose distributions are typically numerically computed using Monte-Carlo algorithms
(see e.g. [20]) or discrete-ordinate methods (see e.g. [35]). However such direct solution
methods often require more computing resources than are typically available in medical
centers. Resource effective alternatives to those approaches (see e.g. [39] and references
therein), used in medical centers, include semi-empiricalmethods (e.g. Fermi-Eyges meth-
ods), probabilistic methods (fast Monte Carlo simulations, see e.g. [52,14,55] and refer-
ences therein) and PDE-based methods ([54]). However thosealternatives may be unprecise
for certain applications. The present method is an in-between alternative with an accuracy
comparable to Monte-Carlo and much lower computational costs.

This paper is a follow-up to [19,46,12]. The aim is to proposea PDE-based numerical
approach which is fast and accurate enough for practical applications. We study in the next
section a moment approach, i.e. a PDE-based approach, whichhas a much lower numerical
cost than the Monte-Carlo methods.

The transport of particles for radiotherapy problem can be described by kinetic models
([29,44]) for the fluenceψ of the particles. Due to the high dimensionality of the fluence
(it depends on positionx ∈ R

3, energyε ∈ R
+ and direction of flightΩ ∈ S2 whereS2 is

the unit sphere), solving the kinetic transport equations is numerically expensive. The kinetic
model can be reduced by extracting angular moments. The resulting models retain the major
properties of the kinetic models.

Those models were applied in a large range of physics, such asfluid dynamics ([22,34,
41]), plasma physics ([23,24,36,37]), semi-conductors ([4,49]) or radiative transfer ([13,
17,33,6,11]).

The main difficulty arising when deriving moment models is computing a closure. In-
deed moments equations have more unknowns than equations, therefore a closure needs to
be computed. This closure is generally chosen to retrieve the basic features of the underly-
ing kinetic models. Generally, one constructs an ansatzψR for the exact fluence so that the
ansatz satisfies certain integral constraints. The closureis then computed by replacing the
exact fluence with the ansatz.

In the present paper, an entropy-based closure is chosen which leads to the hierarchy
of moment models colloquially known asMN, whereN indicates the highest order of the
moments in the model. This closure is based on the physics of the collisions and leads
to a hyperbolic system of moment equations with an entropy dissipation property ([34]).
However, computing such a closure directly requires solving (numerically) a minimization
problem at every point in space and energy. Furthermore, thesolution of this minimization
problem requires repeated expensive quadrature computations ([27,2,1]). The main goal of
this paper is to provide an approximation of theM1 and theM2 closures which avoids the
optimization problem and the quadrature computations therein. We obtain the approximation
by a careful study of the domain of realizability and by invariance properties of the entropy
minimizer. There exist many approximate moment closures, e.g. the main alternative being
thePN closures. However, they present drawbacks conflicting withthe applications we have
in mind. Especially, several of them are only derived in one space dimension (see e.g. [50,
53,3]), and it is not entirely clear how to generalize the ideas to multiple dimensions. In this
paper we deal with the case of multiple dimensions.

In the next section, a simplified kinetic model of the transport of electrons is described,
the procedure of moment extraction is presented and illustrated through theM1 model and
the advantages of theM2 model are shown. The main result is presented in Section 3, it
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consists of an approximation of theM2 closure for three dimensional problems. In order
to validate our approach, the kinetic and moment models are compared on numerical test
cases from medical applications in Section 4. The last section is devoted to conclusions and
perspectives.

2 Models

The transport of electrons in the field of radiotherapy can bemodeled using kinetic theory.
We first recall a kinetic model used in the field of medical physics ([29,19]), then the pro-
cedure of moment extraction, which is afterward illustrated through the first model in the
hierarchy of entropy based moment models, theM1 model.

2.1 Kinetic model

In this study, only the transport of electrons is considered. The transport of photons with the
approach described in this paper has been studied in [45]. Weconsider here only Møller’s
and Mott’s collisions for electrons (see [29] and references therein). Mott’s collisions are
elastic. Møller’s collisions are inelastic and are ionizing interactions, i.e. two electrons
emerge from this collision, a primary (the more energetic one) and a secondary. The electron
transport can be modelled by the following kinetic equation[29,19]

Ω .∇xψ(x,Ω ,ε) = ρ(x)Q(ψ)(x,Ω ,ε). (1)

The unknownψ is the fluence of electrons depending on positionx∈ Z, energyε ∈ [0,εmax],
direction of flightΩ ∈S2, andQ is the collision operator. For Mott’s and Møller’s collisions,
the collision can be represented by linear Boltzmann (LB) gain and loss terms

Q(ψ)(x,Ω ,ε) =
∫

S2

∫ ∞

ε
(σM,1+σM,2)(ε ′,ε,Ω ′.Ω)ψ(x,Ω ′,ε ′)dε ′dΩ ′−σT,M(ε)ψ(x,Ω ,ε)

+
∫

S2
σMott(ε,Ω ′.Ω)ψ(x,Ω ′,ε)dΩ ′−σT,Mott(ε)ψ(x,Ω ,ε). (2)

The gain terms are characterized by the differential cross sections for Mott’s and Møller’s
primary and secondary electronsσMott, σM,1, σM,2, and the loss terms by the total cross
sectionsσM,T andσT,Mott. The superscript′ refers to the state of the particle before collision;
the absence of this superscript refers to the post-collisional state.ρ(x) is the density of
atomic cores in the medium at positionx. Møller’s cross section for primary electronsσM,1

is very peaked in energy, meaning that most of the particles lose small energy during those
collisions. Due to that peak in the cross section, the continuous-slowing down approximation
(CSD, see [48,44]) can be applied here, and the deflection dueto Møller’s effect is negligible
compared to the one due to Mott’s effect. This leads to approximating ([32,19,44])

Q(ψ)(x,Ω ,ε) ≈ QCSD(ψ)(x,Ω ,ε) = ∂ε(Sψ)(x,Ω ,ε) (3)

+
∫

S2

∫ ∞

ε
σM,2(ε ′,ε,Ω ′.Ω)ψ(x,Ω ′,ε ′)dε ′dΩ ′

+
∫

S2
σMott(ε,Ω ′.Ω)ψ(x,Ω ′,ε)dΩ ′−σT,Mott(ε)ψ(x,Ω ,ε),

where the stopping powerScharacterizes this energy loss.
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Similarily, the remaining elastic cross sectionσMott is forward-peaked, meaning that
most of the particles are slightly deflected during those collisions. Due to that peak in the
cross section, the collision operator can be approximated by a Fokker-Planck (FP, see [48]
although the validity of this approximation was discussed in [44]) operator

QCSD(ψ)(x,Ω ,ε) ≈ QFP(ψ)(x,Ω ,ε) = ∂ε(Sψ)(x,Ω ,ε)

+T(ε)
[

∂µ
(
(1−µ2)∂µ ψ

)
(x,Ω ,ε)+

1
1−µ2 ∂ 2

φ ψ(x,Ω ,ε)
]

(4)

+
∫

S2

∫ ∞

ε
σM,2(ε ′,ε,Ω ′.Ω)ψ(x,Ω ′,ε ′)dε ′dΩ ′,

where the transport coefficientT(ε) characterizes this deflection,µ and φ are such that
Ω = (µ,

√

1−µ2 cosφ ,
√

1−µ2 sinφ).

2.2 Moment models

A moment model is a reduction of a kinetic model that requiresmuch lower computational
times (see e.g. comparisons in Section 4). One can reduce thenumber of variables by ap-
proximating the angular distribution by an ansatzψ ≈ψR(Ω) satisfying integral constraints.

Let us defineψ i as the moment of orderi of ψ, namely

ψ i :=

〈

Ω ⊗·· ·⊗Ω
︸ ︷︷ ︸

i times

ψ

〉

=
∫

S2
Ω ⊗·· ·⊗ΩψdΩ .

Here⊗ denotes the tensor product. Instead of working withψ which depends onε, x and
Ω , the momentsψ i of order 0 toN are studied.

One obtains equations for the momentsψ i by extracting moments of (1)

∇x.ψ i+1(x,ε) = ρ(x)Qi(ψ i)(x,ε), (5)

where the moments of order 0 to 2 of the collision operator read

Q0(ψ0)(x,ε) =
∫ ∞

ε
σ0

M(ε ′,ε)ψ0(x,ε ′)dε ′− (σT,M +σT,Mott −σ0
Mott)(ε), (6a)

Q1(ψ1)(x,ε) =
∫ ∞

ε
σ1

M(ε ′,ε)ψ1(x,ε ′)dε ′− (σT,M +σT,Mott −σ1
Mott)(ε)ψ

1(x,ε ′) (6b)

Q2(ψ2)(x,ε) =
∫ ∞

ε

σ0
M −σ2

M

2
(ε ′,ε)tr(ψ2)(x,ε ′)Id+

3σ2
M −σ0

M

2
(ε ′,ε)ψ2(x,ε ′)dε ′ (6c)

+
σ0

Mott −σ2
Mott

2
(ε)tr(ψ2)(x,ε)Id+

3σ2
Mott −σ0

Mott

2
(ε)ψ2(x,ε)

− (σT,M +σT,Mott)(ε)ψ1(x,ε ′)

whereσM = σM,1+σM,2 andσ i are scalars given by

σ i(ε ′,ε) = 2π
∫ +1

−1
µ iσ(ε ′,ε,µ)dµ.
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Similarily the moments of the CSD operator (3) and the FP operator (4) yield

Q0
CSD(ψ

0)(x,ε) =∂ε(Sψ0)(x,ε) (7a)

+
∫ ∞

ε
σ0

M,2(ε
′,ε)ψ0(x,ε ′)dε ′− (σT,Mott −σ0

Mott)(ε)ψ0(x,ε),

Q1
CSD(ψ1)(x,ε) =∂ε(Sψ1)(x,ε) (7b)

+
∫ ∞

ε
σ1

M,2(ε ′,ε)ψ1(x,ε ′)dε ′− (σT,Mott −σ1
Mott)(ε)ψ1(x,ε),

Q2
CSD(ψ2)(x,ε) =∂ε(Sψ2)(x,ε) (7c)

+
∫ ∞

ε

σ0
M,2−σ2

M,2

2
(ε ′,ε)tr(ψ2)(x,ε ′)Id+

3σ2
M,2−σ0

M,2

2
(ε ′,ε)ψ2(x,ε ′)dε ′

+
σ0

Mott −σ2
Mott

2
(ε)tr(ψ2)(x,ε)Id+

3σ2
Mott −σ0

Mott

2
(ε)ψ2(x,ε)

−σT,Mott(ε)ψ2(x,ε),

Q0
FP(ψ0)(x,ε) =∂ε(Sψ0)(x,ε)+

∫ ∞

ε
σ0

M,2(ε
′,ε)ψ0(x,ε ′)dε ′, (8a)

Q1
FP(ψ1)(x,ε) =∂ε(Sψ1)(x,ε)−2T(ε)ψ1(x,ε)+

∫ ∞

ε
σ1

M,2(ε ′,ε)ψ1(x,ε ′)dε ′, (8b)

Q2
FP(ψ2)(x,ε) =∂ε(Sψ2)(x,ε)−2T(ε)

(
3ψ2(x,ε)− tr(ψ2)(x,ε)Id

)
(8c)

+
∫ ∞

ε

σ0
M,2−σ2

M,2

2
(ε ′,ε)tr(ψ2)(x,ε ′)Id+

3σ2
M,2−σ0

M,2

2
(ε ′,ε)ψ2(x,ε ′)dε ′.

Remark that the only difference between the moments of the CSD and FP operators are the
scalars beforeψ2(x,ε) andtr(ψ2)(x,ε)Id.

The system (5) requires a closure, as it has more unknown thanequations. In practice,
this is done by approximatingψ by an ansatzψR, and then computing the higher-order term
using this ansatz, i.e.

ψN+1 ≈
〈

Ω ⊗·· ·⊗Ω
︸ ︷︷ ︸

N+1 times

ψR

〉

,

whereψR is an ansatz having the moments(ψ0, ...,ψN).
For N = 2, choosing an ansatzψR provides an approximation of the fluxψ3 depending

on(ψ0,ψ1,ψ2). For each possible set of moments(ψ0,ψ1,ψ2), one needs to find an ansatz
ψR having the right moments. This problem can be written as

find ψR(Ω), s.t.

〈

Ω ⊗·· ·⊗Ω
︸ ︷︷ ︸

i times

ψR

〉

= ψ i , i = 0, ...,2.

One possibility is simply to choose the ansatzψR as a polynomial of degreeN

ψR(Ω) = λ̄ .m̄(Ω).

Herem̄(Ω) is a basis of polynomial of degreeN overS2, in particular, we chose

for N = 1, m̄(Ω) = (1, Ω1, Ω2, Ω3) ,

for N = 2, m̄(Ω) =
(
Ω1, Ω2, Ω3, Ω 2

1 , Ω 2
2 , Ω 2

3 , Ω1Ω2, Ω1Ω3, Ω2Ω3
)
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in the rest of the paper and̄λ is the unique vector of scalars such that the moments ofψR

are(ψ0, ...,ψN). This leads to the so-calledPN models. Computing the ansatz (and then the
closure) is simple and only requires the solution of a linearsystems. However,PN models
present several drawbacks. First the obtained functionψR can be negative (see e.g. [26,40]),
which is not physical. Second, in radiotherapy beams of particles are used. Perfect beams
can be modeled by Dirac distribution inΩ . Such distributions are poorly approximated by
polynomials.

Example 1Consider a Dirac peakψ = δ (Ω .e1−1). Its first moments read

ψ0 = 〈ψ〉= 1, ψ1 = 〈Ωψ〉= e1.

The polynomialψR ∈ R
1[X] of degree 1 havingψ0 andψ1 for moments reads

ψR(Ω) =
1+3Ω1

2
.

One first remark that theP1 ansatz differs from the beam distribution. Then computing the
second order moment of this ansatz, i.e. theP1 closure, read

〈Ω ⊗ΩψR(Ω)〉= Diag

(
1
3
,
1
3
,
1
3

)

6= e1⊗e1 = 〈Ω ⊗Ωψ〉 ,

which differs from the second order moment of the Dirac peak,and therefore theP1 model
is not able to represent a beam. Similar computations show that for anyN thePN model is
also not able to capture the exact closure. One solution to obtain a good accuracy with the
PN model when considering beams of particles consists in chosing the number of moments
N large, which deteriorates the time efficiency of the method.

Among the possible candidates forψR (having the moments(ψ0, ...,ψN)), we chose the
one that minimizes Boltzmann entropy function

H ( f ) =
∫

S2
( f log( f )− f )(Ω)dΩ , (9)

which leads to the hierarchy of the so-calledMN models.

Theorem 1 ([42,8,9,10,30,51,28])Consider a vector of polynomials̄m(Ω) and a vector
ψ̄ such that there exists at least one positive functionψ > 0 satisfying

ψ̄ = 〈m̄ψ〉 .
Then there exists a unique minimizerψR to (9) which has the form

ψR(Ω) = exp(λ̄ .m̄(Ω)). (10)

Furthermore, the function that sends the momentsψ̄ onto the ansatz(10) is a smooth bijec-
tion.

Beam-like distributions can be correctly approximated by ans̈atze of the form (10). In-
deed, a perfect beam in the directionΩ0 can be modeled by the Dirac distribution, which
can be interpreted as the limit of a sequence ofM1 ans̈atze

δ (Ω .Ω0−1) = lim
n→+∞

1
2π

exp((log(n)−n)+nΩ .Ω0) .

In this sense beam-like distributions are in the closure of the set of distributions of the form
(10).

In the next section, we focus on the following two propertiesof the MN model (and
especially of theM2 model) when constructing the approximation of theM2 closure.
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Hyperbolicity The MN equations are known to be symmetric hyperbolic ([34,21]). This
means that the Jacobian of the flux

J = ∇(ψ0,...,ψN)(ψ
1, ...,ψN+1)

is diagonalizable with real eigenvalues.

Realizability The solutionψ to the kinetic equation 1, with the collision operator (2), (3) or
(4), is positive. The realizability property corresponds to requiring that the solution(ψ0, ...,ψN)
to the moments system (5) with the associated collision operator (6), (7) or (8) are the mo-
ments of one positive distributionψ, i.e.

∃ψ(Ω)> 0, s.t. (ψ0, ...,ψN) =
∫

S2
(1, ...,Ω ⊗·· ·⊗Ω

︸ ︷︷ ︸

N times

)ψ(Ω)dΩ .

Definition 1 The set of all realizable moments of order up toN is called the realizability
domainRN of orderN

RN =







∫

S2
(1, ...,Ω ⊗·· ·⊗Ω

︸ ︷︷ ︸

N times

)ψ(Ω)dΩ , ∀ψ > 0






. (11)

Remark 1The notion of realizability can be extended to general measures. In this paper,
we avoid the technicalities associated to measures and always write non-negative densities,
which formally includes the case of a sum of Diracs to represent a discrete measure.

Remark 2The realizability domain is a convex cone. This means that positive combinations
of two realizable moments is realizable. Indeed supposeα1 > 0 andα2 > 0 are two positive
scalars andψ1 andψ2 are two positive functions ofΩ and

ψ̄1 =

〈

(1, ...,Ω ⊗·· ·⊗Ω
︸ ︷︷ ︸

N times

)ψ1

〉

, ψ̄2 =

〈

(1, ...,Ω ⊗·· ·⊗Ω
︸ ︷︷ ︸

N times

)ψ2

〉

.

Then the sum

α1ψ̄1+α2ψ̄2 =

〈

(1, ...,Ω ⊗·· ·⊗Ω
︸ ︷︷ ︸

N times

)(α1ψ1+α2ψ2)

〉

is obviously realizable sinceα1ψ1+α2ψ2 is positive. This property will be used below in
Subsection 3.3 to enforce realizability of the approximated closure.

The coefficients of̄λ are generally determined by solving the dual minimization problem
([27,2,1])

λ̄ = argmin
ā

〈exp(ā.m̄(Ω))〉− ā.ψ̄, (12)

whereψ̄ = 〈m̄(Ω)ψ〉 are the momentsψ i associated to ¯m(Ω) arranged as a column vector.
Solving this minimization problem is however computationally expensive (see e.g. com-

parison in Section 4). Therefore we propose an alternative for the first two models in the
hierarchy, theM1 andM2 models. It consists in smooth approximations preserving several
important properties of the exact closure.
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2.3 TheM1 model

We illustrate here the procedure described above for the first model in the hierarchy and
propose an approximation of the closure. Considering only equations (5) fori = 1,2, we
need to expressψ2 as a function ofψ0 andψ1. In that case, using (10),ψR yields

ψR(Ω) = exp(λ0+λ1Ω1+λ2Ω2+λ3Ω3). (13)

Then the coefficientsλ0 ∈ R and(λ1,λ2,λ3) ∈ R
3 are such thatψR has the right moments

〈ψR(Ω)〉= ψ0, 〈ΩψR(Ω)〉= ψ1.

Let us writen= ψ1/|ψ1|. Using rotational invariance ([33]), one can prove that there exists
α ∈ R such that(λ1,λ2,λ3) = αn.

Using this form of the ansatzψR leads to

||ψ1||2
ψ0 =

|α |coth(|α |)−1
|α | = f (|α |). (14)

This function f is bijection betweenR+ and[0,1[. Computing the closureψ2 leads to

ψ2 = ψ0
(

1−χ2

2
Id+

3χ2−1
2

n⊗n

)

, (15)

χ2

( ||ψ1||2
ψ0

)

=

∫+1
−1 µ2 exp(αµ)dµ
∫ +1
−1 exp(αµ)dµ

= 1+
2
|α | (1+coth(|α |)) ,

where|α | is a function of||ψ
1||2

ψ0 given by (14), i.e.

|α |= f−1
( ||ψ1||2

ψ0

)

.

The Eddington factorχ2 does not have an analytical formula but can be approximated (see
below in Section 3.3).

TheM1 model is often used because it is simple to implement and covers a large range
of physical phenomena. However it presents also several drawbacks. These drawbacks are
presented in the next section in order to highlight the advantages of theM2 model compared
to theM1 model. Then an approximation of theM2 closure is proposed. Section 4 illustrates
the efficiency of theM2 model through numerical test cases.

2.4 The advantages of theM2 model

Now we motivate the advance to theM2 model, that is, increasing the moment order to two.
TheM2 model is able to model a larger range of physical phenomena than theM1 model.

First, the physics are modeled more accurately. Indeed decomposing the differential
cross sections into polynomials reads

σ(ε ′,ε,µ) =
∞

∑
i=0

σ i(ε ′,ε)µ i .
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Then extracting theN first moments of the collisional operator is equivalent to truncating
this expansion at degreeN. So clearly the collisions are better modelled asN increases. This
phenomenon is illustrated through the test cases in Sections 4.2 and 4.4 below.

Furthermore,M1 is not able to distinguish certain multiple-beam cases which are of
major importance in the field of radiotherapy. Indeed in external radiotherapy, the source of
particles creating the dose are beams of particles applied on the boundary of a medium (see
e.g. the numerical test cases in Section 4).

Example 2Let us consider two perfect beams of opposite direction±e1 crossing each other.
This is modelled by a distribution composed of two Dirac peaks

ψ = δ (Ω .e1−1)+δ (Ω .(−e1)−1).

Extracting the moments of this distribution yields

ψ0 = 〈ψ〉 = 2,

ψ1 = 〈Ωψ〉 = 0
R3,

ψ2 = 〈Ω ⊗Ωψ〉 = 2e1⊗e1.

Working with theM1 model means working with(ψ0,ψ1). In that case, the first two mo-
ments are the same of those of an isotropic distributionψ = 1

2π . This means that theM1

model is unable to distinguish two beams from a isotropic distribution. This produces an
overestimation of the diffusion at the point where the beamscross each other. However
with ψ2 available, theM2 model is able to recognize that the underlying distributionis not
isotropic.

This problem also appears more generally for two-beam distributions.

Example 3A distribution of two beams in directionse1 ande2

ψ = δ (Ω .e1−1)+δ (Ω .e2−1)

has moments

ψ0 = 〈ψ〉 = 2,

ψ1 = 〈Ωψ〉 = e1+e2,

ψ2 = 〈Ω ⊗Ωψ〉 = e1⊗e1+e2⊗e2.

Here theM1 model sees a single beam in the directione1 + e2. But becauseψ2 does not
have the moments of a single beam ate1+e2 (these would be(e1+e2)⊗ (e1+e2)), theM2

ansatz can distinguish these cases.

Remark 3This problem could be circumvented by exploiting the linearity of the underlying
kinetic equation (1-4). Indeed, suppose that for eachi, ψi is the solution of (1) with the
collision operator (2), (3) or (4) with a boundary conditionψ|∂Z = ψbi , whereψbi contains
(for example) only a singlei-th beam entering the domain, and an initial condition of zero.
Then the solution of (1-4) with the boundary conditionψ|∂Z = ∑

i
ψbi and the same initial

condition would be∑
i

ψi . Each solutionψi can be approximated by solving theMN system

(5) with the associated collision operator. This way one obtains an approximation of the
solution∑

i
ψi with multiple beams by solving theMN system for each beam separately.
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3 Approximation of the M2 closure

The computation of theM2 closure in three dimensions of space cannot be simplified to one
dimension by using symmetry arguments as in theM1 case (Section 2.3), therefore typically
it would be computed by numerically solving the minimization problem (12). However, this
method would be too expensive for the applications we have inmind, so we propose an
approximation which takes advantage of the underlying hierarchical structure of the closure
and is exact for certain special boundary cases.

A naive idea to approximate theM2 closure consists in solving (12) for a large amount
of values of(ψ0,ψ1,ψ2) and directly constructing a polynomial fitting those values. Such
an approximation is not very satisfactory as it does not satisfy basic properties. For instance,
when choosing a 1D functionψ(Ω1), the closureψ3 should be the third order moment of a
1D distributionψR(Ω1). This would not be enforced by such a naive polynomial approxi-
mation.

Instead we propose the following: First we use the same method as in Section 2.3, to
approximate the closureψ3 in the M1 case. Then we extend this progressively to more
general cases until obtaining an approximation of the general M2 closure.

In the first subsection, we introduce the realizability domain for the M2 model, which
is the domain of physically relevant moments. In the second subsection, an approximation
of the closure is proposed in some subsets of the realizability domain. In the third subsec-
tion, a polynomial fit is proposed which is correct in these subsets. Finally, we consider the
properties of the obtained approximation.

3.1 The realizability domain for theM2 model

The solution of the kinetic equation (1-4) is positive. Thisimplies that its moments
〈(1,Ω ,Ω ⊗Ω)ψ〉 evolve in the realizability domainR2 ⊂R×R

3×R
3×3 (defined in (11)).

The solution of the moment system (5-8) with theM2 closure needs to be inside this set. In-
deed theM2 closure exists only if there exists an ansatz of the form (10)whose moments are
(ψ0,ψ1,ψ2). For moments on the unit sphereS2, this is equivalent (according to Theorem
1) to requiring(ψ0,ψ1,ψ2) ∈ R2.

The realizability domainR2 for moments of order up to 2 is characterized as follows.

Proposition 1 The realizability domain for second order moments can be written

R2 =
{
(ψ0,ψ1,ψ2) ∈ R×R

3×R
3×3, s.t. tr(ψ2) = ψ0 > 0 (16)

and ψ0ψ2−ψ1⊗ψ1is symmetric positive definite (s.p.d.)
}
.

Proof This results follows directly from [31] which provided the following result

R̄2 =
{
(ψ0,ψ1,ψ2) ∈ R×R

3×R
3×3, s.t. tr(ψ2) = ψ0 ≥ 0

and ψ0ψ2−ψ1⊗ψ1is symmetric non-negative
}
.

Then, using Theorem 1, one obtains the existence of a positive (instead of non-negative
for the previous characterization) representing distribution for all moments(ψ0,ψ1,ψ2) ∈
int(R2) in the interior of the realizability domain. (16) is a characterization of this interior.
Finally, by replacing one of the inequality in (16) by an equality, one can prove that there
is no strictly positive representing distribution for suchmoments (see e.g. [15,16]), which
prove the equality (16).
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In order to simplify the computation ofψ3, we use a transformation of the realizability
domain. It consists of a normalization and a rotation.

Notation 1

– Ni is the i-th moment normalized by the zeroth-order moment, i.e.

Ni :=
ψ i

ψ0 .

– Let R be the rotation matrix that diagonalizesψ0ψ2−ψ1⊗ψ1. This also diagonalizes
N2−N1⊗N1.

– RT is the set of realizable moments after these transformations (rotation and normal-
ization)

RT :=
{
(N1,N2), s.t. tr(N2) = 1 and N2−N1⊗N1diagonal positive

}
.

One passes easily from one set to the other

R2 ∋
(
ψ0,ψ1,ψ2) =

(
ψ0,ψ0R.N1,ψ0R.N2.RT) , with (N1,N2) ∈ RT . (17)

Similarly, applying this transformation toψ3 yields

ψ3 = ψ0Rot3(R,N
3), Rot3(R,N

3) =
3

∑
i′=1

3

∑
j ′=1

3

∑
k′=1

Ri,i′Rj, j ′Rk,k′N
3
i′, j ′,k′ , (18)

whereRot3(R,N3) is the tensorN3 rotated using the matrixR. After transformation,N3 only
depends on(N1,N2) ∈ RT .

Notation 2 For (N1,N2) ∈ RT , as tr(N2) = 1 we have

tr(N2−N1⊗N1) = 1−||N1||22.

One can rewrite

N2 = N1⊗N1+(1−||N1||22)Diag(γ1,γ2,1− γ1− γ2).

Then we can parametrizeRT by

RP =
{
(N1,γ1,γ2) ∈ B(0

R3,1)×]0,1[×]0,1− γ1[
}
.

In the next subsection, we exhibit values ofN3 in subsets ofRP.

3.2 Special values of the closure

Now we define a hierarchy of subdomains ofRT and computeN3 in each of them. Then we
recall results about the boundary ofRT .
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3.2.1 N3 in subdomains ofRT

First we consider the relation between moments(N1,N2) ∈ RT and functions of the form
(10) and vice versa. From these relations, we can give the form of the closureN3 in certain
subsets ofRT .

Notation 3 We use the following monomial basis for polynomials up to degree two over the
unit sphere

m̄(Ω) =
(
Ω1, Ω2, Ω3, Ω 2

1 , Ω 2
2 , Ω 2

3 , Ω1Ω2, Ω1Ω3, Ω2Ω3
)
,

and we write

ψR(Ω) = exp
(
λ̄ .m̄(Ω)

)
, (19)

with λ̄ ∈ R
9.

Using Theorem 1, there exists a bijection between the Lagrange multipliersλ̄ ∈ R
9 and the

moments(ψ0,ψ1,ψ2) ∈ int(R2) in the interior of the realizability domain (remark that this
interior is int(R2) = R2, see (16)). We consider the following hierarchy of subdomains of
R

9

L1 :=
{
(λ1,0,0,λ4,λ5,λ6,0,0,0), s.t. (λ1,λ4,λ5,λ6) ∈ R

4}⊂ R
9, (20a)

L2 :=
{
(λ1,0,0,λ4,λ5,λ5,0,0,0), s.t. (λ1,λ4,λ5) ∈ R

3}⊂ L1, (20b)

L3 :=
{
(λ1,0,0,λ4,λ4,λ4,0,0,0), s.t. (λ1,λ4) ∈ R

2}⊂ L2. (20c)

Choosingλ̄ in one of those sets in (19) gives ansätzeψR of the form

ψ1(Ω) = exp(λ1Ω1+λ4Ω 2
1 +λ5Ω 2

2 +λ6Ω 2
3), (21a)

ψ2(Ω) = exp(λ5+λ1Ω1+(λ4−λ5)Ω 2
1), (21b)

ψ3(Ω) = exp(λ4+λ1Ω1) (21c)

respectively.

Definition 2 We denote byH i the set of normalized and rotated moments of functions of
the form (21):

H i :=
{〈

(Ω ,Ω ⊗Ω)exp(λ̄ .m̄(Ω))
〉
, λ̄ ∈ Li

}
∩RT . (22)

Remark 4Choosing the setsL3 ⊂ L2 ⊂ L1 ⊂ R
9 was motivated by two reason. First the

hierarchical character of these sets is necessary to the construction of the expansion ofN3

described in the next section. Second each scale of this hierarchy corresponds to a particular
type of problems:

– H1 corresponds to the case whereψ1 is an eigenvector ofψ2 (see computations in
Appendix A.1).

– H2 corresponds to a 1D problem. Indeed, one can see that the distribution (21b) depends
only on one scalarΩ1.

– H3 corresponds to a first-order model (i.e.M1 model). Indeed, one can see that the dis-
tribution (21c) corresponds to a distribution function obtained using a first-order model
(i.e. when working with(ψ0,ψ1)).
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In order to illustrate this hierarchy, possible distribution functions associated to each of
those sets are depicted in Fig. 1, 2, 3, 4, 5 and 6. On those plots, the color on the unit sphere
corresponds to the value of the distribution function (where blue corresponds to the lowest
value and red the highest) given in (21). AsH3 andH2 are related to 1D distribution, those
distributions can be represented along the preferred axis,i.e. ψR in (21a) and (21b) as a
function ofΩ1. Computing the moments of order one and two of the functions (21) reads

Fig. 1 Unit sphere colored by a
distribution function associated
to a vector ofH3

Fig. 2 Distribution function as-
sociated to a vector ofH3 along
its preferred axis

Fig. 3 Unit sphere colored by a
distribution function associated
to a vector ofH2\H3

Fig. 4 Distribution function as-
sociated to a vector ofH2\H3

along its preferred axis

in H1, N1 = N1
1e1, N2 = |N1

1 |2e1⊗e1+(1−|N1
1 |2)Diag(γ1,γ2,1− γ1− γ2),

(23a)

in H2, N1 = N1
1e1, N2 = |N1

1 |2e1⊗e1+(1−|N1
1 |2)Diag(γ1,

1− γ1

2
,
1− γ1

2
),

(23b)

in H3, N1 = N1
1e1, N2 =

3χ2(|N1
1 |)−1

2
e1⊗e1+

1−χ2(|N1
1 |)

2
Id, (23c)
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Fig. 5 Unit sphere colored by a
distribution function associated
to a vector ofH1\H2

Fig. 6 Unit sphere colored by a
distribution function associated
to a vector ofR2\H1

whereχ is the Eddington factor (see e.g. [33]). This leads to the following parametrization
of H i

(N1,γ1,γ2) ∈ H
1 :=

{
(N1,γ1,γ2) ∈ RP s.t. N1 = N1

1e1
}
,

(N1,γ1,γ2) ∈ H
2 :=

{

(N1,γ1,γ2) ∈ H
1 s.t. γ2 =

1− γ1

2

}

,

(N1,γ1,γ2) ∈ H
3 :=

{

(N1,γ1,γ2) ∈ H
2 s.t. γ1 =

χ2(|N1
1 |)−|N1

1 |2
1−|N1

1 |2
}

.

Similarly, computing the third-order moments of the distributions (21) reads

in H1, N3 = κ211,1,1+κ3T1,2,2+(N1
1 −κ2−κ3)T1,3,3, (24a)

in H2, N3 = κ111,1,1+
N1

1 −κ1

2
(T1,2,2+T1,3,3), (24b)

in H3, N3 = χ311,1,1+
N1

1 −χ3

2
(T1,2,2+T1,3,3), (24c)

Ti, j, j = 1i, j, j +1 j,i, j +1 j, j,i , 1i, j,k = ei ⊗ej ⊗ek,

whereχ3, κ1, κ2 andκ3 are scalar coefficients depending on(N1
1 ,γ1,γ2) respectively inH 3

for χ3, H 2 for κ1, andH 1 for κ2 andκ3.

3.2.2 Limits of N3 on the boundary ofRT

The boundary ofRT is characterized by

N2−N1⊗N1 has a zero eigenvalue. (25)

At the boundary, the problem (12) has no solution (see e.g. [28,8]). However, we can deduce
the following two results, first on the boundary ofH1 and then in the particular case when
||N1||2 = 1, which we will use in the next subsection.

Proposition 2 Suppose(N1,N2) ∈ ∂H1, i.e. N1 and N2 is given by(23a)and

∃V ∈ S2, s.t. V.
(
N2−N1⊗N1) .V = 0, (26)

or equivalentlyγ1 = 0, γ2 = 0 or 1− γ1− γ2 = 0 in (23a).
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N1
1

N2
1,1

N2
2,2

1

1

Fig. 7 Representation ofH3 (red line), H2 (green plane) andH1 (blue volume) in the space
(N1

1 ,N
2
1,1,N

2
2,2) ∈ R

3.

Then the closure yields

N3
i, j, j = N1

i N2
j, j , N3

1,2,3 = 0. (27)

Proof The moments inH1 satisfyN2 = Diag(N2
1,1,N

2
2,2,N

2
3,3) andN1 = N1

1e1. Therefore the

eigenvectors ofN2−N1⊗N1 are the cartesian axisV = ei .
This result follows from [31], where the author showed that the possible representing

distributionsψR(Ω) for moments satisfying (26) are zero everywhere except on the line
{

Ω ∈ S2, s.t. (Ω −N1).V = 0
}
. Computing the following moments provides part of the

equalities (27)
∫

S2
Ω ⊗Ω [(Ω −N1).V]ψR(Ω)dΩ = N3.V − (N1.V)N2 = 0

R3×3.

The other equalities are simply obtained by remarking that some of the values ofM2 closure
N3 are zero when(N1,N2) ∈ H1, e.g. using the eveness of (21a) according toΩ2, one finds
thatN3

2,2,2 = N3
2,3,3 = N3

1,2,3 = 0. As theM2 closure is a continuous function ofN1 andN2,

one retreives those zeros ofN3 on the boundary∂H1.

Fig. 7 depicts the hierarchyH3 ⊂H2 ⊂H1 and its boundary in the space(N1
1 ,N

2
1,1,N

2
2,2) ∈ R

3

(these three components are indeed sufficient to parametrizeH1). H3 is the red line included
in H2 the green plane, itself included inH1 the blue volume.

Proposition 3 ([31])Suppose(N1,N2) ∈ ∂RT , such that||N1||2 = 1, then

N2 = N1⊗N1,

and the closure yields

N3
i, j,k = N1

i N1
j N

1
k . (28)
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3.3 Approximation of theM2 closure: the expansion

We first start by approximatingN3 in the setH3. Then we extend it progressively intoH2,
H1, and finallyR2.

The approximation is based on polynomial interpolations. For convenience, we intro-
duce the following notation

Notation 4 The polynomial of degree two interpolating the values A, B and C at the points
a, b and c is denoted E, and Z denotes the polynomial of degree three which is zero in a, b
and c:

E ((A,a),(B,b),(C,c))(x) := A
x−b
a−b

x−c
a−c

+B
x−a
b−a

x−c
b−c

+C
x−a
c−a

x−b
c−b

,

Z(a,b,c)(x) := (x−a)(x−b)(x−c).

The hyperbolicity and the realizability properties (see Subsection 2.2) are considered at each
step of the construction of approximated closure. The realizability, the hyperbolicity and the
precision of the approximated closure are finally studied inthe next subsection.

3.3.1 Initialization: the closure in H3

First, one needs to approximate the Eddington factorχ2 to compute theM1 closure (15). As
in the characterization of (16), the moments(ψ0,ψ1) are the moments of a positive function
if and only if ([31])

||ψ1||2
ψ0 < 1.

Similarly using (16), simple computations show that(ψ0,ψ1,ψ2), whereψ2 has the form
(15), are the moments of a positive function if and only if

x2 < χ2(x)≤ 1, for x∈ [0,1[.

In order to construct a realizable closure (see Remark 2), wepropose to approximateχ2 by
the convex combination

χ2(x) ≈ x2θ1(x)+(1−θ1(x))1.

The coefficientθ1 is chosen to be an even function ofxso thatθ1(x)∈ [0,1] and the following
exact value of the Eddington factorχ2 and its derivative are satisfied on the boundary of the
realizability domain (i.e. atx = 1) and for the isotropic case (i.e. inx = 0). The choice of
fixing the exact values of the derivativeχ ′

2 is motivated by the hyperbolic character of the
M2 closure (see the ”hyperbolicity” paragraphs of Subsections 2.2 and 3.4). Those values
are obtained by rewriting

χ2(|N1|) =
〈
Ω 2

1 exp(α(|N1|)Ω1)
〉

〈exp(α(|N1|)Ω1)〉
, χ ′

2(|N1|) = dα
d|N1|

d
dα

〈
Ω 2

1 exp(α(|N1|)Ω1)
〉

〈exp(α(|N1|)Ω1)〉
,

where dα
d|N1| =

(
d|N1|
dα

)−1
. Then one can remark that

|N1|(α = 0) = 0, lim
α→+∞

|N1|= 1,
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and since|N1| is a bijection ofα (Theorem 1), this implies that

α(|N1|= 0) = 0, lim
|N1|→1

α =+∞,

then computingχ2 and its derivative at those values using a symbolic computation software
such as MapleTM ([38]) leads to

χ2(1) = 1, χ2(0) =
1
3
, χ ′

2(1) = 2, χ ′
2(0) = 0. (29)

In the end, we chose

θ1(x) = x2+
2
3
(1−x2)+x2(1−x2)

(
c0+c1x2+c2x4) ,

where the coefficientsci are fitted to approximate the exactχ2 for 103 values ofx equally dis-
tributed in[0,1] using MapleTM ([38]): c0 =−0.0954823981432433,c1 = 0.229069986304953
andc2 =−0.0344846229504588. One can check thatθ1(x) ∈ [0,1] for all x∈ [−1,1].

Based on this approximation, one can construct a realizableclosure inH3. Using [31]
again, a vector of 1D moments(N1

1 ,N
2
1,1,N

3
1,1,1) is realizable if and only if

b−(N1
1 ,N

2
1,1)< N3

1,1,1 < b+(N1
1 ,N

2
1,1),

b−(N1
1 ,N

2
1,1) :=−N2

1,1+
(N1

1+N2
1,1)

2

(1+N1
1)

, b+(N1
1 ,N

2
1,1) := N2

1,1−
(N1

1−N2
1,1)

2

(1−N1
1)

.

Then similarly to above, we construct a realizable closure in H3 as a convex combination
(see Remark 2)

χ3(x) = b−(x,χ2(x))θ2(x)+b+(x,χ2(x))(1−θ2(x)).

The coefficientθ2 is chosen so thatθ2(x)∈ [0,1], such thatχ3 is odd and the following exact
value ofχ3 and its derivative are satisfied, on the boundary of the realizability domain (i.e.
atx= 1) and for the isotropic case (i.e. atx= 0)

χ3(1) = 1, χ3(0) = 0, χ ′
3(1) = 3, χ ′

3(0) =
1
2 .

Those values are obtained from the same method as forχ2 in (29). In the end, we chose

θ2(x) =
1
2
+x

(

−1
2
+(1−x2)(d0+d1x2+d2x4)

)

,

where the coefficientsdi are fitted to approximate the exactχ3 for 103 values ofx equally dis-
tributed in[0,1] using MapleTM ([38]): d0 = 0.386143553495150,d1 = 0.488034553677475
andd2 =−0.681343955348390. One can check thatθ2(x) ∈ [0,1] for all x∈ [−1,1].
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3.3.2 Extension to H2 : the 1D approximated closure

Using the above results and the form ofN3 in (24b), we define an approximation ofN3 in
H2 by approximatingκ1 as follows

κ1(x,y) = b−(x,y)θ3(x,y)+b+(x,y)(1−θ3(x,y)).

The coefficientθ3 is chosen such thatθ3(x,y) ∈ [0,1] so that the resulting closure is realiz-
able (see Remark 2). Furthermore it is chosen to have the exact value on the boundary of the
realizability domain (i.e. when(N1,N2) ∈ ∂H2 as in Proposition 2) and the approximated
value inH3 given above, that is

κ1(N
1
1 ,0) = (N1

1)
3, κ1

(

N1
1 ,

χ2(N1
1)−|N1

1 |2
1−|N1

1 |2
)

= χ3(N
1
1), κ1(N

1
1 ,1) = N1

1 .

In the end, we chose

T1 := b+−κ1
b+−b−

(x,0), T2 := b+−κ1
b+−b−

(

x, χ2(x)−x2

1−x2

)

, T3 := b+−κ1
b+−b−

(x,1),

θ3(x,y) = E
(

(T1,0) ,
(

T2,
χ2(x)−x2

1−x2

)

,(T3,1)
)

(y)+Z
(

0, χ2(x)−x2

1−x2 ,1
)

(y)Q1(x,y),

whereQ1 is a polynomial ofx andy of degree sixteen. Its coefficients are chosen such that
the discreteL2 distance between the approximated and the exactκ1 (computed by solving
(12) for 104 values of(N1,N2) ∈ H2, given by 100 values ofx equally distributed in[0,1]
and 100 ofy equally distributed in[0,1]) is minimized. The degree of this polynomial ap-
proximation is chosen very high because a high precision is required for the next extension
(i.e. toH1 and then toRT ). The discreteL∞ error compared to the solution of the minimiza-
tion problem (12) for those 104 values of(N1,N2) ∈ H2 is 8.43× 10−3. Our polynomial
satisfiesθ3(x,y) ∈ [0,1] for all x∈ [−1,1] andy∈ [0,1].

3.3.3 Extension to H1

This procedure can be repeated to approximateN3 in H1.
Using Proposition 2 and the previous approximation, we aim to write an approximation

of κ2 andκ3 (in (24a)) satisfying

κ2(N
1
1 ,γ1,0) = (N1

1)
3+N1

1(1−|N1
1 |2)γ1, κ2(N

1
1 ,γ1,

1− γ1

2
) = κ1(N

1
1 ,γ1),

κ2(N
1
1 ,γ1,1− γ1) = (N1

1)
3+N1

1(1−|N1
1 |2)γ1,

κ3(N
1
1 ,γ1,0) = 0, κ3(N

1
1 ,γ1,

1− γ1

2
) =

1
2

(
N1

1 −κ1(N
1
1 ,γ1)

)
,

κ3(N
1
1 ,γ1,1− γ1) = (N1

1)
3+N1

1(1−|N1
1 |2)(1− γ1).

Similarly to above, we propose an approximation of the form

κ2(x,y,z) = E

(

(κ2(x,y,0),0) ,

(

κ2(x,y,
1−y

2
),

1−y
2

)

,(κ2(x,y,1−y),1−y) ,

)

(z)

+Z

(

0,
1−y

2
,1−y

)

(z)Q2(x,y,z),

κ3(x,y,z) = E

(

(κ3(x,y,0),0) ,

(

κ3(x,y,
1−y

2
),

1−y
2

)

,(κ3(x,y,1−y),1−y) ,

)

(z)

+Z

(

0,
1−y

2
,1−y

)

(z)Q3(x,y,z),
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whereQ2 andQ3 are polynomials inx, y andz of degree eight. The coefficients of those
polynomials are chosen such that the discreteL2 distance between the approximated and the
exactκ2 andκ3 (computed by solving (12) for 8×103 values of(N1,N2) ∈ H1, given by 20
values ofx equally distributed in[0,1], and 20 values ofy in [0,1] and 20 ofz in [0,1− y])
is minimized. The discreteL∞ error compared to the solution of the minimization problem
(12) for those 8×103 values of(N1,N2) ∈ H1 is of 2.09.10−2.

3.3.4 Extension to the whole realizability domainRT

We now aim to extend this approximation toRT which will provide us with an approxima-
tion of ψ3 for any(ψ0,ψ1,ψ2) ∈ R2 through (17). This last extension again consists of an
interpolation.

The previous approximation provides a closure whenN1 is along one of the Cartesian
axes. One can also compute the closure when|N1|= 1 through Proposition 3.

Now suppose we want to computeN3 at the pointP0 = (N1,N2) ∈RT , parametrized by
(N1,γ1,γ2) = (xe1+ye2+ze3,β1,β2). Let us define the following points (see Fig. 8 and 9)

P1 ≡ (N1,γ1,γ2) = (xe1,β1,β2), P2 ≡ (N1,γ1,γ2) = (ye2,β1,β2),

P3 ≡ (N1,γ1,γ2) = (ze3,β1,β2),

corresponding to projections ofP0 onto each Cartesian axis. At those points,N1 is an eigen-
value ofN2. Then we can use the approximation techniques inH1 of the previous paragraph
(see remark 4). Now let us define the lines and points (see Fig.8 and 9)

L1 = (P1,P0), L2 = (P2,P0), L3 = (P3,P0)

P4 = L1∩{||N1||2 = 1} ≡ (xe1+a1ye2+a1ze3,β1,β2), a1 =
√

1−x2

y2+z2 ,

P5 = L2∩{||N1||2 = 1} ≡ (a2xe1+ye2+a2ze3,β1,β2), a2 =
√

1−y2

x2+z2 ,

P6 = L3∩{||N1||2 = 1} ≡ (a3xe1+a3ye2+ze3,β1,β2), a3 =
√

1−z2

x2+y2 .

The closureN3 is either known (atP4, P5 andP6) or approximated (atP1, P2 andP3) at each of
those points. Thus for(N1,N2)∈RT the different components of the closureN3 are approx-
imated by convex combinations of the values ofN3 computed or approximated at the points
Pi for i ∈{1,2, . . .6}. In particular, fori ∈{1,2,3}, we approximateN3

i, j, j with a convex com-
bination of its approximate value forPi and its exact value forP3+i . Similarly, the value of
N3

1,2,3 is known at the points(N1,γ1,γ2) = (0
R3,γ1,γ2) and(N1,γ1,γ2) = (N1/||N1||2,γ1,γ2),

and we simply approximate it by a convex combination of the value at those points. In the
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end, those approximations are
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For N3
1,2,3, several other linear combinations were possible, but we found that this simple

expression gave the best approximation of theM2 closure. The discreteL∞ error compared
to the solutions of the minimization problem (12) for 3.2×106 values of(N1,N2) ∈ RT is
of 3.12.10−2. Those values are obtained from 20 values ofN1

1 equally distributed in[0,1],

20 of N1
2 in [0,

√

1−|N1
1 |2], 20 ofN1

2 in [0,
√

1−|N1
1 |2−|N1

2 |2], 20 of γ1 in [||N1||22,1] and

20 of γ2 in [0,1].

N1
3

N1
2

N1
1

P1

P2

1

1

1

Fig. 8 Configuration at fixedN2.

N1
3

N1
2

P7

P8

1−|N1
1 |2

1−|N1
1 |2

Fig. 9 Configuration at fixedN2 andN1
3 .
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3.4 Properties of the approximation

We study here the accuracy and the numerical cost to compute the approximated closure,
the hyperbolicity and the realizability property with the approximated closure.

3.4.1 Precision and numerical cost

Our approach consists of a polynomial approximation. Evaluating the polynomials is very
fast compared to solving the minimization problem (12), as the numerical methods gener-
ally require iterative algorithms. The approximate closure is compared to the one obtained
by solving this minimization problem using the routines HUMSL of MINPACK [43] and
DCUHRE from [5]. The routine HUMSL is based on an iterative algorithm using the gra-
dient and the Hessian ofψ3. The routine DCUHRE is an adaptive quadrature algorithm for
functions of several variables. The precision for this minimization algorithm (both for the
minimization and the quadrature) can be fixed. In order to have a fair comparison of com-
putational times and precision, we first ran the code with high precision (L∞ error of 10−9)
in order to have an accurate reference (it ran for 3h 33min), and then we ran it again with a
precision equivalent to that of our approximation. We fixed the maximum number of itera-
tions for both the quadrature and the minimization routine at 106 iterations, and we checked
that this was not reached during the computations (meaning the desired precision was al-
ways obtained). Computing the approximation is much fasterthan solving the minimization
problem with this method as shown in Table 1.

Minimization solver Approximation
Computation times 1654 sec = 27min 34sec 0.434 sec

L∞ error < 3×10−2 3.12×10−2

Table 1 Comparing computation times for the closure with 3.2×106 points inRT between the minimization
solver and our approximation.

3.4.2 Hyperbolicity

It is well-known [34] that theM2 system is a hyperbolic system of conservation laws, as
long as(ψ0,ψ1,ψ2) ∈ R2. This means that the Jacobian∇(ψ0,ψ1,ψ2)(ψ1,ψ2,ψ3) is diago-
nalizable with real eigenvalues. In this paragraph, we study the hyperbolicity of our approx-
imation of theM2 closure at each step of the expansion of the previous subsection, i.e. when
(N1,N2) is in H 3, H 2, H 1, andRT .

For theM1 approximation, i.e. for moments inH3, we can work in a reference frame
in which ψ1 = ||ψ1||e1. Using this simple rotation, one can show that the Jacobian reduces
into

∇(ψ0,||ψ1||2)

(
||ψ1||2

ψ0χ2(
||ψ1||2

ψ0 )

)

=

(
0 1

χ2(
||ψ1||2

ψ0 )− ||ψ1||
ψ0 χ ′

2(
||ψ1||2

ψ0 ) χ ′
2(

||ψ1||
ψ0 )

)

.

This leads to the following requirement for hyperbolicity

∀x∈ [0,1], χ ′
2(x)−4(χ2(x)−xχ ′

2(x))≥ 0,
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which is satisfied by our approximation.
In H2 (i.e. the 1D case), using the same method, one obtains the hyperbolicity if the

following matrix is diagonalizable with real eigenvalues





0 1 0
0 0 1

N3
1,1,1−N1

1∂N1
1
N3

1,1,1−N2
1,1∂N2

1,1
N3

1,1,1 ∂N1
1
N3

1,1,1 ∂N2
1,1

N3
1,1,1



 .

Studying the roots of the characteristic polynomial of thismatrix (i.e. roots of a cubic func-
tion), one can verify that this matrix is indeed diagonalizable with real eigenvalues. This
means that theM2 system of equations for 1D problems with the approximated closure is
hyperbolic.

In H1 and inRT , the problem is 3D. The Jacobian can not be easily reduced into a
smaller matrix, so the full Jacobian is studied. As studyingmoments inH1 does not pro-
vide any simplification of the Jacobian compared to moments in RT , we directly study the
hyperbolicity in the general case, for moments inRT . Checking that the eigenvalues of the
full Jacobian∇(ψ0,ψ1,ψ2)(ψ1,ψ2,ψ3) are real for all(N1,N2) ∈ RT is complicated, and we
have not been to verify analytically that the eigenvalues are always real. Instead, we ver-
ified this property was satisfied for a finite number of points in RT , i.e. for 105 values of
(N1,N2) ∈ RT . Those values are obtained from 10 values ofN1

1 equally distributed in[0,1],

10 of N1
2 in [0,

√

1−|N1
1 |2], 10 ofN1

2 in [0,
√

1−|N1
1 |2−|N1

2 |2], 10 of γ1 in [||N1||22,1] and

10 of γ2 in [0,1].

Remark 5Since solving the minimization problem (12) numerically also introduces errors,
this may also result in a loss of hyperbolicity.

3.4.3 Realizability

For any set of realizable moments(ψ0,ψ1,ψ2) ∈ R2, we have constructed a closureψ3.
One may expect that the set of moments(ψ0,ψ1,ψ2,ψ3)∈R3 is also realizable, i.e. are the
moments of one positive function. The realizability condition onψ3 in 1D (see e.g. [31,15]),
i.e. in the particular case when(ψ0,ψ1,ψ2) ∈ H2, can easily be verified. In our framework,
this condition can be rewritten (see Remark 2)

θ3 ∈ [0,1],

which is satisfied by our approximation. This means that the proposed closure is realizable
when working with 1D problems. In multi-D, there is, to the authors’ knowledge, no similar
characterization of the realizability to check. As our approach approximates a realizable
closureψ3 and has the right value in limit case when(ψ0,ψ1,ψ2) ∈ ∂RT , we may expect
the approximation to be realizable.

Remark 6Numerically solving the minimization problem (12) introduces errors which may
also result in a loss of realizability.

4 Numerical results

Now we compare the solutions computed with theM1 andM2 models (both with approxi-
mated closure and by using the minimization algorithm previously mentioned for (12)) to
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those results obtained by solving the kinetic model directly on several test cases. First, the
numerical approaches used to solve the kinetic and moment equations are described. Then
the results for each test cases are presented. Those tests consist in computing the dose for
given boundary conditions which correspond to: a single beam in 1D, two opposite beams
in 1D, a single beam in 2D whose direction is not aligned with the mesh, two beams in 2D
and finally a single beam in an inhomogeneous medium corresponding to a human chest.

4.1 Numerical approaches

In each test case, the moments results are compared to the results of a reference code.
In 1D, this reference code is a kinetic solver for (1). However, discretizing (1) directly

with the LB operator (2) or CSD operator (3) is not efficient. Indeed the differential cross
sections in (2) and (3) are very peaked, and such a discretization would require a meshgrid
in angle and energy fine enough to represent those peaks. We could not afford to use such a
fine mesh. For the same reason, the proposed moment solver is only used for the equations
(5) with the CSD (7) or FP (8) operator. In 1D, the kinetic and moment solvers are based on
the equation (1) and (5) with a FP operator (4) and (8).

In 1D, we also compared the results with the approximated closures to the one using
the closure obtained by solving the minimization problem (12). This closure was obtained
by using the routines ”HUMSL” of MINPACK [43] and ”DQAGS” of QUADPACK [47],
using a maximum tolerance of 3.10−2 (equivalent to the precision as our approximation)
and a maximum number of iterations of 100. For the purposes ofdose calculation these
routines provide an accurateMN closure which is easy to incorporate into a numerical solver.
However, for cases where the moments are closer to the boundary of realizability (and the
optimization problem becomes numerically ill-conditioned) special techniques have been
developed [27,2,1] which make the entropy closure problem tractable.

We used the Monte-Carlo solver PENELOPE ([20]) as reference. PENELOPE is one of
the state-of-the-art codes for electron transport, and hasbeen validated against experiments.
Note that PENELOPE, when compared to our model, also takes into account more physical
effects (like e.g. pair production and bremsstrahlung).

The numerical schemes are constructed as follows: Due to theintegral in (4), in order
to computeψ at energyε, one requires the knowledge of the value ofψ for all energies
betweenε andεmax. In practice, we solve it from a maximum energyεmax to zero.

The 1D kinetic equation is solved using an upwind scheme for the spatial and energy
derivatives. The angular diffusion operator is discretized using a central scheme, and the
integral operator with a midpoint quadrature rule.

The moment solver was obtained by adapting the relaxation approach proposed in [46]
to the equations (5) with the collisions operators (8) and (7). For the sake of clarity, the
numerical scheme for moment equations is written here for a 1D problem with a Fokker-
Planck operator (8). It can be easily extended to 2D or 3D problems and to the CSD colllision
operator (7). First let us rewrite the moment system 5 with the FP operator (8) under the form

∂xF̄(ψ̄)(x,ε) = ρ(x)
[

∂ε(Sψ̄)(x,ε)−T(ε) ¯̄Aψ̄(x,ε ′)+
∫ εmax

ε
¯̄σ(ε ′,ε)ψ̄(x,ε ′)dε ′

]

, (30)

whereψ̄ is a vector of moments and̄F(ψ̄) its associated flux;̄̄σ is the matrix composed
of the momentsσ i of the cross section; and̄̄A is a matrix such that̄̄Aψ̄ corresponds to the
moments of the angular diffusion term, e.g. forM1

ψ̄ = (ψ0,ψ1
1)

T , F̄(ψ̄) = (ψ1
1 ,ψ2

1,1)
T , ¯̄σ = Diag(σ0,σ1), ¯̄A= Diag(0,2).
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In the following, the subscriptl corresponds to the spatial variablexl and the superscriptp
to energy variableε p. In order not to be constrained by a Courant-Friedrichs-Lewy (CFL)
condition which could be very restrictive for our problem (see e.g. [7,46]), we aim to con-
struct an implicit numerical scheme. We propose the following scheme, which was obtained
by discretizing in (30), the integral with a quadrature formula, the energy derivative with an
Euler discretization and the spatial flux with an implicit form of HLL ([25]) scheme

F̄(ψ̄)p
l+1− F̄(ψ̄)p

l−1

2∆x
−

ψ̄ p
l−1−2ψ̄ p

l + ψ̄ p
l+1

2∆x

+ρl

[

− (Sψ̄)p−1
l − (Sψ̄)p

l

∆ε p +
(

T p ¯̄A− ¯̄σ p,p∆ε pId
)

ψ̄ p
l −

p−1

∑
p′=1

¯̄σ p′,pψ̄ p′
l ∆ε p′

]

= 0.

This is an implicit equation for̄ψ p. We use an iterative solver inspired by [18], which con-
sists of sweeping in thel variable. Let us writēψ p,k

l , the intermediate solution after sweeping

k times. The solution is initialized by choosinḡψ p,0
l = ψ̄ p−1

l , then the following systems are
solved iteratively: First

F̄(ψ̄)p,k
l+1− F̄(ψ̄)p,k+1

l−1

2∆x
−

ψ̄ p,k+1
l−1 −2ψ̄ p,k+1

l + ψ̄ p,k
l+1

2∆x
(31)

+ρl

[

− (Sψ̄)p−1
l − (Sψ̄)p,k+1

l

∆ε p +
(

T p ¯̄A− ¯̄σ p,p∆ε pId
)

ψ̄ p,k+1
l −

p−1

∑
p′=1

¯̄σ p′,pψ̄ p′
l ∆ε p′

]

= 0.

This corresponds to lettingl run from 0 tolmax , i.e. from left to right, and implicitly using
what has already been computed (i.e.ψ̄ p,k+1

l−1 ) and explicitly using what is not (i.e.̄ψ p,k
l+1).

Then we havel run from lmax to zero, i.e. from right to left

F̄(ψ̄)p,k+1
l+1 − F̄(ψ̄)p,k

l−1

2∆x
−

ψ̄ p,k
l−1−2ψ̄ p,k+1

l + ψ̄ p,k+1
l+1

2∆x
(32)

+ρl

[

− (Sψ̄)p−1
l − (Sψ̄)p,k+1

l

∆ε p +
(

T p ¯̄A− ¯̄σ p,p∆ε pId
)

ψ̄ p,k+1
l −

p−1

∑
p′=1

¯̄σ p′,pψ̄ p′
l ∆ε p′

]

= 0.

Equations (31) and (32) are solved iteratively until reaching a converged state, i.e. untilk
satisfies

‖ψ̄ p,k+1
l − ψ̄ p,k

l ‖
‖ψ̄ p,k

l ‖
< r

for all l , and for a chosen maximum residualr. In practice, we choser = 10−1, and a mini-
mum number of iterationsk of 3.

The function of interest for medical physicists is the dose given by

D(x) =
∫ εmax

0
S(ε)ψ0(x,ε)dε.

For each test case we compute the dose produced by beams of electrons prescribed on the
boundary of the medium by

for Ω .n< 0, ψ(x,ε,Ω) = 1010exp
(
−ce(ε0− ε)2)exp

(
−co(1−Ωp.Ω)2) , (33)
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whereε0, Ωp are the energy and direction, respectively, of the prescribed beam, andn is a
vector normal to the boundary in the outgoing direction.

If no beam is applied on one boundary we apply a zero distribution and assume that all
particles injected at the other borders are stopped inside the medium.

The boundary conditions for the moment systems are defined byextracting moments
from these boundary conditions.

The following test cases provide qualitative analysis of the approximation of theM2 clo-
sure. Further analysis of the numerical schemes for momentsand quantitative study (con-
vergence results) will be provided in another paper. In all test cases, we used mesh cells
∆x= 0.01 cm and 100 cells in energy, with a tolerancer = 10−1 in the scheme for moments
models. This precision was sufficient to observe the considered phenomena.

4.2 Simple beam in 1D

In this test case a 6 cm long uniform water phantom is irradiated with a beam of electrons.
This is modelled with fixedρ = 1 and boundary conditions (33)

at x= 0 cm: ε0 = 10MeV, Ωp = e1, ce = 200 and co = 103.

The domain was meshed with 600 cells in position and 100 cellsin energy.
For this test case, we normalize the dose by the quantity of injected particles, i.e.

ψi =
∫

Ω1>0

∫ εmax

0
ψ(0,ε,Ω)dεdΩ .

The doses obtained with the kinetic solver, theM1 andM2 solver with the closures obtained
from the minimization procedure and approximations are represented on Fig. 10, and the
computation times for this test case are gathered in Table 2.This simple case shows that

Model Kinetic minimizationM1 minimizationM2 approximatedM1 approximatedM2

Times 43.76 sec 4.58 sec 8.84 sec 0.016 sec 0.047 sec

Table 2 Computation times with the different models for the simple 10 MeVbeam test case in 1D

theMN models have the same qualitative behaviour as the kinetic reference. The dose ob-
tained with theM1 model is however imprecise. Its derivative is too high at theentry and
raised slowly and gradually until reaching its maximum, while the dose obtained with the
M2 and the kinetic models have a lower derivative at the entry, ahigher maximum, and faster
decrease after the maximum. These differences are due to theerror produced when approxi-
mating the kinetic solution of (1) by aMN ansatz, as described in Section 2.4, but the results
of theM2 model already follow the kinetic reference with good precision.

The approximations of theM1 and theM2 closures give good agreement with the clo-
sure obtained from the minimization procedure. The accuracy of the approximated closure
is characterized by the errors on the doses gathered in Table3. As described in Table 2, the
approximations of theMN closures significantly accelerate (by around 200 times) thecom-
putation compared to using a minimization solver, which arethemselves faster (between 5
to 10 times faster) than the kinetic computations.
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Fig. 10 Normalized dose produced by a 10 MeV electron beam in water using a kinetic,M1 andM2 solvers
with the closures obtained from the minimization procedure and approximations.

M1 model M2 model
DiscreteL∞ error 4.5.10−4 1.75.10−2

DiscreteL2 error 5.51.10−4 1.62.10−2

Table 3 DiscreteL∞ andL2 error between the doses obtained with the approximated and the minimization
closure respectively for theM1 andM2 models.

4.3 Double beam in 1D

The multi-beam instability in 1D is studied through this test case (see Section 2.4): Two
beams of same energy and intensity but with opposite direction are prescribed on both ends
of a 8 cm long homogeneous water phantom, characterized by (33) with

at x= 0 cm: ε0 = 10MeV, Ωp = e1, ce = 200 and co = 103;

at x= 8 cm: ε0 = 10MeV, Ωp =−e1, ce = 200 and co = 103.

The domain was meshed with 800 cells in position and 100 cellsin energy.
The dose normalized byψi obtained with the Monte-Carlo solver, and theM1, M2,

double-M1 (i.e. computing the dose of each beam seperately withM1) and double-M2 mod-
els is given on Fig. 11, and the computational times are presented in Table 4. The dose with
the doubleMN model was simply obtained from the dose of the previous test case by sum-
mingD(x)+D(8 cm−x) (see Remark 3). As described in [27], when using aMN model for
this problem, a shock appears in the middle of the medium. ForM1 this gives a high dose
peak in the center of the medium, and forM2 by a significantly smaller drop. It has been
observed in [27] that the higher is the order of model, the smaller this shock becomes.
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Fig. 11 Normalized dose produced by two 10 MeV electron beams in water using kinetic,M1 andM2 solvers
with the closures obtained from the minimization procedure and approximations.

This artificial shock does not appear when considering the two beams separately. Through
this case, we see that the non-physical effects of the angular approximation are smaller as
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Model Kinetic minimizationM1 minimizationM2 approximatedM1 approximatedM2

Times 58.3 sec 7.81 sec 14.35 sec 0.023 sec 0.072 sec

Table 4 Computation times with the different models for the double 10 MeV beam test case in 1D

the order of the model raises. Similarly to the previous case, theM2 results are close to the
kinetic reference, except in the middle of medium, while theM1 results are less precise.
Finally the double-MN models gives satisfactory results when high precision is required.

The accuracy of the approximations of the closures of theM1, M2, doubleM1 and double
M2 models is characterized by the errors on the doses gathered in Table 5.

M1 model M2 model doubleM1 model doubleM2 model
DiscreteL∞ error 5.00.10−4 2.76.10−2 4.50.10−4 1.31.10−2

DiscreteL2 error 6.59.10−4 4.49.10−2 6.44.10−4 1.51.10−2

Table 5 DiscreteL∞ andL2 error between the doses obtained with the approximated and the minimization
closure respectively for theM1, M2, doubleM1 and doubleM2 models.

4.4 Simple inclined beam in 2D

In 2D, the computations need more computational power. We could not afford to use a min-
imization procedure in 2D to obtain theMN closure, so only results using the approximated
closures are presented.

This test consists of a beam of 10 MeV electrons in water, whose direction forms an
angle ofπ/3 with the normal to the boundary. It is modeled by (33) with the parameters

at x= 0 cm, for y∈ [4.75cm,5.25cm] :

ε0 = 10MeV, Ωp =
√

3e1−e2
2 , ce = 200 and co = 103.

In order to compare our results with those of PENELOPE Monte-Carlo code, the dose
is normalized by the maximum dose, i.e. we computed the percentage depth dose (PDD)

PDD(x) =
D(x)

max(D)
.

The domain was meshed with 600×600 cells in position and 100 cells in energy.
The doses obtained with the different models are given on Fig. 12, and the computation

times for that test case are given in Table 6. As for the 1D case, we observe thatM1 model

Model Monte-Carlo approximatedM1 approximatedM2

Computation times ≈ 14 h 298 sec≈ 5 min 868 sec≈ 14 min

Table 6 Computation times with the different models for the simple 10 MeVbeam test case in 2D

is overly diffusive. However, the effect in multi-D is lowerthan in 1D. TheM2 results are
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Fig. 12 Dose produced by a 10 MeV electron beam in water using the PENELOPE Monte-Carlo solver (top)
and theM1 (below left) andM2 (below right) solvers using the approximated closures.

closer to the ones of the Monte-Carlo reference, one can remark that it is also somewhat
overly diffusive.

The absolute errors between the doses obtained with the PENELOPE Monte-Carlo
solver and the approximatedM1 andM2 models are represented on Fig. 13.

The maximum error in the dose when using the approximatedM1 or M2 model compared
to the reference Monte-Carlo results are located at the entry of the medium and on both
sides of the beam, and, when using the approximatedM1 model, in the middle of the beam
between 1 and 2 cm depth.

4.5 Double beam in 2D

A 2D version of the test case 4.3 is now studied. It consists oftwo beams crossing each other
with at an angle ofπ/2. As described in Section 2.4,M1 model is known to fail to represent
this phenomenon (also in 2D).
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Fig. 13 Absolute error between the normalized doses obtained with Monte-Carlo solver and theM1 (left) and
M2 (right) solvers using the approximated closures.

The beams are modelled by (33) with

for x= 0 cm, y∈ [0.75cm,1.25cm] :

ε0 = 10MeV, Ωp = e1, ce = 200 and co = 103;

for y= 0 cm, x∈ [0.75cm,1.25cm] :

ε0 = 10MeV, Ωp = e2, ce = 200 and co = 103.

The same mesh as the previous case was used (i.e. 100 cells in energy and 600×600 cells in
position), so the computation times for this case are identical to the previous one (see Table
6). The dose obtained with the different models are represented on Fig. 14. As expected,
when using theM1 model, the two incoming beams turn into one of direction(e1+e2). This
effect is artificial and is due toM1 moments extraction. It does not appear when using the
M2 model. The dose obtained with theM2 model is slightly more diffusive than the dose
obtained with the Monte-Carlo solver.

The absolute errors between the doses obtained with the PENELOPE Monte-Carlo
solver and the approximatedM1, M2, double-M1 and double-M2 models are represented
on Fig. 15.

With the M2 model, no visible shock appears, in contrast to the 1D doublebeam case
of Section 4.3. However, theM2 model gives a dose slightly more diffused than that of the
double-M2 model. The dose as computed by the double-M2 model is indeed very close to
the Monte-Carlo reference.

As in 1D, the double-beam instability does not appear when using the double-MN mod-
els.

4.6 Chest geometry

This last test case is a 2D simple beam case with a densityρ corresponding to the density
of a human chest. Here we show that our approach is valid with more realistic geometries.



An approximation of theM2 closure: application to radiotherapy dose simulation 31

Fig. 14 Dose produced by two 10 MeV electron beams in water using the PENELOPE Monte-Carlo solver
(top), aM1 solver (middle left) and aM2 solver (middle right), a double-M1 solver (below left) and a double-
M2 solver (below right), with the approximated closures.

The domain is of size 21.825 cm× 37.5 cm meshed with 224× 384 cells, and 100 cells in
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Fig. 15 Absolute error between the doses obtained with Monte-Carlosolver and theM1 (top left), M2 (top
right), double-M1 (below left) and double-M2 solvers (below right) using the approximated closures.

energy were used. The beam is modeled by (33) with the following parameters:

at x= 21.875cm, with y∈ [18cm,20cm] :

ε0 = 10MeV, Ωp =−e1, ce = 200 and co = 103.

The isodose curves at 5%, 10%, 25%, 50%, 70% and 80% of the maximum dose obtained
with the different models are plotted on Fig. 16, and the computational times are given in
Table 7. As in the previous test cases, the dose computed withtheM1 solver is more diffusive

Model Monte-Carlo approximatedM1 approximatedM2

Computation times ≈ 14 h 242 sec≈ 4 min 906 sec≈ 15 min

Table 7 Characteristics of the computations with the different models

than the others. In particular, the dose in the lungs (the dark regions) is overestimated. With
both moment models, the dose is underestimated at the entry in the region corresponding to
the backbone.

To characterize the errors when considering heterogeneousmedia, the 3% - 3 mm distance-
to-agreement is often used. A voxel is within this agreementif the absolute error in the dose
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Dose Monte-Carlo DoseM1 DoseM2

Fig. 16 Dose produced by a 10 MeV electron beam in a cut of a chest usingPENELOPE Monte-Carlo solver
(left), aM1 solver (middle) and aM2 solver (right), with the approximated closures.

compared to the reference at this point is lower than 3% of themaximum dose or if the dose
obtained with the reference code at this point is also obtained with the moment code in a
radius of less than 3mm around this voxel.

The percentage of voxels not satisfying the 3% - 3 mm distance-to-agreement with the
approximatedM1 andM2 model compared to the reference Monte-Carlo solver for thistest
case are gathered in Table 8. For both models these voxels arelocated at the entry on both
sides of the beam. For theM1 model such voxels are also found in the middle of the medium
between 4 and 5 cm depth (in the backbone).

Model approximatedM1 approximatedM2

Percentage of voxels 0.12% 0.054%

Table 8 Percentage of voxels not satisfying the 3% - 3 mm distance-to-agreement compared to the reference
Monte-Carlo dose for the 2D simple beam test case in a chest.

See also [45] for more applications of those models in photontransport for radiotherapy.

5 Conclusion

We have proposed an approximation of theM2 closure and have shown this model to be
significantly better than theM1 model. This approximation is based on the construction
of entropy-based closures and the hierarchical structure of such models. In particular, the
approximate closure is consistent with the exact closure for the moments associated with
isotropic,M1, 1D, or 2D distributions. Numerical tests show that theM2 model is much
more accurate than theM1 model and is valid for a larger range of physical phenomena. The
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dose computed from theM2 model is close to the one provided by a reference Monte-Carlo
code and required a much lower computational time (between fifty and two hundred times
faster).

Future work includes a comparison against optimization methods [27,2,1] which were
specifically designed for entropy closures. Furthermore, we plan to generalize our physical
model to the coupled system of photons, electrons and positrons, and include bremsstrahlung
as well as pair production. We expect that these refinements make the dose calculation ac-
curate enough for clinical purposes.

A Computation of moments inH i

A.1 Computation of moments inH1

Considerλ̄ ∈ L1, and the associated ansatzψ1 (defined in (21a)) and its moments(ψ1,ψ2) given by

ψ1(Ω) = exp
(
λ1Ω1+λ4Ω2

1 +λ5Ω2
2 +λ6Ω2

3

)
,

(ψ1,ψ2) = 〈(Ω , Ω ⊗Ω)ψ1〉 ∈ H1.

One can remark thatψ1 is an even function ofΩ2 or Ω3, and therefore the moment ofψ1 according to any
odd polynomial is zero, in particular

ψ1
2 = ψ1

3 = ψ2
1,2 = ψ2

1,3 = ψ2
2,3 = 0.

With those computations, the momentsψ1 andψ2 actually reads

ψ1 = ψ1
1e1, ψ2 = Diag

(
ψ2

1,1,ψ
2
2,2,ψ

2
3,3

)
,

andψ1 is therefore an eigenvector ofψ2. Using Notations 1 leads to writeN1 andN2 under the form (23a),
and one may obsereve that the eigenvectors ofN2−N1⊗N1 are along the cartesian axisei .

Using again evenness ofψ1, one obtains

ψ2
1,1,2 = ψ2

1,1,3 = ψ2
1,2,3 = ψ2

2,2,2 = ψ2
2,2,3 = ψ2

2,2,3 = ψ2
3,3,3 = 0.

Using the fact thattr(Ω ⊗Ω) = 1, one obtains that

3

∑
j=1

ψ3
i, j, j =

∫

S2
Ωitr(Ω ⊗Ω)ψ1(Ω)dΩ = ψ1

i .

This leads to writeN3 under the form (24a).

Proposition 4 Consider realizable moments(ψ0,ψ1,ψ2) ∈ R2 such thatψ1 is an eigenvector ofψ2.
Then the rotated normalized moments(N1,N2) given by(17)are in H1.

Proof Under those hypothesis, the decomposition (17) can be simplified. Indeed, sinceψ1 is an eigenvector
of ψ2, thenN1 is an eigenvector ofN2. So a rotationRdiagonalizingN2 will sendN1 onto one of the cartesian
axis (choseRsuch thatN1 is alonge1).

Then this rotation also diagonalizesN2 −N1 ⊗N1 since it diagonalizes bothN2 andN1 ⊗N1 and one
can writeN1 andN2 under the form (21a).

Finally one can prove that the unique exponential representation for moments(N1,N2) satisfying (23a)
is (21a) by using Theorem 1 with ¯m(Ω) = (Ω1, Ω2

1 , Ω2
2 , Ω2

3). Indeed this theorem provide the existence of
a unique functionψ of the form (21a) satisfying

(N1
1 ,N

2
1,1,N

2
2,2,N

2
3,3) = 〈m̄ψ〉 .

Computing the other moments of such a function (21a) read

ψ1
2 = ψ1

3 = ψ2
1,2 = ψ2

1,3 = ψ2
2,3 = 0,

i.e. it satisfies the other moment constraints. Then the uniquefunction (10) satisfying all the moment con-
straints has the form (21a).
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A.2 Computation of moments inH2

Considerλ̄ ∈ L2, and the associated ansatzψ2 (defined in (21b)) and its moments(ψ1,ψ2) given by

ψ2(Ω) = exp
(
λ5+λ1Ω1+(λ4−λ5)Ω2

1

)
,

(ψ1,ψ2) = 〈(Ω , Ω ⊗Ω)ψ2〉 ∈ H2.

The computations of the previous subsection hold. Sinceψ2 does not depend onΩ2 norΩ3, one deduces that

ψ2
2,2 =

∫

S2
Ω2

2 exp
(
λ5+λ1Ω1+(λ4−λ5)Ω2

1

)
dΩ =

ψ0

2
,

ψ2
3,3 =

∫

S2
Ω2

3 exp
(
λ5+λ1Ω1+(λ4−λ5)Ω2

1

)
dΩ =

ψ0

2
,

in particular,ψ2
2,2 = ψ2

3,3. Using Notations 1 leads to writeN1 andN2 under the form (23b).
Similarily, one has

ψ2
1,2,2 =

∫

S2
Ω1Ω2

2 exp(λ4+λ1Ω1)dΩ =
ψ1

1

2
,

ψ2
1,3,3 =

∫

S2
Ω1Ω2

3 exp(λ4+λ1Ω1)dΩ =
ψ1

1

2
,

This leads to writeN3 under the form (24b).

Proposition 5 Consider realizable moments(ψ0,ψ1,ψ2) ∈ R2 such thatψ1 is an eigenvector ofψ2 and
ψ2

2,2 = ψ2
3,3.

Then the rotated normalized moments(N1,N2) given by(17)are in H2.

The proof is identical to the one of Proposition 4 with ¯m(Ω) = (1,Ω1,Ω2
1).

A.3 Computation of moments inH3

Considerλ̄ ∈ L3, and the associated ansatzψ3 (defined in (21c)) and its moments(ψ1,ψ2) given by

ψ3(Ω) = exp(λ4+λ1Ω1) ,

(ψ1,ψ2) = 〈(Ω , Ω ⊗Ω)ψ3〉 ∈ H2.

The computations of the previous subsections hold. In this case, the ansatzψ3 is theM1 ansatz defined in
(13), and thereforeψ2

1,1 is the Eddington factorχ2 defined in Subsection 2.3. Using Notations 1 leads to write

N1 andN2 under the form (23c).
The form ofN3 is not simplified compared to the previous case.

Proposition 6 Consider realizable moments(ψ0,ψ1,ψ2)∈R2 such thatψ1 is an eigenvector ofψ2, ψ2
2,2 =

ψ2
3,3 andψ2

1,1 = ψ0χ2
(
|ψ1|/ψ0

)
.

Then the rotated normalized moments(N1,N2) given by(17)are in H2.

The proof is identical to the one of Proposition 4 with ¯m(Ω) = (1, Ω1).
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