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Abstract Particle transport in radiation therapy can be modelled bynatic equation
which must be solved numerically. Unfortunately, the nuo@rsolution of such equations
is generally too expensive for applications in medical eentMoment methods provide a
hierarchy of models used to reduce the numerical cost oétbi@sulations while preserving
basic properties of the solutions. Moment models requitesuce because they have more
unknowns than equations. The entropy-based closure igl lbasthe physical description of
the particle interactions and provides desirable propertiiowever, computing this closure
is expensive. We propose an approximation of the closur¢hfofirst two models in the
hierarchy, thevi; andM, models valid in one, two or three dimensions of space. Coetpar
to other approximate closures, our method works in multioteensions. We obtain the ap-
proximation by a careful study of the domain of realizabiéhd by invariance properties of
the entropy minimizer. Th#, model is shown to provide significantly better accuracy than
the M1 model for the numerical simulation of a dose computatioragtiotherapy. We pro-
pose a numerical solver using those approximated closNteserical experiments in dose
computation test cases show that the new method is moreeefficompared to numerical
solution of the minimum entropy problem using standardvearfé tools.

Keywords Moment models, Entropy-based closure, Radiotherapy dus@uatation
Mathematics Subject Classification (2000)82C70, 82D99, 94A17

1 Introduction

The aim of radiation treatments is to destroy tumor cellst@ggribing a certain quantity of
energy, called the dose, to the tumor cells. This dose isymexdiby radiation which can be
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modelled by the transport of particles (photons, electrpnatons, hadrons, depending on
the type of radiation).

A large range of numerical approaches has been proposesllitetfature to compute the
dose. Dose distributions are typically numerically consgutising Monte-Carlo algorithms
(see e.g. [20]) or discrete-ordinate methods (see e.g).[BBwever such direct solution
methods often require more computing resources than areatlypavailable in medical
centers. Resource effective alternatives to those appesasee e.g. [39] and references
therein), used in medical centers, include semi-empirtathods (e.g. Fermi-Eyges meth-
ods), probabilistic methods (fast Monte Carlo simulatisee e.g. [52,14,55] and refer-
ences therein) and PDE-based methods ([54]). However #iteseatives may be unprecise
for certain applications. The present method is an in-betwadternative with an accuracy
comparable to Monte-Carlo and much lower computationakcos

This paper is a follow-up to [19,46,12]. The aim is to propadeDE-based numerical
approach which is fast and accurate enough for practicaicapipns. We study in the next
section a moment approach, i.e. a PDE-based approach, twaéch much lower numerical
cost than the Monte-Carlo methods.

The transport of particles for radiotherapy problem candsdbed by kinetic models
([29,44]) for the fluenceap of the particles. Due to the high dimensionality of the fluleenc
(it depends on positior € R3, energye € R* and direction of flightQ € S whereS is
the unit sphere), solving the kinetic transport equatismuimerically expensive. The kinetic
model can be reduced by extracting angular moments. Thiingsmodels retain the major
properties of the kinetic models.

Those models were applied in a large range of physics, sutthidslynamics ([22,34,
41)), plasma physics ([23,24,36,37]), semi-conductofs4@]) or radiative transfer ([13,
17,33,6,11]).

The main difficulty arising when deriving moment models isnputing a closure. In-
deed moments equations have more unknowns than equatiensfdre a closure needs to
be computed. This closure is generally chosen to retrieydésic features of the underly-
ing kinetic models. Generally, one constructs an angatior the exact fluence so that the
ansatz satisfies certain integral constraints. The clasuteen computed by replacing the
exact fluence with the ansatz.

In the present paper, an entropy-based closure is choser \Wg#ds to the hierarchy
of moment models colloquially known &4y, whereN indicates the highest order of the
moments in the model. This closure is based on the physicheotollisions and leads
to a hyperbolic system of moment equations with an entropgigiation property ([34]).
However, computing such a closure directly requires sgl¥irumerically) a minimization
problem at every point in space and energy. Furthermoresdhgion of this minimization
problem requires repeated expensive quadrature commag{R7,2,1]). The main goal of
this paper is to provide an approximation of tkle and theM, closures which avoids the
optimization problem and the quadrature computation®thewe obtain the approximation
by a careful study of the domain of realizability and by ingace properties of the entropy
minimizer. There exist many approximate moment closurgs,tke main alternative being
the P\ closures. However, they present drawbacks conflicting thighepplications we have
in mind. Especially, several of them are only derived in op&ce dimension (see e.g. [50,
53,3]), and it is not entirely clear how to generalize theagl® multiple dimensions. In this
paper we deal with the case of multiple dimensions.

In the next section, a simplified kinetic model of the tramspbdelectrons is described,
the procedure of moment extraction is presented and itedrthrough thé1; model and
the advantages of thié, model are shown. The main result is presented in Section 3, it
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consists of an approximation of tii, closure for three dimensional problems. In order
to validate our approach, the kinetic and moment models @mgared on numerical test

cases from medical applications in Section 4. The last@edidevoted to conclusions and

perspectives.

2 Models

The transport of electrons in the field of radiotherapy cambeeled using kinetic theory.
We first recall a kinetic model used in the field of medical pby¢€[29, 19]), then the pro-
cedure of moment extraction, which is afterward illustdatierough the first model in the
hierarchy of entropy based moment models,NMhemodel.

2.1 Kinetic model

In this study, only the transport of electrons is considefédu transport of photons with the
approach described in this paper has been studied in [45tdngider here only Mgller's
and Mott's collisions for electrons (see [29] and referend®rein). Mott’s collisions are
elastic. Mgller’s collisions are inelastic and are ionggimteractions, i.e. two electrons
emerge from this collision, a primary (the more energetig)@nd a secondary. The electron
transport can be modelled by the following kinetic equaf® 19]

Q-wa(xvgvg) = p(X)Q(l\U)(Xv-st)' 1)

The unknowny is the fluence of electrons depending on posi@nZ, energye € [0, Emax,
direction of flightQ € <, andQis the collision operator. For Mott’s and Mgller’s collisis,
the collision can be represented by linear Boltzmann (LB) gad loss terms

QI2.8) = [ [ (ot oua)(e'.e. ' Qwix 2'.&)de'dQ ~ or(e)9(x 2.8)
+/82aMon(s,Q'.Q)w(x,Q’,e)dQ'—oT,Mon(s)w(x,Q,s). @)

The gain terms are characterized by the differential cresians for Mott's and Mgller’s
primary and secondary electrot®gtt, Om.1, Om,2, and the loss terms by the total cross
sectionsom, T andor mott. The superscriptrefers to the state of the particle before collision;
the absence of this superscript refers to the post-catiidistate.p(x) is the density of
atomic cores in the medium at positisnMgller’s cross section for primary electroag 1

is very peaked in energy, meaning that most of the partioes $mall energy during those
collisions. Due to that peak in the cross section, the captis-slowing down approximation
(CSD, see [48,44]) can be applied here, and the deflectiotoddeller’s effect is negligible
compared to the one due to Mott’s effect. This leads to apprating ([32,19,44])

Q(W)(X,Q,S) ~ QCSD(LP)(Xv-QvS) = dg(S(p)(x,Q,s) (3)
+/§/e om2(e,6,Q".Q)P(x, Q' )de'dQ’

+ /SZ Onote(£, 2. Q)W(x, Q',£)dQ’ — o7 mon () Y(X, Q, &),

where the stopping pow&characterizes this energy loss.
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Similarily, the remaining elastic cross sectiogo is forward-peaked, meaning that
most of the particles are slightly deflected during thoséisiohs. Due to that peak in the
cross section, the collision operator can be approximayeal Fokker-Planck (FP, see [48]
although the validity of this approximation was discussef#4]) operator

QCSD("AU)(Xv-Qvg) ~ QFP('JJ)(XanE) = aE(SW)(Xv-st)
+T(¢) {aﬁ, (1—p?)aup) (x,Q,€) +

T % Q.8) (@)

+/S;/ om2(€,6,Q".Q)Y(x, Q' )de'dQ’,
&

where the transport coefficiefit(¢) characterizes this deflectiop, and ¢ are such that

Q = (W,+/1— p?cosp, \/1— psing).

2.2 Moment models

A moment model is a reduction of a kinetic model that requinesh lower computational

times (see e.g. comparisons in Section 4). One can reducrithber of variables by ap-

proximating the angular distribution by an ansgitz gr(Q) satisfying integral constraints.
Let us defing)' as the moment of ordénf (¢, namely

Y= <_Q®...®_Q(p>:'/SZ_Q®~-®_QL,UCLQ.

itimes

Here® denotes the tensor product. Instead of working witlwhich depends os, x and
Q, the momentg)' of order O toN are studie_zd.
One obtains equations for the momeiptsby extracting moments of (1)

O (x,) = p(0)Q (W) (% €), (5)

where the moments of order O to 2 of the collision operatod rea

(x,€)de' — (o1 m + OT Mot — Opott) (€), (6a)

QCWO)xe) = [ oi(e.e
Qwhixe) = [ aite’

o (€,€)
0 2
OM M (¢! e)tr (Y?)(x,€')ld +

@°
P (x,€")de’" — (o.M + O7 Mot — Ojone) (€)W (X, €")  (6b)
307 — o)

S (e )P (x e)de’ (60)

QRy)(x.€) = /
U&mt — Ofjont 2 30Fi0 — O-lelott 2
o = it (gt () (x,£)1cl 4 Mottt (g2 )
—(oTM + O Mott) () WH(x, &)

whereogy = 0.1+ 0w 2 anda' are scalars given by

. +1
o'(e,e) = 2n | L H 'o(g' e, u)du.
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Similarily the moments of the CSD operator (3) and the FP atper(4) yield

Qspl(§)(x,€) =& (S4°) (x.€) (7a)
+ [ 0f 2(6/, ) )’ (07 aon — o) (147, ).
Qhsol¥h) (x.&) =2e(Sp)(x.2) (7b)
+ [ 6ol €)% &)’ ~ (0o — G (B4 ..
QRsol¥?)(x.8) =0e(S2)(x.8) (70)
/:’ %2~ %z > %z (€, e)tr(Y?)(x,€)d + 730&22— ik (€', €)p?(x,€')de’

0 _ +2 3 2 0
+ GMOtt 5 OMott (S)tr(l[]z) (X, E)'d + GMOttZ GMott (8) wZ(X7£)

- O-TA,MOH(‘E)QUZ(X’ 8)7

Qo) (x) =05(SU°)(x) + [ o o€ )u0x &)’ (8a)

Qhe(Wh) (%) =0s(SY1) (x.£) ~ 2T (€)W () + [ aiha(e )yt eds’s  (8b)

Qp(W?)(x.£) =0e (SP)(x.£) 2T () (302(x.£) —tr (4?) (. )) (5)
+‘/:° Oz Gz > iz (€. er(Y)(x,e)ld + 730“2”’22_ B (€/,€)Y?(x, €')de’.

Remark that the only difference between the moments of tHe &%l FP operators are the
scalars beforg/?(x, &) andtr (¢?)(x, €)1d.

The system (5) requires a closure, as it has more unknownettpaattions. In practice,
this is done by approximating by an ansatzjr, and then computing the higher-order term
using this ansatz, i.e.

N+1
~{Q® .20
1 < ®-® wR>,

N+1 times

whereyr is an ansatz having the momeiitg2, ..., wN).

ForN = 2, choosing an ansatfir provides an approximation of the flux® depending
on (¢°, Y, Y?). For each possible set of momefgs’, Y, ¢/?), one needs to find an ansatz
Yr having the right moments. This problem can be written as

find Yr(Q), st <Q®~-®Q wR> =y, i=0,.,2
itimes
One possibility is simply to choose the ansgitzas a polynomial of degreld
Yr(Q) =A.M(Q).
Herem(Q) is a basis of polynomial of degré¢over <, in particular, we chose
for N= 1, I’ﬁ(.Q) = (1, .Q;]_7 .Qz, Qg)7
for N=2, mQ)=(Q1, Q, Q3 QF Q% QF N0, Qs Q02)
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in the rest of the paper amdis the unique vector of scalars such that the momentggof
are(y°,...,yN). This leads to the so-calléd, models. Computing the ansatz (and then the
closure) is simple and only requires the solution of a lir@eatems. HoweveR\ models
present several drawbacks. First the obtained funafipnan be negative (see e.qg. [26,40]),
which is not physical. Second, in radiotherapy beams ofiglestare used. Perfect beams
can be modeled by Dirac distribution @. Such distributions are poorly approximated by
polynomials.

Example 1Consider a Dirac pealg = 5(Q.e; — 1). Its first moments read
Y= =1 y'=(Qy=e.

The polynomialyr € R[X] of degree 1 having/® andy* for moments reads

1+3Q
UR(Q) = +2 1

One first remark that thB;, ansatz differs from the beam distribution. Then computhrg t
second order moment of this ansatz, i.e.Fpelosure, read

111
3’3’3
which differs from the second order moment of the Dirac paakl therefore th& model
is not able to represent a beam. Similar computations shatfah anyN the By model is
also not able to capture the exact closure. One solutiontairoh good accuracy with the
Py model when considering beams of particles consists in ogdkie number of moments
N large, which deteriorates the time efficiency of the method.

<Q®QwR<Q>>:Diag( )#e@el:m@aw,

Among the possible candidates i (having the moment&p?®, ..., ¢N)), we chose the
one that minimizes Boltzmann entropy function

(1) = [, (Tlog(f) ~ ) (@)de, ©)
which leads to the hierarchy of the so-calldg models.

Theorem 1 ([42,8,9,10,30,51,28fJonsider a vector of polynomiafs(Q) and a vector
@ such that there exists at least one positive functfon 0 satisfying

@ = (my).
Then there exists a unique minimizgg to (9) which has the form
YR(Q) = exp(A.M(Q2)). (10)

Furthermore, the function that sends the momegntmto the ansatf10)is a smooth bijec-
tion.

Beam-like distributions can be correctly approximated bsatze of the form (10). In-
deed, a perfect beam in the directi@y can be modeled by the Dirac distribution, which
can be interpreted as the limit of a sequencMefinstze

. 1
0(Q.Q—1)= nIﬁlrﬂwZTexp((log(n) —n)+nQ.Qp).
In this sense beam-like distributions are in the closuréefset of distributions of the form

(20).
In the next section, we focus on the following two properiéshe My model (and
especially of thevi, model) when constructing the approximation of Mgclosure.
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Hyperbolicity The My equations are known to be symmetric hyperbolic ([34,21hHisT
means that the Jacobian of the flux

,,,,,

is diagonalizable with real eigenvalues.

Realizability The solutiony to the kinetic equation 1, with the collision operator (3)), ¢r
(4), is positive. The realizability property corresponalsdquiring that the solutiof?, ..., ¢V)
to the moments system (5) with the associated collisionaipe(6), (7) or (8) are the mo-
ments of one positive distributiaf, i.e.

JY(Q)>0, st (¢°,...yN :/ 1.0 20)y(Q)do.
Y(Q) W% ) = | ( ®---0Q)P(Q)
N times
Definition 1 The set of all realizable moments of order upNas called the realizability

domain#)y of orderN

By = /52(1,...,Q®‘-.®Q)w(g)dg7 VP>0%. (11)

N times

Remark 1The notion of realizability can be extended to general meassun this paper,
we avoid the technicalities associated to measures angshuite non-negative densities,
which formally includes the case of a sum of Diracs to repreadaliscrete measure.

Remark 2The realizability domain is a convex cone. This means thsitivge combinations
of two realizable moments is realizable. Indeed suppgse 0 anda, > 0 are two positive
scalars and; andys, are two positive functions a® and

N times N times

Then the sum

a1+ oah = <(17~~7Q®"'®Q)(0’1W1+0!2¢2)>

N times

is obviously realizable since1 i + azy» is positive. This property will be used below in
Subsection 3.3 to enforce realizability of the approxirdati®sure.

The coefficients oA are generally determined by solving the dual minimizatimbfem
([27,2,1])

) = argmin(exp@am(Q))) —a.{, (12)

where = (M(Q)y) are the momentg/' associated tan(Q2) arranged as a column vector.

Solving this minimization problem is however computatibynaxpensive (see e.g. com-
parison in Section 4). Therefore we propose an alternativehe first two models in the
hierarchy, theM; andM, models. It consists in smooth approximations preservingreg
important properties of the exact closure.
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2.3 TheM; model

We illustrate here the procedure described above for thierfieslel in the hierarchy and
propose an approximation of the closure. Considering oglyagons (5) fori = 1,2, we
need to expresg? as a function ofp® andy?. In that case, using (10Jr yields

(,UR(.Q) = EXFX/\0+)\1.Q;|_+)\2.(22+)\3.03). (13)
Then the coefficienta € R and(A1,A2,A3) € R are such thafir has the right moments
(Wr(Q)) =4¢° (QURr(Q)) =y

Let us writen = /1 /|| Using rotational invariance ([33]), one can prove thatehexists
a € Rsuch thafA1,A2,A3) = an.
Using this form of the ansatpr leads to

l¢l2 _ |acoth(jal) —1

= = f(|al). 14
0 a (lal) (14)
This functionf is bijection betweeiR ™ and[0, 1[. Computing the closurg/? leads to
w2=w°<1‘2X2|d+3X22‘1n®n), (15)
1 luZexp(ap)d 2
xo (1652) - Lag SROMEL 1, 2 (L +cothilal),
v J21 explap)du al

where|a| is a function of”‘f’p# given by (14), i.e.

1
‘a| _ f—l (HLZIOHZ) )

The Eddington factox, does not have an analytical formula but can be approximates (
below in Section 3.3).

The M; model is often used because it is simple to implement andrs@vtarge range
of physical phenomena. However it presents also severafdcks. These drawbacks are
presented in the next section in order to highlight the athges of thévl, model compared
to theM1 model. Then an approximation of thé closure is proposed. Section 4 illustrates
the efficiency of thevl, model through numerical test cases.

2.4 The advantages of tiM, model

Now we motivate the advance to tMe model, that is, increasing the moment order to two.
TheM, model is able to model a larger range of physical phenomerattteM; model.

First, the physics are modeled more accurately. Indeedndgasing the differential
cross sections into polynomials reads

o(e,e,u) = _Z)Ui (e e)u'.
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Then extracting th&l first moments of the collisional operator is equivalent tmtrating
this expansion at degréé So clearly the collisions are better modelled\aisicreases. This
phenomenon is illustrated through the test cases in Secfi@and 4.4 below.

Furthermore M1 is not able to distinguish certain multiple-beam cases wiaie of
major importance in the field of radiotherapy. Indeed in mdéradiotherapy, the source of
particles creating the dose are beams of particles appliedeoboundary of a medium (see
e.g. the numerical test cases in Section 4).

Example 2Let us consider two perfect beams of opposite directiencrossing each other.
This is modelled by a distribution composed of two Dirac geak

Y=0(Q.e—1)+5(Q.(—e1)—1).
Extracting the moments of this distribution yields

W= () =2

Y= (QY) =0z,

PP =(QeQy) =26 e
Working with theM; model means working withi®, ¢/1). In that case, the first two mo-
ments are the same of those of an isotropic distributfor %1 This means that thi;
model is unable to distinguish two beams from a isotropidrithistion. This produces an
overestimation of the diffusion at the point where the beamuss each other. However

with @2 available, theVl, model is able to recognize that the underlying distribut®not
isotropic.

This problem also appears more generally for two-beamilbligions.

Example 3 A distribution of two beams in directioreg ande,
Y=90(Qe-1)+0(Qe-1)
has moments

W= W =2
gt= (QU) =e+e,
Y= (QoQy) —eve+eee.

Here theM; model sees a single beam in the direct@n- e;. But becausep? does not
have the moments of a single beaneat e, (these would bée; + &) ® (61 + €)), theM;
ansatz can distinguish these cases.

Remark 3This problem could be circumvented by exploiting the lirigasf the underlying
kinetic equation (1-4). Indeed, suppose that for eaal is the solution of (1) with the
collision operator (2), (3) or (4) with a boundary conditignyz = Y, Whereys, contains
(for example) only a singleth beam entering the domain, and an initial condition obzer
Then the solution of (1-4) with the boundary conditigty; = 5 Yy, and the same initial

I
condition would bey ¢ji. Each solutiony; can be approximated by solving thy system

1
(5) with the associated collision operator. This way oneawist an approximation of the
solutiony ¢4 with multiple beams by solving thiely system for each beam separately.
I
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3 Approximation of the My closure

The computation of th#, closure in three dimensions of space cannot be simplifiedéo o
dimension by using symmetry arguments as inNhecase (Section 2.3), therefore typically
it would be computed by numerically solving the minimizatjroblem (12). However, this
method would be too expensive for the applications we havaiitd, so we propose an
approximation which takes advantage of the underlyinganadical structure of the closure
and is exact for certain special boundary cases.

A naive idea to approximate thé, closure consists in solving (12) for a large amount
of values of(¢°, ¢, ¢?) and directly constructing a polynomial fitting those valugsch
an approximation is not very satisfactory as it does nosaliasic properties. For instance,
when choosing a 1D functiogy(Q;), the closurap® should be the third order moment of a
1D distributionyr(Q1). This would not be enforced by such a naive polynomial approx
mation.

Instead we propose the following: First we use the same rdedlsdan Section 2.3, to
approximate the closurg® in the M1 case. Then we extend this progressively to more
general cases until obtaining an approximation of the gah&r closure.

In the first subsection, we introduce the realizability domfar the M, model, which
is the domain of physically relevant moments. In the secart$ection, an approximation
of the closure is proposed in some subsets of the realigatdimain. In the third subsec-
tion, a polynomial fit is proposed which is correct in thesksis. Finally, we consider the
properties of the obtained approximation.

3.1 The realizability domain for thigl, model

The solution of the kinetic equation (1-4) is positive. Thisplies that its moments
((1,Q,Q2 ® Q)y) evolve in the realizability domaim, C R x R3 x R3*3 (defined in (11)).
The solution of the moment system (5-8) with e closure needs to be inside this set. In-
deed theMl, closure exists only if there exists an ansatz of the form {@t)se moments are
(@°, @*, @?). For moments on the unit sphe®d, this is equivalent (according to Theorem
1) to requiring(@°, Y, Y?) € %,.

The realizability domai#Z, for moments of order up to 2 is characterized as follows.

Proposition 1 The realizability domain for second order moments can béewri

Gy = { (Y0, ¢ g?) e RxR3xR¥*3 st tr(y?)=¢°>0 (16)

and y°y? — '@ ylis symmetric positive definite (s.p.}i.)
Proof This results follows directly from [31] which provided thellowing result
%o = {0, ¢h %) e Rx RO xRS, st tr(y?)=y¢°>0
and ¢°y?— ¢! ® glis symmetric non-negatije

Then, using Theorem 1, one obtains the existence of a pegitistead of non-negative
for the previous characterization) representing distidoufor all moments ¢/°, ¢, ¢?) €
int(#-) in the interior of the realizability domain. (16) is a chaezation of this interior.
Finally, by replacing one of the inequality in (16) by an elifyaone can prove that there

is no strictly positive representing distribution for sutloments (see e.g. [15,16]), which
prove the equality (16).
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In order to simplify the computation af®, we use a transformation of the realizability
domain. It consists of a normalization and a rotation.

Notation 1

— Niis the i-th moment normalized by the zeroth-order momemnt, i.

Y

N :_@.

— Let R be the rotation matrix that diagonaliz¢8y? — ¢! ® @*. This also diagonalizes
N2 -N1@NL.
— Z7 is the set of realizable moments after these transformat{ortation and normal-
ization)
Fr={(NL,N?), st t(N)=1 and N -N'®N'diagonal positivé .
One passes easily from one set to the other
%> > (YO, ¢t ¢?) = (YO, ¢°RNLYPRNZRT), with (NLN*)ezr.  (17)
Similarly, applying this transformation wp? yields
3 3 3
@3 = yRou(RN%),  Ro(R N3 = z S SRR RaeN? s (18)
i"=1j=1K

j =1

whereRog(R,N3) is the tensoN? rotated using the matriR. After transformationN® only
depends oriN',N?) € Zr.

Notation 2 For (N*,N?) € %r, as tr(N?) = 1 we have
tr(N2—N1@N) =1 ||NY|5.
One can rewrite
N? = N'@N* + (1 [|NY[|3)Diag(ys, yo. 1 - v1 — ¥2).
Then we can parametrizér by
% = {(NY,11,10) € B(Ogs,1)x]0,1[x]0,1— [} .

In the next subsection, we exhibit values\ofin subsets ofZp.

3.2 Special values of the closure

Now we define a hierarchy of subdomains#f and computé\® in each of them. Then we
recall results about the boundary%f; .
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3.2.1 N8 in subdomains ofZ;

First we consider the relation between momeis, N?) € %1 and functions of the form
(10) and vice versa. From these relations, we can give tme édithe closuré\® in certain
subsets 077 .

Notation 3 We use the following monomial basis for polynomials up toeketyvo over the
unit sphere

MQ)=(Q1, Q, Q3 Qf 0 0 A 2103 200),
and we write

Yr(Q) = exp(A.M(Q)), (19)
with A € RS,

Using Theorem 1, there exists a bijection between the Lwanultipliers)\_ € R? and the
moments ¢°, 1, Y?) € int(%,) in the interior of the realizability domain (remark thatghi
interior isint(%,) = %>, see (16)). We consider the following hierarchy of subdarsaif
RQ

2= {(11,0,0,A4,45,46,0,0,0), s.t. (A1,As,A5,A6) € R*} C R?, (20a)
L= {(/\1;07 07A47A57A5707 0, 0)7 s.t. (A17A47A5) € Ra} C gla (20b)
Z3:={(A1,0,0,A4,A4,14,0,0,0), s.t. (A1, As) € R?} C % (20c)

Choosingx in one of those sets in (19) gives atweyr of the form

W (Q) = exp(A1 Q1+ AaQ? + AsQ7 + A6 Q3), (21a)
Y2(Q) = explAs + A1Q1 + (As — As) Q7), (21b)
Ua(Q) = exp(Ag +A1Q1) (21c)

respectively.

Definition 2 We denote byH' the set of normalized and rotated moments of functions of
the form (21):

H = {((Q,Q2Q)expA.M(Q))), Ae.A}nZr. (22)

Remark 4Choosing the set¥s ¢ .% ¢ .21 C R® was motivated by two reason. First the
hierarchical character of these sets is necessary to trerootion of the expansion M3
described in the next section. Second each scale of thirbier corresponds to a particular
type of problems:

— H? corresponds to the case whapé is an eigenvector ofy® (see computations in
Appendix A.1).

— H2 corresponds to a 1D problem. Indeed, one can see that thieutisn (21b) depends
only on one scalaf;.

— HS3 corresponds to a first-order model (iMd; model). Indeed, one can see that the dis-
tribution (21c) corresponds to a distribution functionaibed using a first-order model
(i.e. when working with( /°, @?1)).
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In order to illustrate this hierarchy, possible distrilbatifunctions associated to each of
those sets are depicted in Fig. 1, 2, 3, 4, 5 and 6. On thosg fhetcolor on the unit sphere
corresponds to the value of the distribution function (vehiglue corresponds to the lowest
value and red the highest) given in (21). H§ andH? are related to 1D distribution, those
distributions can be represented along the preferred agispr in (21a) and (21b) as a

function of Q;. Computing the moments of order one and two of the functi@a} (eads

\\

T -05 05 1

Fig. 1 Unit sphere colored by a Fig. 2 Distribution function as-
distribution function associated sociated to a vector dfi® along
to a vector oH3 its preferred axis

3 N\

2

15

1

05

ST -05 05 1

Fig. 3 Unit sphere colored by a Fig. 4 Distribution function as-
distribution function associated sociated to a vector oH2\H3
to a vector oH2\H3 along its preferred axis

inHY, N'=Nle;, N2=|N{J%e;@e;+(1—|N|?)Diag(ys,y2,1— i — o),

(23a)
. . 1- 1-—
inH?,  N'=Nfe;, N°=|N{|e;@e1+ (1—|Nj[*)Diag(ys, 2y1, Zyl),
(23b)
1y _ 1
in H37 Nl:N%e]_, N2:3X2(|Nl|) 1e1®e1+1 X2(|Nl|)|d7 (23C)

2 2
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Fig. 5 Unit sphere colored by a Fig. 6 Unit sphere colored by a
distribution function associated distribution function associated
to a vector oH\H? to a vector of#Z,\H?!

wherey is the Eddington factor (see e.g. [33]). This leads to thiefdhg parametrization
of H'

(NLyi,p) € 21 = {(NYyi, o) e Zp st N'=Niel},
¥2)

{
1 2. 1 1 1l
(N“ ) € 27 = (N ) €27 st yo=—5— 1,

N1 — N2
(Nl,VLVZ)E%S:: {(Nlaylay?)e%z S.t. yl—X2(|li|)Nl|21}
1

Similarly, computing the third-order moments of the disfitions (21) reads

inHY  N3=kpli11+KsTio2+ (Nf — K2 — K3)Tiza, (24a)

. Nl— K1

inH2, N3=kqlyq1+ 2 > (T122+T133), (24b)

. NI — x5

inH3  N®=x3lyq1+ = X (Ti22+T133), (24c)
Tiji=Lijj+1ij+1, Ljk=ea®e e,

whereys, K1, k2 andks are scalar coefficients depending(@if, y1, y») respectively ins#3
for xs, #°2 for ky, and.# for k, andks.

3.2.2 Limits of N on the boundary of7r

The boundary of#Z7 is characterized by
N2 —N! @ N?! has a zero eigenvalue (25)

At the boundary, the problem (12) has no solution (see e8y8]2 However, we can deduce
the following two results, first on the boundarylaéf and then in the particular case when
|IN[|2 = 1, which we will use in the next subsection.

Proposition 2 SupposéN?,N?) € dH1, i.e. N! and N? is given by(23a)and
Ves, st V(N2-N!'@NY)V=0, (26)

or equivalentlyys =0, o =00r 1—y1 — y» =0in (23a)
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2
Nl.l

2
N2.2

Fig. 7 Representation ofH3 (red line), H2 (green plane) andH! (blue volume) in the space
(N117N12.17N22.2) € Rs'

Then the closure yields

Ni3,j,j = Nilez,jv NS, 3=0. (27)

Proof The moments i satisfyN? = Diag(N7 ;,NZ,,N5 3) andN' = Nie;. Therefore the
eigenvectors o2 — N ® N are the cartesian axis= g.

This result follows from [31], where the author showed the possible representing
distributions r(Q) for moments satisfying (26) are zero everywhere except erlitie
{QeS, st (Q-N').V=0}.Computing the following moments provides part of the
equalities (27)

/52 Q®Q[(Q -NYHV]gr(Q)dQ = N3V — (NLV)N? = Ogass.

The other equalities are simply obtained by remarking tbatesof the values dfi, closure
N2 are zero wheriN, N?) € H, e.g. using the eveness of (21a) accordin@ioone finds
thatN3, , = N35 5, = N3, 5 = 0. As theM closure is a continuous function bt andN?,

one retreives those zerosf on the boundargH?.

Fig. 7 depicts the hierarcity® c H? c H* and its boundary in the spa@d],NZ;,N2,) € R3
(these three components are indeed sufficient to paramettz H3 is the red line included
in H2 the green plane, itself included i the blue volume.

Proposition 3 ([31]) SupposéN?®,N?) ¢ %+, such that|N*||, = 1, then
N2 =N'®N?,
and the closure yields
N2, = NININg. (28)
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3.3 Approximation of thévl, closure: the expansion

We first start by approximatiniy® in the setH3. Then we extend it progressively ink?,
H1, and finally%,.

The approximation is based on polynomial interpolatiora. ¢onvenience, we intro-
duce the following notation

Notation 4 The polynomial of degree two interpolating the values A, 8 @rat the points
a, b and c is denoted E, and Z denotes the polynomial of defgree which is zero in a, b
and c:

X—bx—c X—aX—cC Xx—ax—b
E((A7a)7(Bvb)a(C7C))(X) = Aa—ba—c b—ab-c c—ac—-b’

Z(a,b,c)(x) :== (x—a)(x—b)(x—c).

The hyperbolicity and the realizability properties (seb&ction 2.2) are considered at each
step of the construction of approximated closure. Thezahility, the hyperbolicity and the
precision of the approximated closure are finally studiethénext subsection.

3.3.1 Initialization: the closure in Bi

First, one needs to approximate the Eddington fagido compute théM; closure (15). As
in the characterization of (16), the mome(d#, ¢/*) are the moments of a positive function
if and only if ([31])

1
||LIIO||2 <1

W

Similarly using (16), simple computations show tlgf, ¢, ¢?), wherey? has the form
(15), are the moments of a positive function if and only if

X < x2(x) <1, forxe0,1].

In order to construct a realizable closure (see Remark 2pragose to approximate, by
the convex combination

X2(X) & X261(X) + (1— 61(x)) 1.

The coefficien; is chosen to be an even function«so thatf; (x) € [0, 1] and the following
exact value of the Eddington factgs and its derivative are satisfied on the boundary of the
realizability domain (i.e. ak = 1) and for the isotropic case (i.e. in=0). The choice of
fixing the exact values of the derivatiyg is motivated by the hyperbolic character of the
M closure (see the "hyperbolicity” paragraphs of Subsest®@2 and 3.4). Those values
are obtained by rewriting

(QZexp(a(INY) Q1)) _da d (Qfexp(a(INY)Q1))

NY) = . X5(INY) = — :
XN = remaqvpany  XIND= Gt da (expa (N @0)
-1
where iy = (dlj'\(‘;‘) . Then one can remark that

INY(@a=0)=0, lim [N} =1,

a—r+oo
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and sincgN?| is a bijection ofa (Theorem 1), this implies that

a(NY[=0)=0, |im a =+,
INL|—1

then computing(, and its derivative at those values using a symbolic comjputabftware
such as MaplB” ([38]) leads to

XD)=1 x0)=3 X1=2 x0=0 (29

In the end, we chose
B1(x) = X2+ %(1— %) +x2(1—x?) (co+ coX® + coxt)

where the coefficients are fitted to approximate the exagtfor 10° values o equally dis-
tributed in[0, 1] using MapléM ([38]): co = —0.0954823981432438; = 0.229069986304953
andc; = —0.0344846229504588. One can check #dk) € [0, 1] for all x € [-1,1].

Based on this approximation, one can construct a realizdbseire inH3. Using [31]
again, a vector of 1D moment8l,N7;,N?, ;) is realizable if and only if

b,(Nll,Nil) < Nil,l < b+(N117Nf1)7

(N$+N2,))2
(L+Nf)

(N-NE,)2

b-(Nf,Nfy) i= —NE; + TN

by (N, N12,1) = N12,1 -

Then similarly to above, we construct a realizable closore? as a convex combination
(see Remark 2)

X3(X) = b (X, X2(X)) 82(X) + b (%, X2(x)) (1 = 62())-

The coefficienB, is chosen so tha (x) € [0, 1], such thalxs is odd and the following exact
value of x3 and its derivative are satisfied, on the boundary of thezakhility domain (i.e.
atx = 1) and for the isotropic case (i.e.>at 0)

xs()=1, x3(0)=0, x4(1)=3, x4(0)=3.

Those values are obtained from the same method g&fior (29). In the end, we chose

Br(x) = %+x<—%+(1—x2)(do+d1x2+d2><4)),

where the coefficientd are fitted to approximate the exagtfor 10° values ofk equally dis-
tributed in[0, 1] using MapléM ([38]): dp = 0.38614355349515@; = 0.488034553677475
andd, = —0.681343955348390. One can check th#ix) € [0,1] for all x € [-1,1].
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3.3.2 Extension to A: the 1D approximated closure

Using the above results and the form\t in (24b), we define an approximation Wf in
H2 by approximating as follows

K1(Xy) = b-(x,Y)63(xy) + b (x,y)(1 - 63(xy)).

The coefficients is chosen such th#k(x,y) € [0,1] so that the resulting closure is realiz-
able (see Remark 2). Furthermore it is chosen to have the¢ eaiae on the boundary of the
realizability domain (i.e. wheiN',N?) € dH? as in Proposition 2) and the approximated
value inH?3 given above, that is

x2(N{) — INJ|?
k1(Nf,0) = (N})?, <N1 %

In the end, we chose
Tim P (x0), Toim it (x BUF) ) Toim R (x,0),

63(xy) = E ((T0,0), (T2, 2255 ) (T5,1) ) () + 2 (0. 222955, 1) (1) Qu(x, ),

whereQ; is a polynomial ofx andy of degree sixteen. Its coefficients are chosen such that
the discretd 2 distance between the approximated and the exa¢tomputed by solving
(12) for 10* values of(N*,N?) € H?, given by 100 values of equally distributed irf0, 1]

and 100 ofy equally distributed ir[0, 1]) is minimized. The degree of this polynomial ap-
proximation is chosen very high because a high precisioagaired for the next extension
(i.e. toH! and then to%t). The discretd.® error compared to the solution of the minimiza-
tion problem (12) for those TOvalues of(N',N?) ¢ H? is 8.43 x 10-3. Our polynomial
satisfiests(x,y) € [0,1] for all x € [-1,1] andy € [0, 1].

) Xe(ND),  Kka(NE1) = N,

3.3.3 Extensionto H

This procedure can be repeated to approxirhiten HY.
Using Proposition 2 and the previous approximation, we aimvrite an approximation
of k2 andks (in (24a)) satisfying

1—
Ka(NE,11,0) = (ND)3+NE(L— [NF2) ., Ke(NEya, =) = ka(NE ),
K2(N$,va,1— 1) = (N3 +N{ (21— [N)ya,
1— 1
K3(N11-,V17 ) K3(N117V17 ZYl) E(leKl(NLVl))

Ka(N$, i, 1= ya) = (N3 + NE (L= INT ) (1 - wa).
Similarly to above, we propose an approximation of the form

K2<x7y.,z>:E(<Kz<x7y,0>7 0. (eley 5. 55 atxw1-v.1-9). ) @

o

1-
e
K3(X,Y,2) = E( K3(x,,0),0 <K3 XY, =), 2y> ,(Ks(x,y,l—y)yl—y)v) (2
1)

(o5

)Q2(X,Y,2)

)Q3(X,Y,2)
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whereQ, and Qs are polynomials irx, y andz of degree eight. The coefficients of those
polynomials are chosen such that the disctétdistance between the approximated and the
exactk, andkz (computed by solving (12) for 8 10° values of(N*,N?) € H?, given by 20
values ofx equally distributed irf0, 1], and 20 values of in [0,1] and 20 ofzin [0,1—Y])

is minimized. The discrete® error compared to the solution of the minimization problem
(12) for those 8« 10° values of(N*,N?) € H is of 2.09.102.

3.3.4 Extension to the whole realizability doma

We now aim to extend this approximationdr which will provide us with an approxima-
tion of 2 for any (¢°, Y, Y?) € %, through (17). This last extension again consists of an
interpolation.

The previous approximation provides a closure whiris along one of the Cartesian
axes. One can also compute the closure wheh= 1 through Proposition 3.

Now suppose we want to compug at the pointy = (N*,N?) € %, parametrized by
(NL, v1,0) = (xer +yer + 263, By, B2). Let us define the following points (see Fig. 8 and 9)

P=(NY v, 1) = (xer, Br, B2),  Po=(NLyi, o) = (Y&, Br. B2),
P3 = (N17 Vi, VZ) = (2%7[31732)7

corresponding to projections B onto each Cartesian axis. At those poiiN$,is an eigen-
value ofN2. Then we can use the approximation techniqués;iof the previous paragraph
(see remark 4). Now let us define the lines and points (see3Figd 9)

Ll = (P17 PO): L2 = (P27 PO), L3 = (%7 pb)
Pr=LiN{|INY]2= 1} = (xe1 + aryer + arzes, 1, o), a1 =/ 52

Ps=LoN{[|INY2 =1} = (apxer + Y& + o263, B1, Bo), @ =

PG:L3O{||N1H2:]‘}E(a3xel+a3yez+z%7ﬁlaﬁ2)a az = 1-2 .

The closuréN? is either known (a4, Ps andPs) or approximated (e, P> andPs) at each of
those points. Thus fdiN®,N?) € %t the different components of the closiNé are approx-
imated by convex combinations of the values\Gfcomputed or approximated at the points
R forie{1,2,...6}. Inparticular, foi € {1,2,3}, we approximatedi'f’-_- with a convex com-
bination of its approximate value f& and its exact value fdps.;. Similarly, the value of
N7, 5 is known at the pointéN™, y1. y2) = (Ogs, 1., ¥o) and(N*, y1, yo) = (N*/[IN*[|2, y1. y2),
and we simply approximate it by a convex combination of tHeeat those points. In the
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end, those approximations are
Nf,l,l(Nl,VLVZ) ~ (1—5‘1)Nfl,1(N11917Vl,V2)+O{1(N11)37
Nfz,z(Nl,VLVZ) ~ (1—0’1)Nf,2.2(N11917Vl,V2)+alN11312|N21\2’
NP 33(NY i, o) & (1— a1)NPa5(Nfer, v, vo) + aiNi B7|N3 2,

N INGR
1-IN{[2

N
ING[2+ N3 [2”
NP1 o(NL v 1) & (1= a2)NF 1 5(NGep, va, o) + aoN3 BFINT |2,
N32o (N i, 1) & (1— 02)NS, 5 (NJep, ya, o) + a2(N3)2,
N33a(NY i, 1) & (1— 02)NS5 5(NJep, ya, o) + a2N3 B2 |N3 |2,
_INEP+INg[P 1-|Ng[?
1Nz INF |2+ N3 [2”
NP1 3(NY v 8) & (1— a3)NPp 5(NJes, ya, o) + asN3 BFINT |2,
NS5 3(NL v, 18) & (1— a3)N3 5 5(NJes, ya, o) + asN3 BFIN |2,
N333(NY i, ye) & (1— a3)NS5 3(Njes, v, 1o) + as(N3)2,
_INEP NG 1—|N3[2
Sl NG INF |2+ [N3[2”
N13,2,3(N1»V17W) ~ NiNZN3.

ay

Br=

Bo=

as

Bz =

For Nf273, several other linear combinations were possible, but wadahat this simple
expression gave the best approximation ofheclosure. The discrete™ error compared
to the solutions of the minimization problem (12) fa@% 10° values of(N,N?) € %~ is
of 3.12.10°2. Those values are obtained from 20 valued\dfequally distributed irf0, 1],

20 of N2 in [0, /1—|N}[2], 20 of NZ in [0, /1 — [N}2—|N2|2], 20 of y4 in [||NY[|2,1] and

20 of o in [0, 1].

1- NG

N3

P 1-INi?

Fig. 9 Configuration at fixedN? andN3.
Fig. 8 Configuration at fixedN?.
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3.4 Properties of the approximation

We study here the accuracy and the numerical cost to competapproximated closure,
the hyperbolicity and the realizability property with thepsoximated closure.

3.4.1 Precision and numerical cost

Our approach consists of a polynomial approximation. Eatéhg the polynomials is very
fast compared to solving the minimization problem (12),resriumerical methods gener-
ally require iterative algorithms. The approximate cl@sisrcompared to the one obtained
by solving this minimization problem using the routines H8Mof MINPACK [43] and
DCUHRE from [5]. The routine HUMSL is based on an iterativgalthm using the gra-
dient and the Hessian @f®. The routine DCUHRE is an adaptive quadrature algorithm for
functions of several variables. The precision for this mization algorithm (both for the
minimization and the quadrature) can be fixed. In order teelafair comparison of com-
putational times and precision, we first ran the code witth ligecision L error of 10°9)

in order to have an accurate reference (it ran for 3h 33mirg,then we ran it again with a
precision equivalent to that of our approximation. We fixed tnaximum number of itera-
tions for both the quadrature and the minimization routinkC8 iterations, and we checked
that this was not reached during the computations (meahagl¢sired precision was al-
ways obtained). Computing the approximation is much fakim solving the minimization
problem with this method as shown in Table 1.

Minimization solver Approximation
Computation times| 1654 sec = 27min 34se¢  0.434 sec
L™ error <3x10°7? 312x10°7?

Table 1 Comparing computation times for the closure witB 8 10 points in%r between the minimization
solver and our approximation.

3.4.2 Hyperbolicity

It is well-known [34] that theM, system is a hyperbolic system of conservation laws, as
long as(y°, ', Y2) € %,. This means that the Jacobiiyo 41 42) (W, Y2, ¢3) is diago-
nalizable with real eigenvalues. In this paragraph, weystie hyperbohcny of our approx-
imation of theM, closure at each step of the expansion of the previous sudsgict. when
(NY,N?) isin #8, 2, #*, and%r.

For theM; approximation, i.e. for moments i3, we can work in a reference frame
in which ¢! = ||@/||e;. Using this simple rotation, one can show that the Jacolsdnages
into

ISP 0
D(lllo,leHz) WOXZ(HLZ,#) = Xz(l\lﬁ}lo\\z) llyt ”X( H )XZ(H

This leads to the following requirement for hyperbolicity

vxe [07 1]7 Xé(x) - 4(X2(X) - XXé(X)) > Oa
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which is satisfied by our approximation.
In H? (i.e. the 1D case), using the same method, one obtains trerlboliTity if the
following matrix is diagonalizable with real eigenvalues

0 1 0

0 0 1
3 1 3 2 3 3 3
N1.1,1 - N1 aNg N1,1,1 - Nl,ldel N1,1,1 5N11 N1,1,1 0Nfl N1‘1,1

Studying the roots of the characteristic polynomial of thistrix (i.e. roots of a cubic func-
tion), one can verify that this matrix is indeed diagondieawith real eigenvalues. This
means that thdl, system of equations for 1D problems with the approximatediwie is
hyperbolic.

In H! and inZr, the problem is 3D. The Jacobian can not be easily reducedaint
smaller matrix, so the full Jacobian is studied. As studyimgments inH! does not pro-
vide any simplification of the Jacobian compared to moment&si, we directly study the
hyperbolicity in the general case, for moments#n. Checking that the eigenvalues of the
full Jacobiar o 1 42, (W, @2, ) are real for al(N*,N?) € %7 is complicated, and we
have not been to verify analytically that the eigenvaluesaways real. Instead, we ver-
ified this property was satisfied for a finite number of poims#r, i.e. for 1¢ values of
(N1,N?) € 7. Those values are obtained from 10 valueblpequally distributed irf0, 1],

10 of N3 in [0,1/1— |N#[2], 10 of N in [0,1/1—|Nf|2— [N3|2], 10 of y4 in [||N?]|3,1] and
10 of 5 in [0, 1].

Remark 5Since solving the minimization problem (12) numericallgaintroduces errors,
this may also result in a loss of hyperbolicity.

3.4.3 Realizability

For any set of realizable momentg?, ¢/*, ¢?) € %,, we have constructed a closue.
One may expect that the set of momeni8, ¢, 2, %) € % is also realizable, i.e. are the
moments of one positive function. The realizability coimiton 2 in 1D (see e.g. [31,15]),
i.e. in the particular case wheg?, ¢, ?) € H?, can easily be verified. In our framework,
this condition can be rewritten (see Remark 2)

6; €10,1],

which is satisfied by our approximation. This means that tiop@sed closure is realizable
when working with 1D problems. In multi-D, there is, to thetaars’ knowledge, no similar
characterization of the realizability to check. As our agmh approximates a realizable
closurey?® and has the right value in limit case whap®, @, ¢?) € 0%r, we may expect
the approximation to be realizable.

Remark 6 Numerically solving the minimization problem (12) intrams errors which may
also result in a loss of realizability.
4 Numerical results

Now we compare the solutions computed with Mg andM, models (both with approxi-
mated closure and by using the minimization algorithm presly mentioned for (12)) to
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those results obtained by solving the kinetic model diyeatl several test cases. First, the
numerical approaches used to solve the kinetic and momeuatiegs are described. Then
the results for each test cases are presented. Those tasistdéo computing the dose for

given boundary conditions which correspond to: a singlebealD, two opposite beams

in 1D, a single beam in 2D whose direction is not aligned wlii mesh, two beams in 2D

and finally a single beam in an inhomogeneous medium comelspgy to a human chest.

4.1 Numerical approaches

In each test case, the moments results are compared to this fsa reference code.

In 1D, this reference code is a kinetic solver for (1). Howedéscretizing (1) directly
with the LB operator (2) or CSD operator (3) is not efficiemidéed the differential cross
sections in (2) and (3) are very peaked, and such a disdietiaaould require a meshgrid
in angle and energy fine enough to represent those peaks.Wkrea afford to use such a
fine mesh. For the same reason, the proposed moment solvdy issed for the equations
(5) with the CSD (7) or FP (8) operator. In 1D, the kinetic anahnent solvers are based on
the equation (1) and (5) with a FP operator (4) and (8).

In 1D, we also compared the results with the approximatesucks to the one using
the closure obtained by solving the minimization probler®) (T his closure was obtained
by using the routines "HUMSL" of MINPACK [43] and "DQAGS" of QADPACK [47],
using a maximum tolerance of 132 (equivalent to the precision as our approximation)
and a maximum number of iterations of 100. For the purposefosé calculation these
routines provide an accurdtéy closure which is easy to incorporate into a numerical solver
However, for cases where the moments are closer to the bouatieealizability (and the
optimization problem becomes numerically ill-conditidfiespecial techniques have been
developed [27, 2, 1] which make the entropy closure problactable.

We used the Monte-Carlo solver PENELOPE ([20]) as refereRE&IELOPE is one of
the state-of-the-art codes for electron transport, andbes validated against experiments.
Note that PENELOPE, when compared to our model, also takesatount more physical
effects (like e.g. pair production and bremsstrahlung).

The numerical schemes are constructed as follows: Due tmtbgral in (4), in order
to computey at energye, one requires the knowledge of the valueyofor all energies
betweere andemax In practice, we solve it from a maximum energyax to zero.

The 1D kinetic equation is solved using an upwind schemeherspatial and energy
derivatives. The angular diffusion operator is discretizsing a central scheme, and the
integral operator with a midpoint quadrature rule.

The moment solver was obtained by adapting the relaxatiproaph proposed in [46]
to the equations (5) with the collisions operators (8) and For the sake of clarity, the
numerical scheme for moment equations is written here fdb grbblem with a Fokker-
Planck operator (8). It can be easily extended to 2D or 3DIproband to the CSD colllision
operator (7). First let us rewrite the moment system 5 wighRtR operator (8) under the form

r€max —

KF(D)(x,€) = p(X) dg(&ﬁ)(x,e)—T(s)Azq_l(x,s’)—s— o(e,e)P(x,e)de |, (30)

where is a vector of moments arf@| () its associated fluxg i is the matrix composed

of the momentsr' of the cross section; antlis a matrix such thaAL,U corresponds to the
moments of the angular diffusion term, e. g for

47 = (QUO, LAUZI:})Tv Lﬁ) LAU17 L)Ul 1 ) 5 = Diag(aov 0-1)7 K: Dlag(oa 2)
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In the following, the subscrigtcorresponds to the spatial variableand the superscrigi

to energy variableP. In order not to be constrained by a Courant-FriedrichssL 6BFL)
condition which could be very restrictive for our probleredse.g. [7,46]), we aim to con-
struct an implicit numerical scheme. We propose the follgrscheme, which was obtained
by discretizing in (30), the integral with a quadrature fatay the energy derivative with an
Euler discretization and the spatial flux with an implicitrfoof HLL ([25]) scheme

F_('ﬁ)lp+1_ F(O)f, _ G- 20P+ @,
2AX 2AX
|- (P = (sp)f

AeP

= = 1 = n — /
+p (TPA- GPPAERId) G - 5 a"Pgf ac? | =o.
p=1
This is an implicit equation fogyP. We use an iterative solver inspired by [18], which con-
sists of sweeping in thlevariable. Let us writeﬁlp‘k, the intermediate solution after sweeping

k times. The solution is initialized by choosiufg“’o = Lﬁlpfl, then the following systems are
solved iteratively: First

— —pk = pktl Pkt o pkil | pk
F@)PS—F@)P B G 2P+ @R
2AX 2AX

p-1 p,k+1 - p-1_, ; )
_ (S Ag(p&m' + (TPA-gPPaghid) gPH - pz ¥ PP AP

(31

+p =0.

=1

This corresponds to lettinigrun from O tolax, i.e. from left to right, and implicitly using
what has already been computed (i,l?r%klﬂ) and explicitly using what is not (i.aﬁl’j;kl).
Then we havé run fromlyaxto zero, i.e. from right to left

= — pk — ok  pk oipk ok
FOP - F(@)PY B @R — 2P+ P
2AX 2AX

P11 g Pkl - p-1_, , }
7(&IJ)| (S([J)| i (TpApr’pAEpld) ll7|p'k+1* Z 5p7plﬁlpA£p
p=1

(32)

=0.

+p AP

Equations (31) and (32) are solved iteratively until reaghh converged state, i.e. urikil
satisfies

—pk+1l  —pk
g — gP|
—pK
[l

for all |, and for a chosen maximum residwaln practice, we chose= 101, and a mini-
mum number of iterationk of 3.
The function of interest for medical physicists is the doseg by

Emax

D)= | S(e)yO(x, €)de.

For each test case we compute the dose produced by beamstodredeprescribed on the
boundary of the medium by

for Qn<0, Y(xe Q)= 10"xp(—ce(g0—€)?) exp(—Co(1— 2p.2)%), (33)
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wheregy, Qp are the energy and direction, respectively, of the presdriiieam, and is a
vector normal to the boundary in the outgoing direction.

If no beam is applied on one boundary we apply a zero distabwnd assume that all
particles injected at the other borders are stopped ins&lenedium.

The boundary conditions for the moment systems are definezktsgcting moments
from these boundary conditions.

The following test cases provide qualitative analysis efapproximation of th#, clo-
sure. Further analysis of the numerical schemes for monamtsjuantitative study (con-
vergence results) will be provided in another paper. Inest tases, we used mesh cells
Ax=0.01 cm and 100 cells in energy, with a toleramee 10~ in the scheme for moments
models. This precision was sufficient to observe the consitieghenomena.

4.2 Simple beam in 1D

In this test case a 6 cm long uniform water phantom is irradiatith a beam of electrons.
This is modelled with fixegp = 1 and boundary conditions (33)

at x=0cm: g=10MeV, Qp=e;, ce=200 and ¢, =10

The domain was meshed with 600 cells in position and 100 eésergy.
For this test case, we normalize the dose by the quantityjedtied particles, i.e.

W= /on/oemaxzp(o,s,g)dsdg.

The doses obtained with the kinetic solver, MeandM, solver with the closures obtained
from the minimization procedure and approximations areesgnted on Fig. 10, and the
computation times for this test case are gathered in Tabl€H2s simple case shows that

Model Kinetic minimizationM; | minimizationM, | approximatedM; | approximatedvi,
Times | 43.76 sec 4.58 sec 8.84 sec 0.016 sec 0.047 sec

Table 2 Computation times with the different models for the simple 10 Me&@m test case in 1D

the My models have the same qualitative behaviour as the kindgcergce. The dose ob-
tained with theM; model is however imprecise. Its derivative is too high ateh&y and
raised slowly and gradually until reaching its maximum, i&tihe dose obtained with the
M, and the kinetic models have a lower derivative at the entniglaer maximum, and faster
decrease after the maximum. These differences are due ¢orthireoroduced when approxi-
mating the kinetic solution of (1) bylly ansatz, as described in Section 2.4, but the results
of the M2 model already follow the kinetic reference with good prixis

The approximations of th®l; and theM, closures give good agreement with the clo-
sure obtained from the minimization procedure. The acguodthe approximated closure
is characterized by the errors on the doses gathered in 3able described in Table 2, the
approximations of thély closures significantly accelerate (by around 200 timesytims-
putation compared to using a minimization solver, whichtammselves faster (between 5
to 10 times faster) than the kinetic computations.
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Dose of a 10 MeV electron beam in water
6 T T T T T

— Kinetic

8 M1 minimization
++ M1 approximated
' |OO M2 minimization
. | X% M2 approximated

Fig. 10 Normalized dose produced by a 10 MeV electron beam in watagwskineticM; andM; solvers
with the closures obtained from the minimization procedui @pproximations.

M1 model | My model
DiscreteL® error | 4.5.10% | 1.75.10°2
DiscreteLZ error | 551.10% | 1.6210 2

Table 3 DiscreteL™ andL? error between the doses obtained with the approximated @nehitimization
closure respectively for thel; andM, models.

4.3 Double beam in 1D

The multi-beam instability in 1D is studied through thisttease (see Section 2.4): Two
beams of same energy and intensity but with opposite dineetie prescribed on both ends
of a 8 cm long homogeneous water phantom, characterized)yh

at x=0cm: g=10MeV, Qp=¢€;, C=200 and c,=10%
at x=8cm: g=10MeV, Qp,=-€, C=200 and c,=10°

The domain was meshed with 800 cells in position and 100 re#sergy.

The dose normalized by obtained with the Monte-Carlo solver, and thg, My,
doubleM; (i.e. computing the dose of each beam seperately Mithand doubleM, mod-
els is given on Fig. 11, and the computational times are ptedén Table 4. The dose with
the doubleMy model was simply obtained from the dose of the previous &st by sum-
ming D(x) + D(8 cm—X) (see Remark 3). As described in [27], when usindxamodel for
this problem, a shock appears in the middle of the mediumMrathis gives a high dose
peak in the center of the medium, and fds by a significantly smaller drop. It has been
observed in [27] that the higher is the order of model, thellemthis shock becomes.
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x X M1 approximated

30 double M1 minimizatior]

< double M1 approximatg
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| — Kinetic
oL %X-X M2 minimization i
+ 4 M2 approximated
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< double M2 approximatgq
1 1 1
0O 2 4
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Fig. 11 Normalized dose produced by two 10 MeV electron beams in watagkinetic,M; andM, solvers
with the closures obtained from the minimization procedui @pproximations.

This artificial shock does not appear when considering tleeowams separately. Through
this case, we see that the non-physical effects of the angpfaoximation are smaller as
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Model | Kinetic | minimizationM; | minimizationM, | approximatedV; | approximatedvy
Times | 58.3 sec 7.81 sec 14.35 sec 0.023 sec 0.072 sec

Table 4 Computation times with the different models for the double 10/Ndeam test case in 1D

the order of the model raises. Similarly to the previous ctmeM, results are close to the
kinetic reference, except in the middle of medium, while lgeresults are less precise.
Finally the doubleMy models gives satisfactory results when high precisiondsired.

The accuracy of the approximations of the closures oMheM,, doubleM; and double
M. models is characterized by the errors on the doses gathefedie 5.

M; model | Mo model | doubleM; model | doubleM> model
DiscreteL® error | 5.00.10% | 2.76.10 ? 450104 1.31.102
DiscreteLZ error | 6.59.10% | 4.49.10 2 6.44.10 % 151102

Table 5 DiscreteL™ andL? error between the doses obtained with the approximated anohitimization
closure respectively for thigl;, M2, doubleM; and doubleM; models.

4.4 Simple inclined beam in 2D

In 2D, the computations need more computational power. Wigawt afford to use a min-
imization procedure in 2D to obtain téy closure, so only results using the approximated
closures are presented.

This test consists of a beam of 10 MeV electrons in water, wlidiection forms an
angle ofrt/3 with the normal to the boundary. It is modeled by (33) wite garameters

at x=0cm for ye[475cm5.25¢cm:
g=10MeV, Q,= @, Ce=200 and c,=10°.
In order to compare our results with those of PENELOPE M&@delo code, the dose
is normalized by the maximum dose, i.e. we computed the ptage depth dose (PDD)

D(x)
PDD(x) = —~—.
) max(D)
The domain was meshed with 60600 cells in position and 100 cells in energy.
The doses obtained with the different models are given onl2gand the computation
times for that test case are given in Table 6. As for the 1D,cas®bserve tha¥l; model

Model Monte-Carlo | approximatedvl; | approximated,
Computation times ~14h 298 secx 5 min | 868 secx 14 min

Table 6 Computation times with the different models for the simple 10 M@4m test case in 2D

is overly diffusive. However, the effect in multi-D is lowénan in 1D. TheM; results are
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Dose Monte—Carlo

& 1 2 3 4 5 6 0 I 2 3 4 5 &

Fig. 12 Dose produced by a 10 MeV electron beam in water using the REXE Monte-Carlo solver (top)
and theM; (below left) andM, (below right) solvers using the approximated closures.

closer to the ones of the Monte-Carlo reference, one canrkethat it is also somewhat
overly diffusive.

The absolute errors between the doses obtained with the PERE Monte-Carlo
solver and the approximatéd; andM, models are represented on Fig. 13.

The maximum error in the dose when using the approximisiteor M2 model compared
to the reference Monte-Carlo results are located at they efitthe medium and on both
sides of the beam, and, when using the approximitgechodel, in the middle of the beam
between 1 and 2 cm depth.

4.5 Double beam in 2D
A 2D version of the test case 4.3 is now studied. It consistsofbeams crossing each other

with at an angle oft/2. As described in Section 2.Ml; model is known to fail to represent
this phenomenon (also in 2D).
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Error M1 Error M2

Fig. 13 Absolute error between the normalized doses obtained witht®éGarlo solver and thd; (left) and
Mz (right) solvers using the approximated closures.

The beams are modelled by (33) with

for x=0cm ye[0.75cm1.25cm:

go=10MeV, Qp=e;, C=200 and c,=10%
for y=0cm xe[0.75cm1.25cm:

g0=10MeV, Qp=€, C=200 and c,=10%

The same mesh as the previous case was used (i.e. 100 celtsgy @and 608 600 cells in
position), so the computation times for this case are idahto the previous one (see Table
6). The dose obtained with the different models are reptedeon Fig. 14. As expected,
when using théVl; model, the two incoming beams turn into one of direcfiefH-€,). This
effect is artificial and is due t¥1; moments extraction. It does not appear when using the
M, model. The dose obtained with th& model is slightly more diffusive than the dose
obtained with the Monte-Carlo solver.

The absolute errors between the doses obtained with the PBRE Monte-Carlo
solver and the approximated;, My, doubleM; and doubleM; models are represented
on Fig. 15.

With the My, model, no visible shock appears, in contrast to the 1D dolbééen case
of Section 4.3. However, thil, model gives a dose slightly more diffused than that of the
doubleM, model. The dose as computed by the douMlemodel is indeed very close to
the Monte-Carlo reference.

As in 1D, the double-beam instability does not appear whémgube doubleMy mod-
els.

4.6 Chest geometry

This last test case is a 2D simple beam case with a depsityrresponding to the density
of a human chest. Here we show that our approach is valid witte realistic geometries.
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Dose Monte—Carlo

Fig. 14 Dose produced by two 10 MeV electron beams in water using tiéERBDPE Monte-Carlo solver
(top), aM; solver (middle left) and &, solver (middle right), a doubl&; solver (below left) and a double-
Mz solver (below right), with the approximated closures.

The domain is of size 21.825 cm 37.5 cm meshed with 224 384 cells, and 100 cells in
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Error M1 Error M2

Error double—-M1

Fig. 15 Absolute error between the doses obtained with Monte-Ganleer and theM; (top left), M, (top
right), doubleM; (below left) and doublév, solvers (below right) using the approximated closures.

energy were used. The beam is modeled by (33) with the fallgywarameters:
at x=21875cm with ye[18cm20cm:
g =10MeV, Q,=—€;, Ce=200 and ¢, = 10°.

The isodose curves at 5%, 10%, 25%, 50%, 70% and 80% of the maxirnsenadbtained
with the different models are plotted on Fig. 16, and the cataional times are given in
Table 7. Asin the previous test cases, the dose computedheithy solver is more diffusive

Model Monte-Carlo | approximatedv; | approximated,
Computation times ~14h 242 secx 4 min | 906 secx~ 15 min

Table 7 Characteristics of the computations with the different medel

than the others. In particular, the dose in the lungs (thke dggions) is overestimated. With
both moment models, the dose is underestimated at the erttrg region corresponding to
the backbone.

To characterize the errors when considering heterogemeedi, the 3% - 3 mm distance-
to-agreement is often used. A voxel is within this agreerifehe absolute error in the dose
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Dose Monte-Carlo

DoseM1 DoseM»

2
% [em] x* [om] x [em]

Fig. 16 Dose produced by a 10 MeV electron beam in a cut of a chest @&NELOPE Monte-Carlo solver
(left), aM; solver (middle) and 8 solver (right), with the approximated closures.

compared to the reference at this point is lower than 3% ofrtagimum dose or if the dose
obtained with the reference code at this point is also obthimith the moment code in a
radius of less than 3mm around this voxel.

The percentage of voxels not satisfying the 3% - 3 mm distan@@greement with the
approximatedvi; andM2 model compared to the reference Monte-Carlo solver fortdss
case are gathered in Table 8. For both models these voxelscated at the entry on both
sides of the beam. For ti\@; model such voxels are also found in the middle of the medium
between 4 and 5 cm depth (in the backbone).

Model approximated; | approximatedvi,
Percentage of voxels 0.12% 0.054%

Table 8 Percentage of voxels not satisfying the 3% - 3 mm distan@gteement compared to the reference
Monte-Carlo dose for the 2D simple beam test case in a chest.

See also [45] for more applications of those models in phtrsport for radiotherapy.

5 Conclusion

We have proposed an approximation of tig closure and have shown this model to be
significantly better than th&l; model. This approximation is based on the construction
of entropy-based closures and the hierarchical structiiseich models. In particular, the
approximate closure is consistent with the exact closureéhf® moments associated with
isotropic, M1, 1D, or 2D distributions. Numerical tests show that Mg model is much
more accurate than td; model and is valid for a larger range of physical phenomeha. T
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dose computed from thd, model is close to the one provided by a reference Monte-Carlo
code and required a much lower computational time (betwdigrafid two hundred times
faster).

Future work includes a comparison against optimizatiorhods [27,2,1] which were
specifically designed for entropy closures. Furthermoreplan to generalize our physical
model to the coupled system of photons, electrons and positand include bremsstrahlung
as well as pair production. We expect that these refinemeake e dose calculation ac-
curate enough for clinical purposes.

A Computation of moments inH'

A.1 Computation of moments iH*

Considen\ € 21, and the associated ansgtz (defined in (21a)) and its momer(i?, ¢/?) given by
lIJl(.Q) = exp(/\1£21+)\4912 +A5922+/\GQ§) s
W' ¢?) = (@, QeQ)yr) e H™.

One can remark thap; is an even function of2, or Qz, and therefore the moment ¢ according to any
odd polynomial is zero, in particular

Wzl:ll’alzll’fzzlﬂlz,a:wzz.szo
With those computations, the momenit and 2 actually reads
¢'=yle, ®=Diag(¥f1, 43, ¥53).

and? is therefore an eigenvector gf2. Using Notations 1 leads to writé! andNZ2 under the form (23a),
and one may obsereve that the eigenvectoid?f N1 ® N! are along the cartesian axis
Using again evenness g, one obtains

2 2 2 2 2 2 2
Ul12=Wl13=Wis3=Wi2o=Wor3=W5,3=Y333=0.

Using the fact thatr (Q ® Q) = 1, one obtains that
3 .
3 U= [, et(@e Qu(@)de - ¢,
=1

This leads to writeN® under the form (24a).

Proposition 4 Consider realizable momentg/®, ¢!, ) € %, such thaty! is an eigenvector a)?.
Then the rotated normalized momei&, N2) given by(17)are in H.

Proof Under those hypothesis, the decomposition (17) can be siewlifideed, sinces! is an eigenvector
of 2, thenN* is an eigenvector dfi?. So a rotatiorR diagonalizingN? will sendN? onto one of the cartesian
axis (choser such thatN! is alongey).

Then this rotation also diagonaliz& — N1 @ N since it diagonalizes botN? andN® @ N* and one
can writeN! andN? under the form (21a).

Finally one can prove that the unique exponential represientfor momentgN?, N?) satisfying (23a)
is (21a) by using Theorem 1 with(Q) = (Q1, Q2, Q2, Q2). Indeed this theorem provide the existence of
a unique functionp of the form (21a) satisfying

(N%v Nib N22,2v N?%,3) = (rﬁw> .
Computing the other moments of such a function (21a) read
Wi =5 =yio=yfs=y5:=0,

i.e. it satisfies the other moment constraints. Then the urfignetion (10) satisfying all the moment con-
straints has the form (21a).
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A.2 Computation of moments iH?
Consident € %, and the associated ansgtz (defined in (21b)) and its momentg?, ¢?) given by

Y(Q) = exp(As+A1Q1+ (A1 —As5)QF)
(Wh¢?) = (Q, QR Q)Yn) eH%

The computations of the previous subsection hold. Sipcdoes not depend a2, nor Q3, one deduces that

. 0
Vo = [, Q3exp(hs+ Mt + (he—Ae)2F)d2 = .
2 2 2 Yo
W2, = /SZ QFexp(ds+ Qi+ (ha—s)QF) d@ = 2,

in particular,iy2, = (2 ;. Using Notations 1 leads to writé* andN? under the form (23b).
Similarily, one has

1
W2y, = /sz Q102exp(As+A1Q1)dQ = %
wl
Woys = /SZ 2103 exp(M+ Q) dQ = 2,
This leads to writd\® under the form (24b).

Proposition 5 Consider realizable momentg/®, ¢/, ¢?) € %, such thaty? is an eigenvector ofy?> and
W5 =5,
Then the rotated normalized mome(i&, N2) given by(17)are in H2.

The proof is identical to the one of Proposition 4 witlh(?) = (1, 2, Q?).

A.3 Computation of moments iH3

Consident € 23, and the associated ansgtz (defined in (21c)) and its momentg/, ¢/2) given by

Ys(Q2) = exp(Aa+A1Q1),
(W y?) = (Q, Qe Q)ys) € H2

The computations of the previous subsections hold. In thée,cthe ansatgs is theM; ansatz defined in
(13), and thereforepf1 is the Eddington factox, defined in Subsection 2.3. Using Notations 1 leads to write
N andN? under the form (23c).

The form ofN3 is not simplified compared to the previous case.

Proposition 6 Consider realizable momentg?, *, ) € %, such thaty* is an eigenvector ap?, Y2, =
Wiz andyZ; = yOxz (Jut|/¢0).
Then the rotated normalized mome(i&, N?) given by(17) are in H2.

The proof is identical to the one of Proposition 4 withQ) = (1, Q7).
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