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Because of stability constraints, most numerical schemes applied to hyperbolic systems of equations turn out to be costly when the flux term is multiplied by some very large scalar. This problem emerges with the M 1 system of equations in the field of radiotherapy when considering heterogeneous media with very disparate densities. Additionally, the flux term of the M 1 system is non-linear, and in order for the model to be well-posed the numerical solution needs to fulfill conditions called realizability. In this paper, we propose a numerical method that overcomes the stability constraint and preserves the realizability property. For this purpose, we relax the M 1 system to obtain a linear flux term. Then we extend the stencil of the difference quotient to obtain stability. The scheme is applied to a radiotherapy dose calculation example.

Introduction

The present work is devoted to the numerical solution of a moment system of equations, which describes the transport of electrons in tissues. The model finds application in the field of radiotherapy dose calculation when considering low density media ( [START_REF] Duclous | A deterministic partial differential equation model for dose calculation in electron radiotherapy[END_REF]):

1 ρ(x)
∇ x .ψ 1 (x,ǫ) = ∂ ǫ (S(ǫ)ψ 0 )(x,ǫ), (1.1a)

1 ρ(x)
∇ x .ψ 2 (x,ǫ) = ∂ ǫ (S(ǫ)ψ 1 )(x,ǫ)-2T(ǫ)ψ 1 (x,ǫ), (1.1b) where the unknowns ψ 0 ∈ R, ψ 1 ∈ R 3 and ψ 2 ∈ R 3×3 depend on energy ǫ ∈ R + and position x∈R 3 . The stopping power S>0 and the transport coefficient T ≥0 are functions of ǫ characterizing the loss of energy and the deflection of the electrons during their transport. Finally, ρ(x)>0 is the density of the medium at point x. This equation is solved by marching backward in energy, i.e. we prescribe ψ 0 (ǫ max ,x) =0 and ψ 1 (ǫ max ,x) =0 R 3 at initial energy ǫ max (which means that electrons have bounded energy) and we solve (1.1) from ǫ max to 0. This choice is motivated by two reasons. First, the system (1.1) is obtained from the following kinetic equation [START_REF] Duclous | A deterministic partial differential equation model for dose calculation in electron radiotherapy[END_REF] Ω ρ(x)

.∇ x ψ(x,ǫ,Ω) = ∂ ǫ (S(ǫ)ψ)(x,ǫ,Ω)+T(ǫ)∂ µ (1-µ 2 )∂ µ ψ (x,ǫ,Ω),

by extracting moments (integrating over all Ω = (µ, 1-µ 2 cosφ, 1-µ 2 sinφ) ∈ S 2 gives (1.1a) and multiplying (1.2) by Ω and integrating over all Ω∈S 2 gives (1.1b)). One realizes that the collision operator in (1.2) is backward parabolic in ǫ. Indeed it is ill-posed when working in the direction of increasing ǫ. Second, this choice is also consistent with the physics. Indeed the electrons only loses electrons in the medium. They are injected with a maximum energy which progressively decreases. In order to be consistent with both the underlying kinetic equation and the physics behind it, we always solve (1.1) from a maximum energy ǫ max to 0.

M 1 model

The system (1.1) is composed of 4 equations with 9 unknowns (scalar ψ 0 , vector ψ 1 and symmetric matrix with known trace ψ 2 ). It is closed using the entropy minimization principle ( [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF]):

We seek the function ψ M ≥ 0 minimizing the Boltzmann entropy function

H( f ) = S 2 f (Ω)ln f (Ω)dΩ
under the constraint of realizing the moments of order 0 and 1, i.e.

S 2 f (Ω)dΩ = ψ 0 , S 2 Ω f (Ω)dΩ = ψ 1 .
We close the system (1.1) by fixing ψ 2 as the 2nd order moment of ψ M

ψ 2 = S 2
ΩΩ T ψ M (Ω).

(1.3) System (1.1) with this closure is called M 1 model. The M 1 model is closely related to some underlying kinetic model because the function ψ M minimizing the Boltzmann entropy is known to be the most probable kinetic distribution function realizing the first two moments ( [START_REF] Boltzmann | Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF]). In the standard case of ρ = S = 1, this choice of closure provides several desirable properties such as hyperbolicity of (1.1) and entropy dissipation ( [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF]).

Other choices are possible to close system (1.1). The P N closure (for system of order N, see e.g. [START_REF] Larsen | The P N theory as an asymptotic limit of transport theory in planar geometry I: Analysis[END_REF][START_REF] Pomraning | The equations of radiation hydrodynamics[END_REF]) is defined by choosing ψ M as a polynomial function of Ω realizing the first moments. However, this choice does not guarantee the positivity of the underlying distribution function ψ M (although the P N closure was modified in [START_REF] Hauck | Positive P N closures[END_REF] to enforce this property) and it is not as accurate as M 1 when studying beam-like distributions of particles.

Moment models are a good compromise between full kinetic models, precise but numerically costly, and diffusion models, not able to represent some physical phenomena. They are therefore often used in plasma physics (see e.g. [START_REF] Duclous | High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications[END_REF][START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landau equation of electrons[END_REF][START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF] for application to the Vlasov-Fokker-Planck and Landau-Fokker-Planck equations) and in radiative transfer (see e.g. [START_REF] Dubroca | Hiérarchie des modèles aux moments pour le transfert radiatif[END_REF][START_REF] Minerbo | Maximum entropy eddington factors[END_REF]).

The M 1 model is valid under a condition on ψ 0 and ψ 1 . Indeed, the M 1 closure exists only if there exists such a non-negative function ψ M . This requirement is called realizability condition. A special attention is needed for this condition when developing numerical schemes for (1.1). We define the set A 1 of realizable moments by

ψ 0 ,ψ 1 ∈ A 1 ⇔ ∃ f ≥ 0, s.t. S 2
f (Ω)dΩ = ψ 0 , and

S 2 Ω f (Ω)dΩ = ψ 1 . (1.4)
Note that A 1 is a convex cone. Numerical schemes applied to the system (1.1) need to preserve the realizability property.

For the M 1 model, the realizability property can be caracterized by ( [START_REF] Kershaw | Flux limiting nature's own way[END_REF])

A 1 = {(0,0 R 3 )}∪ (ψ 0 ,ψ 1 ) ∈ R * + ×R 3 s.t. |ψ 1 | ψ 0 < 1 , (1.5) 
where |.| denotes the Euclidean norm. If (ψ 0 ,ψ 1 ) ∈ A 1 one can compute the closure. By geometrical considerations ( [START_REF] Levermore | Relating eddington factors to flux limiters[END_REF]),

ψ 2 = ψ 0 3χ-1 2 ψ 1 |ψ 1 | ⊗ ψ 1 |ψ 1 | + 1-χ 2 Id , (1.6) 
where χ is the Eddington factor and depends only on

|ψ 1 |/ψ 0 ∈ [0,1[.

Problem statement

In radiotherapy, the studied electrons may be transported through strongly heterogeneous media, e.g. ρ = 1 in water and ρ = 10 -3 in air. Standard numerical schemes applied to (1.1) require a number of iterations of the order of 1/min(ρ) (which can be very large), which prevents these schemes from being usable for practical application. To see this, consider a one dimensional problem. In slab geometry, (1.1) can be reduced into

1 ρ(x) ∂ x ψ 1 (x,ǫ) = ∂ ǫ (S(ǫ)ψ 0 )(x,ǫ), (1.7a) 1 ρ(x) ∂ x ψ 2 (x,ǫ) = ∂ ǫ (S(ǫ)ψ 1 )(x,ǫ)-2T(ǫ)ψ 1 (x,ǫ), (1.7b) 
where ψ i are now scalars and x ∈ R. The previous closure in 1D simply reads

ψ 2 = χ(|ψ 1 |/ψ 0 ). (1.8)
To shorten notation, 1D system (1.7) is rewritten

∂ ǫ (S(ǫ) ψ) = 1 ρ(x) ∂ x F(x,ǫ)+T(ǫ)L. ψ, (1.9) 
where ψ = (ψ 0 ,ψ 1 ) T , F = (ψ 1 ,ψ 2 ) T and L = 0 0 0 2 . The superscript . refers to vectors.

As a first approach, we split the 1D system (1.7) and we use an HLL type scheme ( [START_REF] Bouchut | Nonlinear stability of Finite Volume methods for hyperbolic conservation laws and wellbalanced schemes for sources[END_REF][START_REF] Harten | On upstream differencing and gudonov-type schemes for hyperbolic conservation laws[END_REF][START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]) to solve the homogeneous equation

∂ ǫ (S(ǫ) ψ)- 1 ρ(x) ∂ x F(x,ǫ) = 0. (1.10)
In the following, we describe the HLL scheme for (1.10) where the density ρ(x) = ρ is constant. We extend afterward this approach for non-constant density. This numerical scheme is known to preserve the realizability domain from one step to the next one (see e.g. [START_REF] Berthon | An HLLC scheme to solve the M 1 model of radiative transfer in two space dimensions[END_REF]). It is obtained by approximating the solution of the Riemann problem at each interface x l+ 1 2 . In the following, the subscript l refers to the position x and n to the energy ǫ.

First, we suppose ρ(x) = ρ constant and S(ǫ

) = S n constant over [ǫ n+1 = ǫ n -∆ǫ n ,ǫ n ]. Now suppose ψ(x,ǫ n ) = ψn l and F(x,ǫ n ) = Fn l for x ∈ [x l ,x l+ 1 2 ], and ψ(x,ǫ n ) = ψn l+1 and F(x,ǫ n ) = Fn l+1 for x ∈ [x l+ 1 2 ,x l+1 ]. The discontinuity in x l+ 1 2
produces waves that propagate with velocities c j that are the eigenvalues of ∂ S ψ F/ρ. In the case of M 1 system, the velocities c j are of norm inferior to 1/ρS n (see computations in [START_REF] Berthon | An HLLC scheme to solve the M 1 model of radiative transfer in two space dimensions[END_REF]). Let us define the cone C n l+ 1 2 (see Fig. 1)

C n l+ 1 2 = (x,ǫ) ∈ R×R + , s.t. |x-x l+ 1 2 | ≤ |ǫ-ǫ n | ρS n .
We will approximate the value of ψ(x,ǫ) inside the cone C n l+ 1 2 by its average value ψ * Note that as the wave speeds c j are inferor to 1/ρS n , the values of ψ out of the cone is constant reapectively equal to ψn l on the left and to ψn l+1 on the right. ] (in green on Fig. 1). Using the previous computations, this reads

l+ 1 2 = 1 ∆x x l+ 1 2 + ∆ǫ n ρS n x l+ 1 2 -∆ǫ n ρS n ψ(ǫ n+1 ,x)dx.
S n+1 ψn+ 1 2 l = 1 ∆x ∆ǫ n S n ρ (S n+1 ψ * l-1 2 +S n+1 ψ * l+ 1 2 )+ ∆x- 2∆ǫ n S n ρ S n ψ n l = S n ψn l + ∆ǫ n ρ∆x Ḡn l+ 1 2 -Ḡn l-1 2 ,
with Ḡn

l+ 1 2 = 1 2 Fn l+1 + Fn l +( ψn l+1 -ψn l ) . (1.11)
Note that we can use the previous calculation as long as the waves produced in x l-1 2 and x l+ 1 2 do not cross each other, i.e. under the Courant Friedrichs Lewy (CFL) condition

∆ǫ n ≤ S n 1 ρ∆x -1
.

(1.12)

In our case, the density ρ is heterogeneous. We approximate the density by a function ρ = ρ l+ 1 2 constant over each interval [x l ,x l+1 ]. Then the previous computation with this density ρ leads to write

S n+1 ψn+ 1 2 l = S n ψn l + ∆ǫ n ∆x   Ḡn l+ 1 2 ρ l+ 1 2 - Ḡn l-1 2 ρ l-1 2   ,
with the fluxes (1.11) and under the CFL condition

∆ǫ n ≤ S n 1 2∆x max l 1 ρ l+ 1 2 + 1 ρ l-1 2 -1
.

(1.13)

Finally we add the influence of the source term. The scheme finally reads

S n+1 ψn+1 l =   S n ψn l + ∆ǫ n ∆x   Ḡn l+ 1 2 ρ l+ 1 2 - Ḡn l-1 2 ρ l-1 2   -∆ǫ n T n L. ψn l   , (1.14) 
which can be rewritten

S n+1 ψ 0 n+1 l = S n ψ 0 n l + ∆ǫ n 2∆x ψ 0 n l+1 ρ l+ 1 2 -ψ 0 n l 1 ρ l+ 1 2 + 1 ρ l-1 2 + ψ 0 n l-1 ρ l-1 2 + ∆ǫ n 2∆x ψ 1 n l+1 ρ l+ 1 2 +ψ 1 n l 1 ρ l+ 1 2 - 1 ρ l-1 2 - ψ 1 n l-1 ρ l-1 2 , S n+1 ψ 1 n+1 l = S n ψ 1 n l + ∆ǫ n 2∆x ψ 1 n l+1 ρ l+ 1 2 -ψ 1 n l 1 ρ l+ 1 2 + 1 ρ l-1 2 + ψ 1 n l-1 ρ l-1 2 -2∆ǫ n T n ψ 1 n l + ∆ǫ n 2∆x ψ 2 n l+1 ρ l+ 1 2 +ψ 2 n l 1 ρ l+ 1 2 - 1 ρ l-1 2 - ψ 2 n l-1 ρ l-1 2 .
In the second equation, in order to assure that ψ 1 n+1 is defined using a positive combination of ψ 1 n (which is a common stability requirement), we fix the following CFL condition which is slightly more restrictive than (1.13) (due to the source term T(ǫ)L. ψ)

∆ǫ n ≤ S n 1 min(ρ l+ 1 2 )∆x +2T n -1
.

(1.15)

In practice, the density ρ is inhomogeneous and can have very strong variations. Then min(ρ l+ 1 2

) might be very low, and the numerical scheme requires very small ∆ǫ n . This problem was investigated in [START_REF] Berthon | Numerical methods for balance laws with space dependent flux: application to radiotherapy dose calculation[END_REF] and solved by modifying the grid in one space dimension. The generalization to multi-dimensional (multi-D) problems was not straightforward, and introduced additional splitting errors. In the present paper, we propose a numerical approach ensuring the realizability that does not constrain the energy step, independent of the grid, and which works for multi-D problems. In Section 2, we describe the numerical approach which consists of two parts. First, we construct numerical schemes for linear hyperbolic equations with spatially varying flux that are unconditionnally stable. Second, we use a relaxation model to approximate the M 1 model on which we can apply those schemes. The last section is devoted to the validation of the numerical approach on relevant test cases.

Numerical approach

We write the multi-D system (1.1) in the form

∂ ǫ (S(ǫ) ψ) = 1 ρ(x) ∇ x . F(x,ǫ)+T(ǫ)L. ψ, (2.1) 
with

L = 0 0 R 3 0 T R 3 -2Id
. Here ψ = (ψ 0 ,ψ 1 ) T ∈ R 4 and F = (ψ 1 ,ψ 2 ) ∈ R 3×4 . The superscript . refers to vectors of vectors, i.e. matrices. Note that the divergence operator ∇ x .(.) is applied separately to each vector component

ψ 1 ∈ R 3 and ψ 2 i,: ∈ R 3 composing F = (ψ 1 ,ψ 2 1,: ,ψ 2 2,: ,ψ 2 3,:
). In a first part, we propose a numerical scheme for hyperbolic equations with spacedependent fluxes not constrained by any CFL condition. In a second part, we present a method to apply it to M 1 system of equations using relaxation models.

Scheme for fast characteristics in 1D

As mentioned above, for a standard scheme the density ρ in front of the flux term might lead to a severe CFL restriction. We overcome this problem by stencil extensions, which rely on a re-interpretation of the basic upwind scheme. For the sake of simplicity we describe this approach first for the linear advection equation. Consider

∂ t u+ a ρ(x) ∂ x u = 0, (2.2) 
with a >0 (the case a <0 can be treated similarily). First let ρ be constant. In a basic Finite Difference (FD) scheme, we write u 0 l := u(x l ,0) and we compute u n l that approximates u(x l ,t n ). A scheme is obtained by defining u n+1 l as a convex combination C of some u n l such that this definition is consistent with (2.2).

Using the method of characteristics, u is constant along the characteristic curves which yields

u n+1 l ≈ u(x l ,t n+1 ) = u(y(τ,t n+1 ,x l ),τ) with y(τ,t,x) = x+ a ρ (τ -t). (2.3) 2.1.1 Constant ρ, CFL : ∆t < ρ a ∆x
The common approach is to impose that the characteristic curve starting at (x l ,t n +∆t) is in the cell [x l-1 ,x l ] at time t n (see Fig. 2), i.e.

x l ≥ y(t n ,t n +∆t,x l ) = x l + a ρ (t n -(t n +∆t)) > x l-1 ,
which is equivalent to the common CFL condition ∆t < a ρ ∆x. Thus it seems natural to use a convex combination C of the points u n l-1 and u n l as the characteristic curves falls down between these two points at time t n . This corresponds to approximating u using a linear reconstruction. Thus we obtain the standard upwind scheme 2.1.2 Constant ρ, CFL : ∆t < 2 ρ a ∆x Now instead of the common CFL condition ∆t< ρ a ∆x, let us impose the condition ∆t < 2 ρ a ∆x. The characteristic curves can now cross into the next cell (see Fig. 3). Using again the method of characteristics, the foot of the characteristic curve is found between the points u n l-1 and u n l-2 . Then we define C by

u n+1 l = Cu n = (1-α)u n l +αu n l-1 , α = a∆t ρ∆x ∈ [0,1[. x t x l x l-1 t n +∆t t n x = x l + a ρ ( t -( t n + ∆ t ) )
u n+1 l = Cu n = (1-α)u n l-1 +αu n l-2 , α = a ρ ∆t ∆x -1 ∈ [0,1[.

Constant ρ, no CFL

We can generalize this to a time step ∆t which is independent of ∆x. Then the characteristic curves cross a certain number of cells k depending on ∆t, ∆x, a and ρ (see Fig. 4). More precisely, k is the only integer in the interval ] ρ a ∆t ∆x ,1+ Then we define C as a convex combination of u n l-k+1 and u n l-k and the scheme reads 

ρ a ∆t ∆x ]. x t x l x l-1 x l-2 t n +∆t t n x = x l + a ρ ( t -( t n + ∆ t ) ) Figure 3: Characteristic curves when ∆t < 2 a ρ ∆x. x t x l x l-1 x l-2 x l-k x l-k+1 t n +∆t t n x = x l + a ρ ( t -( t n + ∆ t ) )
u n+1 l = Cu n = (1-α)u n l-k+1 +αu n l-k , α = a ρ ∆t ∆x -(k-1) ∈ [0,1[. ( 2 
= u n+1 l -u n l ∆t + a ρ u l+ 1 2 -u l-1 2 ∆x , with u l+ 1 2 = 1 ∆t t n +∆t t n u(x l+ 1 2 ,τ)dτ, u n l = 1 ∆x x l+ 1 2 x l-1 2 u(y,t n )dy.
Then using the method of characteristics to compute the fluxes u n l+ 1 2 leads to

u l+ 1 2 = ρ∆x a∆t k-2 ∑ i=0 u n i + 1-(k-1) ρ∆x a∆t u n l-k+1 .
And the obtained numerical scheme is equivalent to (2.4). This means that the Finite Difference scheme (2.4) can also be interpreted as a Finite Volume scheme. This is not true when ρ is not constant.

Non-constant ρ, no CFL

Now we allow ρ to depend on x. We approximate ρ by a constant ρ l+ 1 2 in each interval [x l ,x l+1 ]. In that case, we need to compute the point x c which the characteristic that goes through (x l ,t n +∆t) reaches at time t n (see Fig. 5). Similar to above, one finds the number of crossed cells k l by using the conditions

k l -1 ∑ i=1 ρ l+ 1 2 -i a ∆x ≤ ∆t ≤ k l ∑ i=1 ρ l+ 1 2 -i a ∆x. (2.5) 
Then Finally we can compute u n+1 l by interpolation to obtain the following FD scheme

x c = x l-k l +1 -c, where c = d a ρ l+ 1 2 -k l , d = ∆t- k l -1 ∑ i=1 ∆xρ l+ 1 2 -i a . x t x l-k l +1 x l-1 x l-k l x l x c ρ l-1 2 ρ l-3 2 ρ l-5 2 t n +∆t t n c d
u n+1 l = (1-α)u n l-k l +1 +αu n l-k l , (2.6a) 
where

α = c ∆x = ∆t ∆x - k l ∑ i=1 ρ l+ 1 2 -i a ∈ [0,1[. (2.6b)
Remark 2.2 (Properties of the scheme).

• If the characteristic curves do not cross more than one cell, this scheme is equivalent to the original upwind scheme with the common CFL condition.

• The consistency error is O(∆x). So it is of order 1 in space and time.

• The FD scheme is linear with positive coefficients and whose sum is equal to 1. So it is monotone and therefore Total Variation (TV) stable.

• There are no stability restrictions on the scheme, so it is more stable than the common upwind scheme. This allows us to use a bigger time step. But one should keep in mind that the precision obtained when extending the stencil is lower as the one using the common CFL restriction.

Remark 2.3. This method is closely related to the semi-lagrangian approach (see e.g. [START_REF] Falcone | Semi-lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods[END_REF][START_REF] Russo | Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics[END_REF]). With this method, one would compute the value of u n+1 l by solving a transport equation in a Lagrangian framework. Then the obtained solution is projected on the Eulerian grid by using polynomial reconstruction. This correspond in our framework to following the characteristic curves. In the semi-lagrangian framework, ENO-WENO reconstruction are often used to improve the order of accuracy of the numerical scheme. Similar methods could also be used with our relaxation approach.

Extension to multi-D

We study the linear advection equation

∂ t u+ 1 ρ(x) a.∇ x u = 0, (2.7) 
where a ∈ R n is a vector and u depends on x ∈ R n and t ∈ R + . For our purposes and in order to simplify the notations, we focus on the two dimensional problem but the method can easily be extended to higher dimensional problems.

Given a cell center X lm , it is straightforward to find the origin X c of the characteristic which passes through X lm at time t n +∆t (cf. Fig. 6). We can then define a Finite Difference scheme by approximating the value of u h (X c ,t n ) using the values u h (.,t n ) at the nearest cell centers X l ′ ,m ′ around X c = (X,Y) if

u n+1 l,m = u h (X l,m ,t n +∆t) = u h (X c ,t n ) ≈ 1 ∑ i=0 1 ∑ j=0 |X-x l ′ +i | |x l ′ +1 -x l ′ | |Y-y m ′ +j | |y m ′ +1 -y m ′ | u n l ′ +i,m ′ +j , (2.8) X l,m X c x l ′ x l ′ +1 y m ′ y m ′ +1
X c ∈ [x l ′ ,x l ′ +1 ]×[y m ′ ,y m ′ +1 ].

Relaxation schemes for moment equations

The method presented in the last section cannot be directly applied to our problem as the equation (2.1) has a non-linear flux. In order to use the previous method, we use a relaxation approximation of the 1D system (1.7) (afterward called AN after Aregba-Driollet and Natalini [START_REF] Aregba-Driollet | Discrete kinetic schemes for multidimensional systems of conservation laws[END_REF][START_REF] Aregba-Driollet | Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems[END_REF]) described in [START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF][START_REF] Aregba-Driollet | Discrete kinetic schemes for multidimensional systems of conservation laws[END_REF] for hyperbolic systems of equations and completed for parabolic systems in [START_REF] Bouchut | Diffusive BGK approximations for nonlinear multidimensional parabolic equations[END_REF][START_REF] Aregba-Driollet | Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems[END_REF]. Special focus will be put on the preservation of the realizability domain. The extension to multi-D afterwards is straightforward.

Principle

We recall the principle of AN relaxation for 1D problems. Let us choose J speeds (λ j ) j=1,...,J ∈ R J .

We associate to them a set of J moment vectors f τ = f τ j j=1,...,J ∈ R J×2 depending on a relaxation parameter τ and a set of Maxwellians Mτ = Mτ j j=1,...,J ∈ R J×2 . The Maxwellians are linked to the original moment vectors using a linear form P from R J×2 to R 2 so that P. Mτ = ψ and P.Λ. Mτ = F( ψ) (2.9)

with Λ = Diag(λ j Id R 2×2 ).

The following system of equations is a relaxation system for (1.9)

ρ∂ ǫ (S f τ j )-λ j ∂ x f τ j +ρTL. f τ j = 1 τ Mτ j (P. f τ )-f τ j , 1 ≤ j ≤ J. (2.10)
The solution f 0 of the limit problem (τ →0) corresponds to the desired solution of the original system (1.9). Formally, multiplying (2.10) by τ and τ → 0 leads to M0 j (P. f 0 ) = f 0 j .

Then replacing f 0 j by M0 j in (2.10) and multiplying it on the left by P yields ρ∂ ǫ (SP. M0 )-∂ x (P.Λ. M0 )+ρTL.(P. M0 ) = 0, which is exactly (1.9). As we only want to solve the limit system for τ → 0, the index τ is removed in the rest of this paper. The upper index n now refers to energy step ǫ n , first lower index j to relaxation speed λ j and second lower index l to position x l . Note that the spatial fluxes of the relaxed system are linear even if the ones from the original system are not.

It is a well-known stability requirement ([23,6,2]) that all eigenvalues of ∂ S ψ F( ψ)/ρ have to be bounded by the extremal relaxation speed, i.e.

Spectrum ∂ S ψ F( ψ) ρ ⊂ [min j λ j Sρ ,max j λ j Sρ
].

(2.11)

In the 1D case, we choose two directions of relaxation (J = 2) such that -λ 1 = λ 2 = λ and we fix P =(1,1). As the absolute values of the eigenvalues of ∂ S ψ F( ψ)/ρ are less than 1/Sρ (see computations in [START_REF] Berthon | An HLLC scheme to solve the M 1 model of radiative transfer in two space dimensions[END_REF]), we choose λ = 1. This choice of speeds Λ and of P leads to write the Maxwellians

M1 = ψ-F( ψ) 2 , M2 = ψ+ F( ψ) 2 .
Note that applying the upwind discretization (with the CFL condition (1.15)) to the relaxed system (2.10) with this choice of parameters is equivalent to the HLL type scheme (1.14,1.11) (see e.g. [START_REF] Bouchut | Nonlinear stability of Finite Volume methods for hyperbolic conservation laws and wellbalanced schemes for sources[END_REF]). In practice, the solution of (1.9) is obtained by initializing f 0 1 := M0 1 and f 0 2 := M0 2 at the energy step ǫ 0 , and then the relaxed system is solved using a splitting method:

• We define intermediate states f 

∂ ǫ (S fj )- λ j ρ ∂ x fj +TL. fj = 0, 1 ≤ j ≤ 2.
(2.12)

We discretize the term L. fj implicitly (this choice is explained in the following). The spatial derivative is approximated by the finite difference formula (2.6) which leads to

S n+1 f1 n+ 1 2 l = S n (C 1 f1 n ) l +∆ǫ n T n+1 L. f1 n+ 1 2 l , (2.13a) S n+1 f2 n+ 1 2 l = S n (C 2 f2 n ) l +∆ǫ n T n+1 L. f2 n+ 1 2 l , (2.13b)
where C j fj n is a convex combination of values of fj n (see remarks 2.5 and 2.8).

• Then the solution is corrected by solving the rest of the equation, which, for τ → 0, corresponds to taking Mn+1 • The solution at new energy is computed as .14) as prescribed by the consistency condition (2.9) and considering Mn+1 

ψn+1 := Mn+1 1 + Mn+1 2 , ( 2 

Remark 2.4 (Properties of the approach).

• The advantage of solving the relaxed system (2.10) instead of the original one (1.7) is that the relaxed system has a linear spatial flux λ ρ ∂ x f τ j . So we can apply the scheme presented in the previous section to it.

• The drawback of this is that we need to solve twice more equations (or J times more equations if we choose J speeds).

Realizability

This method preserves the realizability property from an energy step to the next one:

Proposition 2.1. If for all l, we have ψn l ∈ A 1 at energy step ǫ n then the solution ψn+1 l obtained by solving the relaxed system (2.10) with the scheme (2.13) is also in A 1 at energy step ǫ n+1 for all l.

Proof. The realizability of ψn+1 is obtained via (2.14) through the realizability of Mn+1 are realizable at the new energy step. Finally we conclude the realizability of ψn+1 .

We initialize f

0 1 = M0 1 =( ψ0 + F( ψ) 0 )/2 (respectively f 0 2 = M0 2 =( ψ0 -F( ψ) 0 )/2). Now suppose that ψ0 ∈ A 1 , which means ∃g ≥ 0 s.t. +1 -1 (1,µ) T gdµ = ψ0 . Since µ ∈ [-1,+1], we have (1±µ)g ≥ 0.
We compute the moments of this function

+1 -1 (1,µ) T (1±µ)g 2 dµ = ψ0 ± F( ψ) 0 2 , so f1 0 = ( ψ0 + F( ψ) 0 )/2 ∈ A 1 and analogously f2 0 ∈ A 1 .
• At each energy step, we initialize fj n := Mj n , where Mj n solves

J ∑ j=1 Mj n = ψn ∈ R 4 , J ∑ j=1 λj ⊗ Mj n = Fn ∈ R 3×4 . (2.16) 
where ⊗ denotes tensorial product.

• Then we compute fj n+ 1 2 for each 1≤j≤ J by solving the equations without relaxation terms

∂ ǫ (S fj )- λ j ρ .∇ x fj + L. fj = 0, 1 ≤ j ≤ J.
(2.17) using the numerical scheme

S n+1 fj n+ 1 2 l = S n C j fj n +∆ǫ n ρL. n+ 1 2 j , (2.18) 
where C j fj n is a convex combination (2.8) of some fj n l .

• We update Mj n+1 := fj

n+ 1
2 and finally ψn+1 :

= J ∑ j=1 Mj n+1 .
Similarily the proposition 2.1 can be generalized to higher dimensions: Proposition 2.2. If for all l, we ψn l ∈ A 1 at energy step ǫ n then the solution ψn+1 l obtained by solving the relaxed system using the scheme (2.18) is also in A 1 at energy step ǫ n+1 for all l.

Application to M 1 equations

Applying the FD scheme to the relaxed system (2.10) gives

C 1 f1 n l = α + l f1 n l-k + l +(1-α + l ) f1 n l-k + l +1 , (2.19a) 
C 2 f2 n l = α - l f2 n l+k - l +(1-α - l ) f2 n l+k - l -1 , (2.19b) 
with

α + l = ∆ǫ n S n ρ l-k + l + 1 2 ∆x - k + l -1 ∑ i=1 ρ l-i+ 1 2 ρ l-k + l + 1 2 , (2.20a 
)

α - l = ∆ǫ n S n ρ l+k - l -1 2 ∆x - k - l -1 ∑ i=1 ρ l+i-1 2 ρ l+k - l -1 2 , (2.20b) 
and k ± l+ 1 2 defined by

k + l -1 ∑ i=1 ρ l-i+ 1 2 S n ∆x ≤ ∆ǫ n ≤ k + l ∑ i=1 ρ l-i+ 1 2 S n ∆x, (2.21a 
) Remark 2.6. If we restrict the energy step ∆ǫ using the CFL condition (1.15) then our approach is equivalent to the HLL type scheme (1.14,1.11). Indeed we found in section 2.1 that if the characteristic curves did not cross more than one cell the scheme (2.6) was upwind scheme. And solving the relaxed problem (2.10) with an upwind scheme is equivalent to solving the original problem with the HLL type scheme (1.14,1.11). Our approach generalizes HLL scheme to the case of large ∆ǫ.

k - l -1 ∑ i=1 ρ l+i-1 2 S n ∆x ≤ ∆ǫ n ≤ k - l ∑ i=1 ρ l+i-1 2 S n ∆x. ( 2 
For the multi-D problem, we relax (2.1) in three different ways. We first choose the directions of relaxations λj . From those, we propose a simple definition of the Maxwellians Mτ j that satisfy the consistency condition (2.16). Note that the proposition (2.2) requires realizable Maxwellians. As we know that f + F.V is realizable for any V ∈ S 2 , we simply the Maxwellians proportional to f + F. λj |λ j | . Finally we choose the norm of the velocities | λj | so that the defined Maxwellians satisfy the consistency condition (2.16). We simply choose

• "Cartesian relaxation" Relaxation directions λ1 = (2,0), λ2 = (-2,0), λ3 = (0,2), λ4 = (0,-2), (2.22a)

Associated Maxwellians Mi = 1 4 ψ+ λi | λi | . F , (2.22b) 
• "Diagonal relaxation"

Relaxation directions λ1 = 1 √ 2 (2,2), λ2 = 1 √ 2 (-2,2), λ3 = 1 √ 2 (-2,-2), λ4 = 1 √ 2 (2,-2), (2.23a) Associated Maxwellians Mi = 1 4 ψ+ λi | λi | . F , (2.23b) 
• "Star relaxation"

Relaxation directions λ1 = (4,0), λ2 = (0,4), λ3 = (-4,0), λ4 = (0,-4),

λ5 = 1 √ 2 (4,4), λ6 = 1 √ 2 (-4,4), (2.24a) λ7 = 1 √ 2 (-4,-4), λ8 = 1 √ 2 (4,-4), Associated Maxwellians Mi = 1 8 ψ+ λi | λi | . F . (2.24b)
Simple computation leads to show that the Maxwellians are realizable and that they satisfy the consistency condition (2.9). Remark 2.7. When the number of directions J is equal to the number of unknowns (in 2D ψ is composed of 3 components), and when the directions are fixed, then the Maxwellians are uniquely defined as a function of ψ, F and of the λi . Here, there are more directions in each set (4 in the cartesian and diagonal sets and 8 in the star set) than unknowns, so other choices of Maxwellians may be used.

Remark 2.8. All of these schemes are defined using convex combinations. So Propositions 2.1 and 2.2 hold.

Numerical results

We study several test cases from radiotherapy dose calculation. We use physical values for stopping power and transport coefficient for electrons as described in [START_REF] Duclous | A deterministic partial differential equation model for dose calculation in electron radiotherapy[END_REF]. The function of interest is the dose defined by D(x) = +∞ 0 S(ǫ)ψ 0 (x,ǫ)dǫ.

(3.1)

In the test cases, the dose is normalized by the maximum dose. This normalized dose, called percentage depth dose (PDD) in the field of medical physics, is independent of the quantity of particles transported (which is arbitrary here), it depends only on their distribution.

1D heterogeneous medium

The spatial domain is 12 cm long, uniformly meshed with 1200 cells. It is composed of 2 cm wide slabs of homogeneous media, alternatively air (ρ air = 10 -3 ) and water (ρ water = 1), the first slab being air. Incoming beams are prescribed as boundary conditions. The injected electrons are modeled as Gaussians in energy ǫ centered around the energy of the electron beam ǫ 0 = 10MeV (ψ 0 ,ψ 1 )(x b ,ǫ) = (δ,0) if no beam enters in the medium from the end x b ,

(ψ 0 ,ψ 1 )(x b ,ǫ) = Kα µ exp - 1 2 ǫ 0 -ǫ α ǫ ǫ 0 2 , otherwise,
where K is a numerical constant fixed at 10 10 and δ = 10 -20 is a small numerical constant used to avoid divisions by 0. When applying the ψ 0 = δ condition, we make sure that the beam from the other end is entirely dissipated in the medium. The initial distribution at ǫ max = 1.5ǫ 0 is zero.

And α µ = (1, ψ 1 ψ 0 ) = (1,0.98). Note that ψ 1 ψ 0 characterizes the "peakedness" of the beam (

ψ 1
ψ 0 = ±1 for a Dirac distribution in angle and ψ 1 ψ 0 = 0 for an isotropic distribution). We fix α ǫ = 0.05. With those parameters, the prescribed moment vector on the boundary is realizable.

First, we use a fine energy steps

∆ǫ n HLL = 0.95S n 1 ρ air ∆x +2T n -1 . ( 3.2) 
With these parameters, the scheme presented in the previous section is equivalent to the HLL scheme (1.14, 1.11, 1.15). Second, we use a coarse energy step

∆ǫ n FD = 0.95S n 1 ρ water ∆x +2T n -1 . ( 3.3) 
With these parameters, the stencils are extended only in air. The results obtained with the fine energy steps are expected to be more precise and are therefore considered as reference results.

The dose results obtained with the numerical schemes described in section 2.1 are plotted in Fig. 7. The FD scheme with a woarse ∆ǫ n FD shows good agreement with the one with a fine ∆ǫ n HLL (i.e. with HLL scheme). One can only see a small error appearing at the end of the medium. This error is due to the number of discontinuities of densities. This error reduces when working on media with less discontinuities. All the voxels are within 3% or 3mm distance-to-agreement, i.e. at each point x l , whether the error is lower than 3% of the maximum dose or the dose obtained with a coarse ∆ǫ n FD is also obtained with a fine ∆ǫ n HLL in a radius of less than 3mm around the position x l . As expected, the FD scheme with a coarse mesh is much faster than the one with a fine one (between 2 and 3 orders of magnitude faster). This corresponds to the different orders of magnitude between the energy step ∆ǫ n when using HLL scheme or FD scheme. Indeed the ratio of the different ∆ǫ n is ∆ǫ n HLL /∆ǫ n FD ≈ ρ water /ρ air = 1000.

2D heterogeneous medium

The following test case was used in [START_REF] Duclous | A deterministic partial differential equation model for dose calculation in electron radiotherapy[END_REF] to compare the HLL scheme with a Monte Carlo simulation. We consider a domain of size L x = 22.3cm × L y = 29.5cm, meshed with 223×295 cells. The density in this medium corresponds to a 2D cut of a human chest. We apply a beam modeled by the following boundary conditions (ψ 0 ,ψ 1 )(x = 22.3cm,y,Ω,ǫ) = 10 10 exp -1 2 ǫ 0 -ǫ 0.05ǫ 0 2 exp -100 y-L y 2 2 α µ .

Here α µ = (1,ψ 1 /ψ 0 ). We choose ψ 1 /ψ 0 = (-0.98,0), it corresponds to an irradiation of the spinal cord. For this test case, ǫ 0 = 15MeV/m e c 2 . We fix the initial data and the other boundary values with (ψ 0 ,ψ 1 ) = (10 -20 ,0,0).

We compare the solution using a fine energy step (HLL scheme) and and a coarse one scheme). The absolute error is smaller than 1.1% of the maximum dose when using the cartesian set, smaller than 4.3% with the diagonal set, and smaller than 2.1% with the star set. The maximum errors are located in the middle of the medium at about 2 cm and 6 cm depth. All the voxels are within 3% or 3mm distance-to-agreement for each choice of relaxation parameters. When using the diagonal directions of relaxation, the information is transported in diagonal direction. Then, when transporting particles along the x-axis, the scheme does not transport them from one cell to its neighboor. This results in some irregularities which can be seen in Fig. 9. The relaxed models are better when the directions of relaxation are collinear to the mesh directions (i.e. cartesian directions). The numerical schemes presented in this paper are significantly faster than the standart method and gives precise results.

Figure 1 :

 1 Figure 1: Configuration for the HLL solver.

Figure 2 :

 2 Figure 2: Characteristic curves when ∆t < a ρ ∆x.

Figure 4 :

 4 Figure 4: Characteristic curves when ∆t is independent of ∆x.

Figure 5 :

 5 Figure 5: Configuration for CFL-free Finite Difference schemes for k l = 3
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 6 Figure 6: Characteristic for Finite Difference scheme in two dimensions.

n+ 1 2 j

 2 by solving the equations without the relaxation terms

Figure 7 :

 7 Figure7: Dose with M 1 model for the simple beam test case in 1D heterogeneous medium with fine (equivals to HLL scheme) and coarse ∆ǫ (using FD schemes).

  [START_REF] Minerbo | Maximum entropy eddington factors[END_REF], diagonal(2.23) and star (2.24) directions of relaxation. The isodose curves obtained are represented on Fig.8in colour over the chest density (grayscale).The isocurves of absolute error induced by the extension of the stencil normalized by the maximum dose are shown on Fig.9.The shape of the dose obtained with the different relaxation parameters with a coarse ∆ǫ n FD are very close to the one obtained with the cartesian relaxation parameters and a fine ∆ǫ n HLL (HLL

Figure 8 :

 8 Figure 8: Isodose curves in a chest at 5% (red), 10% (orange), 25% (yellow), 50% (light blue), 70% (dark blue) and 80% (violet) of the maximum dose with a fine ∆ǫ n (top left) and a coarse ∆ǫ n using cartesian (top right), diagonal (below left) and star (below right) directions of relaxation.

Figure 9 :

 9 Figure9: Isocurves of the absolute error between the doses obtained using a fine and a coarse energy step with cartesian (left), diagonal (middle) and star (right) directions of relaxation at 1% (red), 0.5% (light blue) and 0.2% (yellow) of the maximum dose.

  and approximating the solution u by a function constant in each cell [x l-1

	leads to	2	,x l+ 1 2	] at time t n
	0			

.4) Remark 2.1. In the case of ρ uniform, integrating (2.2) over [x l-1 2 ,x l+ 1 2 ]×[t n ,t n +∆t]

  Using (2.21) in (2.20) leads to α ± l ∈ [0,1[. Then C 1 and C 2 are indeed convex combinations.

	.21b)
	Remark 2.5.

Table 1

 1 gathers the computation times using the different schemes.

	energy step ∆ǫ n	computation times number of energy steps
	fine ∆ǫ n HLL defined by (3.2) coarse ∆ǫ n FD defined by (3.3)	17 sec 0.02 sec	681 991 634

Table 1 :

 1 Computation times for the 1D heterogeneous case with the different schemes .

Table 2 :

 2 The computation times for this test case are gathered in table 2. Computation times for the 2D case with the different schemes .

	numerical approach	computation time number of iterations
	Fine ∆ǫ n HLL with cartesian relaxation Coarse ∆ǫ n FD with cartesian relaxation Coarse ∆ǫ n FD with diagonal relaxation Coarse ∆ǫ n FD with star relaxation	≈ 50 min 6.69 sec 7.35 sec 19.72 sec	146 224 460 460 919

Conclusion and perspective

We have proposed a numerical method for solving the M 1 system of equations applied to radiotherapy dose calculation, which is not constrained by stability restrictions. Using the method of characteristics, we proposed an inconditionnally stable numerical scheme for hyperbolic systems. Then, we relax the M 1 system, which leads to a hyperbolic system of equations with linear flux terms on which we can apply the inconditionnally stable numerical scheme. This method has been tested on relevant test cases and provides good results compared to the ones with the HLL scheme, and with a much smaller computational time, as we do not need to impose small energy steps.

We proposed simple sets of relaxation parameters that equivals the HLL scheme in the standard case (i.e. using the mesh directions as relaxation directions and with a common CFL condition), although a general strategy to choose those parameters needs to be found.

2. Now let us prove that if for all l, f1 n l ∈ A 1 then f1 n+ 1 2 l ∈ A 1 . Based on ψn ∈ A 1 , we construct a realizable vector f n 1 = Mn 1 =( ψn + F( ψ) n )/2∈A 1 as in the first part of the proof. We solve (2.10) by splitting as described above. In the implicit energy step for the system without relaxations terms we need to solve

where

) .

The right hand side of (2.15) is realizable, because S n C 1 f n 1 is a positive combination of realizable moments. Remark that the operator C 1 is related to the spatial component, i.e. it sums over several while the matrix A is related to the moment order, it impacts seperately the zero-th and first oder moments of a moment vector f1

. Obviously those operators are independent and commute. To simplify the notations in the rest of the proof, we write ḡ = S n (C 1 f n 1 ) l ∈ A 1 . Then ḡ = (g 0 ,g 1 ), where g 0 = S n (C 1 f n 1 ) 0 l and g 1 = S n (C 1 f n 1 ) 1 l correspond to a zero-th and first order moment. Using the caracterization (1.5), ḡ ∈ A 1 means that

Therefore, according to the caracterization (1.5), f1

And the result follows by (2.14).

The same result is true for f2 . Then M1

We eventually obtain ψn+1 l ∈ A 1 by (2.14).

Multi-dimensional case

As in 1D, we choose { λj } {j=1,...,J} ∈ R 3 (in 3D), which in this case are vectors instead of scalars. The 1D method (and also the proposition 2.1) did not use any 1D argument. One can rewrite the previous method with vectors λj instead of scalars. Then the method for solving the system (1.1) reads: