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Modélisation Mathématique et Analyse Numérique

MODELLING AND NUMERICAL APPROXIMATION FOR THE

NONCONSERVATIVE BITEMPERATURE EULER MODEL

D. Aregba-Driollet1, J. Breil2, S. Brull3, B. Dubroca4 and E. Estibals5

Abstract. This paper is devoted to the study of the nonconservative bitemperature Euler system.

We firstly introduce an underlying two species kinetic model coupled with the Poisson equation. The

bitemperature Euler system is then established from this kinetic model according to an hydrodynamic

limit. A dissipative entropy is proved to exist and a solution is defined to be admissible if it satisfies

the related dissipation property. Next, four different numerical methods are presented. Firstly, the

kinetic model gives rise to kinetic schemes for the fluid system. The second approach belongs to the

family of the discrete BGK schemes introduced by Aregba-Driollet and Natalini. Finally, a quasi-linear

relaxation approach and a Lagrange-remap scheme are considered.
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The dates will be set by the publisher.

1. Introduction

The present paper is devoted to the approximation of a nonconservative bitemperature compressible Euler
system by different numerical schemes.

This fluid model consists of two conservation equations for mass and momentum and two nonconservative
equations, that is to say, one for each energy. Physically, this model describes the interaction of a mixture of one
species of ions and one species of electrons in thermal nonequilibrium. The pressure of each species is supposed
to satisfy a gamma-law with its own γ constant.

Solving nonconservative hyperbolic systems is a delicate problem because the definition of weak admissible
solutions remains unclear. In order to define nonconservative products, Dal Maso, Le Floch and Murat proposed
in [18] a new theory based on the definition of family of paths. However, it is shown, in [1], that even if the
correct path is known, the numerical solution can be far from the expected solution. In [6], the authors
consider an hyperbolic system having n− p equations in a conservative form, the remaining p equations being
nonconservative. In [30], path-conservative schemes are defined by using the concepts developped in [18]. In [31],
the authors use a Roe solver, and an HLLC solver which neglects the nonconservative part of the system. They
validate the approach by comparing their results to theoretical temperatures/pressures curves ( [35], [34]).

Keywords and phrases: Relaxation method, nonconservative hyperbolic system, kinetic schemes, BGK models, hydrodynamic
limit, entropy dissipation
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In [17], the authors assume that the electronic entropy is conserved by all weak solutions including shocks and
the system is approached by a system of conservation laws.

The bitemperature Euler system can be constructed from an underlying kinetic model which consists of a
BGK model coupled with Poisson equation in the quasi-neutral regime. This BGK model possesses different
interspecies collision frequencies in order to take into account discrepancies in the particle masses. This point
has been in particular mentionned in [23], where a conservative formulation is proposed. Hence, following this
idea we obtain such a model satisfying a H theorem. Next, performing an hydrodynamic limit, we get the
nonconservative Euler system. To take into account the different γ constants, we should consider polyatomic
kinetic models. We do not make so in order to avoid heavy technical proofs. However, the ideas are analogous
to the monoatomic case. We show that the fluid model owns a dissipative strictly convex entropy which can be
recovered from the Boltzmann entropy. In this paper, we consider the entropic solutions of the nonconservative
Euler system which are the hydrodynamic limits of solutions of the kinetic system. Using the Boltzmann
entropy, we prove that the hydrodynamic limits are entropy-dissipative. Moreover this approach leads at the
discrete point of view to numerical schemes which are consistent with the physics.

In another way, the present bitemperature Euler system is approached by using numerical methods inspired
from the approximation of the Euler system. The first one is a kinetic scheme ( [32]) which is based on the
underlying kinetic model. The second method is based on discrete BGK schemes introduced in [4]. One
important point of this paper is their generalization to the present nonconservative setting and the fact that
those models provide entropy-dissipative solutions. We also prove discrete entropy inequalities for the related
numerical schemes. The third method is based on a Suliciu relaxation approach for the pressure variables
( [16]). The interest of such an approach is that all the characteristic fields of the related homogeneous system
are linearly degenerate and hence the Riemann solver is easier to handle. Finally, the last method of the paper
is a Lagrangian method ( [26]) based on Lagrangian and projection steps. This method is used in the multi-
physics CHIC code ( [10]) to solve a bitemperature model in the field of inertial confinement fusion (ICF) and
high energy density physics (HEDP). Lagrangian formalism is well suited to deal with the multi-material flow
encountered in the field of ICF and numerous papers devoted to laser plasma interaction use this code ( [29]).

This paper is organised as follows. The second section is dedicated to the physical models that are involved
in this paper. Firstly Euler bitemperature macroscopic model is given and we consider the Vlasov-BGK model
from which the Euler system is derived. Starting from an ad-hoc scaling the construction of the Euler system
is performed. Next, we study the entropy properties of this system. In section 3, we design the different
numerical schemes and in section 4, some numerical results are presented. The goal of those first tests is to
compare the schemes on 1D examples. It is out of the scope of this paper to propose higher order improvments
or multi-dimensionnal computations. Finally, section 5 deals with some conclusions and perspectives to this
paper.

2. The physical models

This part is devoted to the presentation of the different physical models that are involved in this paper.
Firstly, we give the Euler bitemperature system, the underlying kinetic model and next we derive the fluid
model from an hydrodynamic limit. For the sake of simplicity we consider a new BGK model to represent the
interaction between ions and electrons coupled with Poisson equation considered at the quasi-neutral regime.
Then we prove the existence of a strictly convex dissipative entropy for the fluid model.

There are many BGK models devoted to gas mixtures ( [2], [13], [11], [21], [24], [27]). However except
( [2], [13], [11]), there are few BGK models for gas mixtures enjoying fundamental properties (H theorem,
equilibrium states, nonegativity of the distribution function, . . . ) inherited from the Boltzmann operator ( [3]).
In order to take into account disparate masses, we consider in this paper the situation where the interspecies
collision frequencies are different. This point has been in particular mentionned in ( [23]) where a conservative
formulation is proposed. Here we are able to prove an H-theorem and to make the link with the macroscopic
entropy. Moreover, one originality of this work is to take into account the electric field in the rescaled kinetic
model.
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2.1. The Euler bitemperature model

The nonconservative two species Euler equations are given by the hyperbolic system:















∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu

2 + pe + pi) = 0,
∂t(ρeεe +

1
2ρeu

2) + ∂x(u(ρeεe +
1
2ρeu

2 + pe))− u(ci∂xpe − ce∂xpi) = νei(Ti − Te),
∂t(ρiεi +

1
2ρiu

2) + ∂x(u(ρiεi +
1
2ρiu

2 + pi)) + u(ci∂xpe − ce∂xpi) = −νei(Ti − Te),

(1)

where ρ = ρe + ρi ≥ 0 is the total density of the plasma, u is the average velocity of the plasma. Te and
Ti represent the temperatures of electrons and ions. ρe = neme, ρi = nimi are the density of the electrons
and ions, where the concentrations of electrons ne and of ions ni are related by the average ionization number
Z = ne/ni ≥ 1. Z will be consider here constant and as a physical property of the ions. me and mi are the
mass of the electrons and ions particles. Hence the mass fractions

cα =
ρα
ρ
, α = e, i (2)

are also constant and ce and ci write

ce =
Zme

mi + Zme
, ci = 1− ce. (3)

The electronic and ionic pressures and temperatures are related by

pe = nekBTe, pi = nikBTi,

where kB is the Boltzmann constant. The internal energies are given by

εe =
kBTe

me(γe − 1)
, εi =

kBTi
mi(γi − 1)

, (4)

where γe, γi are constant numbers belonging to the interval [1, 3] and νei ≥ 0 is the frequency exchange between
temperatures.

Along this article we denote Eα = ραεα + 1
2ραu

2 for α = e, i, and

U = (ρ, ρu, Ee, Ei). (5)

We also use in this article the expression of the bitemperature model in Lagrangian formalism, which writes as















ρdtτ − ∂xu = 0,
ρdtu+ ∂x(pe + pi) = 0,
ρedtεe + peρdtτ = νei(Ti − Te),
ρidtεi + piρdtτ = −νei(Ti − Te),

(6)

where dt = ∂t + u∂x represents the material derivative and τ = 1
ρ is the specific volume.

2.2. The kinetic model

2.2.1. Notations

Kinetic models are described by the distribution function fα of each species depending on the time variable
t ∈ R+, on the position x ∈ R

3 and on the velocity v ∈ R
3. The macroscopic quantities can be obtained by
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extracting moments on these distribution functions w.r.t the velocity variable. Indeed density, velocity and
total energy of the species α can be defined as

nα =

∫

R3

fαdv, uα =
1

nα

∫

R3

vfαdv, Eα =
3

2
ρα

kB
mα

Tα +
1

2
ραu

2
α =

∫

R3

mα
v2

2
fαdv, (7)

where mα is the mass particle, ρα = mαnα, and Tα the temperature of species α.
The internal specific energy of species α can be defined as

εα =
3

2mα
kBTα.

Those definitions are consistent with (4) for γα = 5
3 . As already pointed out in introduction, this value

corresponds to the monoatomic case. This is not a conceptual restriction because the general case could be
obtained with the same approach by considering polyatomic models. This generalization is postponed to a
forthcoming paper. In the following we shall use the moment operator Pα defined by

Pα(fα) = mα

∫

R3





1
v
v2

2



 fαdv. (8)

We denote Pα(fα) = Uα:

Uα =





ρα
ραuα
Eα



 . (9)

Usually the velocity and the temperature of the mixture are defined by

u =
ρeue + ρiui
ρe + ρi

, nkBT =
∑

α

(
1

3
ρα(u

2
α − u2)) +

∑

α

(nαkBTα), (10)

where n = ne + ni. Finally we define the entropy of the mixture by

H(fe, fi) = Hs(fe) +Hs(fi), with Hs(f) =

∫

R3

(f ln(f)− f)dv. (11)

The related entropy flux is then

Φ(fe, fi) = Φs(fe) + Φs(fi), with Φs(f) =

∫

R3

v(f ln(f)− f)dv. (12)

2.2.2. Description of the BGK model

In this section, we present the kinetic model and we show the fundamental properties of the BGK model
describing the plasma interacting with an electric field E ∈ R

3. This model writes

∂tfα + v∇xfα +
qα
mα

E.∇vfα =
1

τα
(Mα(fα)− fα) +

1

ταβ
(Mα(fe, fi)− fα), {α, β} ∈ {e, i}, α 6= β, (13)

with τα > 0, ταβ > 0. qα is the charge of the species α.
The relaxation term 1

τα
represents the collision frequency for the interaction between α particles and 1

ταβ

corresponds to the collision frequency for the interaction between ions and electrons.
In this paper, contrarily to classical BGK models, we consider as in ( [23]) that τei 6= τie, due to the

discrepancy of ion and electron masses. In particular, τie
τei

is of the same order as ci
ce

and can reach important
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values. Moreover this quantity is kept fixed in the physical model presented in this paper.
The model (13) is coupled to the Maxwell-Ampère and the Poisson equations through the electric field E as
follows

∂tE = − j

ε0
, (14)

∇x ·E =
ρ

ε0
. (15)

j represents the current in the plasma, ρ the total charge, and ε0 is the vacuum permitivity. j and ρ are defined
by

ρ =

∫

R3

(qefe + qifi) dv = neqe + niqi, j =

∫

R3

v(qefe + qifi) dv = neqeue + niqiui. (16)

Mα and Mα are the two Maxwellian distribution functions

Mα(fα) =
nα

(2πkBTα/mα)3/2
exp(− |v − uα|2

2kBTα/mα
), α = e, i, (17)

Mα(fe, fi) =
nα

(2πkBT#/mα)3/2
exp(− |v − u#|2

2kBT#/mα
), α = e, i, (18)

where

u# =
1
τei
meneue +

1
τie
miniui

1
τei
mene +

1
τie
mini

, (19)

T# =
3
2

1
τei
kBneTe +

3
2

1
τie
kBniTi +

1
τei

(12ρe(ue)
2 − 1

2ρe(u
#)2) + 1

τie
(12ρi(ui)

2 − 1
2ρi(u

#)2)
3
2kB

1
τei
ne +

3
2kB

1
τie
ni

. (20)

In (19, 20), u# and T# are fictitious quantities and are defined in such a way that the BGK model is conservative.
In the equilibrium case, the relations ue = ui = u and Te = Ti = T correspond to u# = u and T# = T .
Moreover, u# being defined in (19) according to a convex combinaison of ue and ui, it holds that

(
1

τei
ρe +

1

τie
ρi)(u

#)2 ≤ 1

τei
ρeu

2
e +

1

τie
ρiu

2
i .

Therefore T# defined by relation (20) is positive. In the situation where τei = τie, we recover u# = u and
T# = T , where u and T are given by (10).

Remark that in [2], [13], [11], the authors consider only one global BGK operator per species in order to
reproduce the interaction between the given species with the other species.

The following properties are well known:

Property 2.1. For α = e, i, let Fα be the flux function of Euler equations and ηα(Uα) = ηα(ρα, εα), Qα = uηα
the usual entropy-flux pair for the Euler system with the γ-law (4):

ηα(ρα, εα) = − ρα
mα(γα − 1)

[

ln

(

(γα − 1)ραεα
ργα
α

)

+ C

]

. (21)

Here C is a nonnegative constant. If γe = γi = 5/3, then for α = e, i:

Pα(Mα(fα)) = Uα, Pα(vMα(fα)) = Fα(Uα), (22)

and

Hs(Mα(fα)) = ηα(Uα), Φs(Mα(fα)) = Qα(Uα). (23)
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Proposition 2.1. The model (13, 17, 18, 19, 20) conserves the mass per species, the total momentum and the
total energy.

Proof. The two Maxwellian distributions (17, 18) satisfy the constraints

∫

R3

(Mα − fα)





mα

mαv

mα
v2

2



 dv = 0,

∫

R3

(Mα − fα)dv = 0, α = e, i. (24)

Straightforward computations give
∫

R3

1

τei
(Me − fe)mevdv +

∫

R3

1

τie
(Mi − fi)mivdv =

1

τei
mene(u

# − ue) +
1

τie
mini(u

# − ui)

∫

R3

1

τei
(Me − fe)

1

2
mev

2dv +

∫

R3

1

τie
(Mi − fi)

1

2
miv

2dv =
3

2
kB(

1

τei
ne(T

# − Te) +
1

τie
ni(T

# − Ti))

+
1

2τei
(ρe(u

#)2 − ρeu
2
e) +

1

2τie
(ρi(u

#)2 − ρiu
2
i ).

Then the definition of u# and T# given by (19) and (20) leads to

1

τei

∫

R3

((Me − fe)

[

mev

me
v2

2

]

+
1

τie
(Mi − fi)

[

miv

mi
v2

2

]

)dv = 0. (25)

Therefore the conservation properties follow. �

Theorem 2.1. The model (13, 17, 18) satisfies the H theorem.

(1) The model satisfies the entropy inequality

1

τe

∫

R3

(Me − fe)ln(fe)dv +
1

τi

∫

R3

(Mi − fi)ln(fi)dv +
1

τei

∫

R3

(Me − fe)ln(fe)dv

+
1

τie

∫

R3

(Mi − fi)ln(fi)dv ≤ 0.

(26)

(2) The equality holds in the above equation if and only if there exists (nα, u, T ) ∈ R
+×R

3×R
+ such that

fα =
nα

(2πkBT/mα)3/2
exp(− |v − u|2

2kBT/mα
), α = e, i. (27)

Proof. For each α = e, i, by using the conservation properties (24, 25), it holds that

∫

R3

(Mα − fα)ln(fα)dv =

∫

R3

(Mα − fα)ln(
fα
Mα

)dv (28)

and
∫

R3

(
1

τei
(Me − fe)ln(fe) +

1

τie
(Mi − fi)ln(fi))dv =

∫

R3

(
1

τei
(Me − fe)ln(

fe

Me

) +
1

τie
(Mi − fi)ln(

fi

Mi

))dv.

Therefore the convexity of the function x→ x lnx yields the first part of the theorem. Moreover if the equality
holds in (26), it comes that

fα = Mα, Mα = Mα, α = e, i.

Next, by using the expressions (17, 18, 19, 20) of Mα and Mα, it comes that ue = ui = u = u#,
Ti = Te = T = T# and we get (27). Therefore we recover the same equilibrium states as for the Boltzmann
operator for a two component gas ( [3]). �
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2.3. Hydrodynamic limit

In this section we derive as an hydrodynamic limit, a nonconservative Euler system. We firstly rescale the
model and next perform the hydrodynamic limit.

2.3.1. Scaling on the one dimensionnal BGK model

For the sake of clarity, we assume that the system (13-20) is even in (v2, v3). Such property being preserved
by the kinetic equation (13-20), the distribution function fα of the species α depends on the time variable
t ∈ R+, the space variable x ∈ R and the velocity variable v (v1, v2, v3) ∈ R

3. In the following, the macroscopic
velocity u(t, x), the current j(t, x) belong to R and (7, 12, 16) are to be read with

uα =
1

nα

∫

R3

v1fαdv, Φs(f) =

∫

R3

v1(f ln(f)− f)dv, j =

∫

R3

v1(qefe + qifi) dv.

The electric field belongs to R, and Pα(fα) = Uα belongs to R
3:

Pα(fα) = mα

∫

R3





1
v1
v2

2



 fαdv. (29)

The property (22) reads then as

Pα(Mα(fα)) = Uα, Pα(v1Mα(fα)) = Fα(Uα). (30)

In order to obtain the quasi-neutral limit, the system (13-15) is rescaled in the following way







∂tfα + v1∂xfα + qα
mα

E∂v1fα = 1
ε (Mα − fα) +

1
ταβ

(Mα − fα), α 6= β

∂tE = − j
ε2 ,

∂xE = ρ
ε2 ,

(31)

where ε is a positive parameter proportional to the Knudsen number. In particular the Maxwellian distributions
given in (17, 18) write

Mα(fα) =
nα

(2πkBTα/mα)3/2
exp(− (v1 − uα)

2 + v22 + v23
2kBTα/mα

), α = e, i (32)

and

Mα(fe, fi) =
nα

(2πkBT#mα)3/2
exp(− (v1 − u#)2 + v22 + v23

2kBT#/mα
), α = e, i, (33)

where u# and T# are defined by (19) and (20).

Remark 2.1. In ( [19], [20]), the authors perform formally hydrodynamic limits toward nonconservative Euler
systems in the context of mixtures of ions and electrons. In particular they consider for their scaling the mass
ratio between ions and electrons as a small parameter. In the present case, the scaling proposed in (31) is
different. Our aim is to provide a kinetic approximation of the system (31) in the spirit of ( [33]). The
comparison between the different scalings at the physical point of view has to be investigated and is postponed to
a future paper.

2.3.2. Derivation of the Euler equations

The two species Euler system is obtained starting from (31, 32, 33) and performing an hydrodamic limit.
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Proposition 2.2. The system (31, 32, 33) formally converges to the nonconservative two species Euler equations
(1) where E is given according to the Ohm’s law

1

ρe
∂xpe −

1

ρi
∂xpi = (

neqe
ρe

− niqi
ρi

)E =
ρ

ρeρi
neqeE = − ρ

ρeρi
niqiE (34)

and

νei =
3kBneni

2(τiene + τeini)
. (35)

Remark that the three dimensional version of (1) can be obtained by considering the system (13-15) with
the same scaling as in (31).

Proof. For this proof, for any g belonging to L1
2 = {g ∈ L1/(1 + v2)f ∈ L1}, we use the notation

∀g ∈ L1
2, 〈g〉 =

∫

R3

g dv.

To obtain the Euler system (1), we perform a Chapman-Enskog expansion for each distribution function

fα = f0
α + εf1

α, α ∈ {e, i},

with the constraints
∫

R3

fαdv =

∫

R3

f0
αdv,

∫

R3

f1
αdv = 0, (36)

∫

R3

v1(mefe +mifi)dv =

∫

R3

v1(me f
0
e +mi f

0
i )dv,

∫

R3

v1(mef
1
e +mif

1
i )dv = 0, (37)

∫

R3

v2mαfα dv =

∫

R3

v2mαf
0
α dv,

∫

R3

v2mαf
1
α dv = 0. (38)

By identifying the terms of (31) of order ε−1, we get

f0
α = Mα, α ∈ {e, i},

where Mα is given by (32). Letting ε tend to 0, it comes that ρ = 0 and j = 0. Next, we use the relations

qe = −e, qi = Ze (39)

where Z represents the ionisation rate and e the elementary charge. Then we deduce

ne = Zni, ue = ui = u. (40)

Therefore,

f0
α = Mα, with uα = u. (41)

Moreover, since ue = ui, the relation (19) implies u# = u = ue = ui. The terms of order ε0 of (31) are given by

∂tf
0
α + v1∂xf

0
α +

qα
mα

E∂v1f
0
α =

1

ταβ
(Mα − f0

α)− f1
α, α, β ∈ {e, i}, α 6= β. (42)

Multiply (42) by mα, integrate w.r.t v, use that 〈∂v1f0
α〉 = 0 and 〈f1〉 = 0 leads to

∂t〈mαf
0
α〉+ ∂x〈mα v1f

0
α〉 = 0.



TITLE WILL BE SET BY THE PUBLISHER 9

Hence we obtain the mass conservation equation for species α

∂tρα + ∂x(ραu) = 0, α ∈ {e, i}.

By summing on α this equation, we obtain the conservation of total mass. In order to obtain the conservation
of momentum, multiply (42) by mαv1 and integrate w.r.t v. Hence we get

∂t〈mαv1 f
0
α〉+ ∂x〈mαv

2
1 f

0
α〉+ qαE〈v1∂v1f0

α〉 =
1

ταβ
〈mαv1(Mα − f0

α)〉 − 〈mαv1f
1
α〉, α 6= β. (43)

The scaling of the second equation of (31) gives

∫

R3

v1(qef
1
e + qif

1
i ) dv = 0. (44)

Hence combining (44) with (37) leads to 〈mαv1f
1
α〉 = 0. Moreover, as 〈mαv1f

0
α〉 = ραu, it comes that

〈mαv
2 f0

α〉 = ραu
2 + pα, where pα is the pressure of species α = e, i. As v1∂v1f

0
α = ∂v1(v1 f

0
α) − f0

α, we
get 〈v1 ∂v1f0

α〉 = −nα. Moreover, using that 〈mαv1(Mα − f0
α)〉 = 0, we obtain

∂t(ραu) + ∂x(ραu
2 + pα)− qαnαE = 0. (45)

By summing term by term (45) and using (25), we get the second equation of the system (1). Moreover (45)
can be rewritten on the form

∂tu+ u∂xu+
1

ρα
∂xpα − qαnα

ρα
E = 0. (46)

By substracting equation (46) for electrons and ions, we get Ohm’s law (34). In order to obtain one equation
on each internal energy for each species, we multiply equation (31) by mαv

2/2 and integrate w.r.t v

∂t〈mα
v2

2
f0
α〉+ ∂x〈mα

v2

2
f0
αv1〉+ qαE〈v

2

2
∂v1f

0
α〉 =

1

ταβ
〈mα

v2

2
(Mα − f0

α)〉 − 〈mα
v2

2
f1
α〉, α, β ∈ {e, i}, α 6= β.

(47)
Firstly, we compute

〈mα
v2

2
f0
α〉 = ραεα +

1

2
ραu

2, 〈mα
v2

2
f0
αv1〉 = u(ραεα +

1

2
ραu

2 + pα).

For the last term of the left-hand side of (47), the relation v2

2 ∂v1f
0
α = ∂v1(

v2

2 f
0
α)− v1f

0
α leads to

qαE〈v
2

2
∂v1f

0
α〉 = −nαqαEu.

Let α 6= β ∈ {e, i}. Then (34) reads
1

ρα
∂xpα − 1

ρβ
∂xpβ =

ρ

ραρβ
. (48)

Next for the right-hand side of (47), a direct computation yields

〈mα
v2

2
(Mα − f0

α)〉 =
3

2
nαkB(T

# − Tα).

Moreover, the relation (20) implies that

T# − Tα =

1
τβα

nβ

1
τei
ne +

1
τie
ni

(Tβ − Tα), β 6= α, {α, β} ∈ {e, i}, (49)
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because u# = u = ue = ui. So

〈mα
v2

2
(Mα − f0

α)〉 =
3

2

neni

τiene + τeini
kB(Tβ − Tα), β 6= α, α ∈ {e, i}. (50)

Hence, using that 〈mα
v2

2 f
1
α〉 = 0 and (50), (47) leads to the 2 last equations of (1). �

Remark 2.2. The relation (48) shows that the force term of the kinetic equations leads as in ( [33]) to the
nonconservative terms of the bitemperature Euler system (1).

2.4. Entropy dissipation

This section is devoted to the entropy study for the system (56) and is one of the crucial part of the paper.
We firstly prove the existence of an entropy-entropy flux pair directly on the fluid system. Next, the entropy
dissipation property is obtained through the kinetic point of view. It is shown that the two obtained entropy
dissipation properties are compatible.

2.4.1. Existence of a dissipative entropy for the Euler bitemperature model

In this part we aim to identify an entropy for the system (1). More precisely, we are looking for a dissipative
entropy-entropy flux pair (η,Q), defined as follows:

Definition 2.1. Consider a hyperbolic quasilinear system

∂tU +A(U)∂xU = G(U). (51)

Let η be a strictly convex real valued function defined on an open domain Ω of R
n. Let Q be a real valued

function defined on Ω. (η,Q) is a dissipative entropy-entropy flux pair for the system (51) if for all U ∈ Ω:

η′(U)A(U) = Q′(U) (52)

and
η′(U)G(U) ≤ 0. (53)

Let us perform the change of variable U = φ(V). We denote

Ã(V) = (φ′(V))−1A(φ(V))φ′(V), η̃(V) = η(φ(V)), Q̃(V) = Q(φ(V)).

It is an easy matter to prove that U is a solution of system (51) if and only if V is a solution of

∂tV + Ã(V)∂xV = (φ′(V))−1G(φ(V)), (54)

and that condition (52) is satisfied if and only if

η̃′(V)Ã(V) = Q̃′(V). (55)

In our case, the primal variable U = (ρ, ρu, Ee, Ei) can be changed into V = (ρ, u, εe, εi). A straightforward
calculation leads to the following system for V :























∂tρ+ u∂xρ+ ρ∂xu = 0,

∂tu+ u∂xu+ ρ−1∂x(pe + pi) = 0,

∂tεe + u∂xεe + ρ−1
e pe∂xu = ρ−1

e νei(Ti − Te),

∂tεi + u∂xεi + ρ−1
i pi∂xu = ρ−1

i νei(Te − Ti).

(56)
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Lemma 2.2. For α = e, i, let ηα(ρα, ραu, Eα) = ηα(ρα, εα) be as defined in (21), and Qα = uηα. We define

(η̃, Q̃) for system (56) as
η̃(ρ, u, εe, εi) = µeηe(ρce, εe) + µiηi(ρci, εi),

Q̃(ρ, u, εe, εi) = µeQe(ρce, u, εe) + µiQi(ρci, u, εi)
(57)

where µe and µi are constant. Hence relation (55) is satisfied.

We skip the proof of this lemma: it is a direct calculation where one uses the fact that the entropy ηα does
not depend on the variable u.

As a consequence, if we define η(U) = η̃(ρ, u, εe, εi) and the fonction Uα as

Uα(U) = (cαρ, cαρu, Eα), α = e, i, (58)

equality (52) is satisfied with

η(U) = µeηe(Ue(U)) + µiηi(Ui(U)), Q(U) = uη(U). (59)

We can now prove the existence of a strictly convex entropy for system (1).

Theorem 2.3. Let (η,Q) be defined by (59), with ηe, ηi defined in lemma 2.2 and Ue, Ui defined in (58). Let
us set

µe = µi = 1. (60)

Then η is a strictly convex dissipative entropy for system (1) and Q is the related entropy flux. More precisely,
any smooth solution of the system satisfies the following equality:

∂tη(U) + ∂xQ(U) = − νei
kBTiTe

(Ti − Te)
2. (61)

Proof. It remains to prove convexity and dissipation by the source-term. Consider U 6= W . Then Uα(U) 6=
Uα(W) for at least one α. As ηe and ηi are strictly convex and µe and µi are positive:

η(W) > η(U) +
∑

α=e,i

µαη
′
α(Uα(U))(Uα(W)−Uα(U)).

As the Uα are linear, Uα(W)−Uα(U) = U′
α(U)(W −U), and therefore

η(W) > η(U) + η′(U)(W −U),

which proves that η is strictly convex.
Then by using (4) one has

(

µe
∂(ηe ◦Ue)

∂Ee
(U)− µi

∂(ηi ◦Ui)

∂Ei
(U)

)

(Ti − Te) = − 1

kB
(Ti − Te)

(

µe

Te
− µi

Ti

)

and (61) follows. �

2.4.2. Entropy inequality for hydrodynamic limits

Theorem 2.3 is valid for any value of γe, γi. In the present case, the kinetic model (31) being monoatomic
only the values of γe and γi equal to 5/3 can be considered. However, recall that the problem can be overcome
by introducing a polyatomic kinetic model. The existence of a strictly convex dissipative entropy allows us to
precise which solutions are admissible. In that goal, we study the entropy dissipation induced by the kinetic
model.
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Proposition 2.3. Let U be a solution of (1) with γe = γi = 5/3. If U is a limit of a solution to the kinetic
model (31-33) then the following inequality holds:

∂tη(U) + ∂xQ(U) ≤ − νei
kBTiTe

(Ti − Te)
2. (62)

Proof. Multiply equation for fα of (31) by ln(fα) and integrate w.r.t v gives

∂t

(∫

R3

fα ln(fα)− fαdv

)

+ ∂x

(∫

R3

v1(fα ln(fα)− fα)dv

)

+
qα
mα

∫

R3

E ∂v1(fα ln(fα)− fα)dv

=
1

ε

∫

R3

(Mα − fα) ln(fα)dv +
1

τei

∫

R3

(Mα − fα) ln(fα) dv.

The third term of the left-hand side is zero. By using (28) and notations (11,12):

∂tHs(fα) + ∂xΦs(fα) ≤
1

ταβ

∫

R3

(Mα − fα) ln(fα) dv, α ∈ {e; i}, β 6= α. (63)

Now we sum over α = e, i and formally pass to the limit ε = 0. We obtain fα = Mα, with ρ = 0 and j = 0.
So Pα(fα) = Uα(U). The left-hand-side tends to the left-hand-side of inequality (62) as a direct consequence
of (23). Moreover we get for α ∈ {e, i}:

∫

R3

(Mα −Mα) ln(Mα) dv =

∫

R3

(Mα −Mα) ln(
nα

(2πkB
Tα

mα
)

3
2

) dv −
∫

R3

(Mα −Mα)
(v − u)2

2kB
Tα

mα

dv.

The first term of the right-hand-side is equal to zero by (24). For the second, a straightforward computation
gives:

∫

R3

(Mα −Mα)
(v − u)2

2kB
Tα

mα

dv =
3

2

nα

Tα
(T# − Tα).

Therefore the right-hand side of (63) reads

A = −3

2

(

1

τei

ne

Te
(T# − Te) +

1

τie

ni

Ti
(T# − Ti)

)

.

We conclude by using (49) and (35). �

This result is our motivation to define the admissibility of a solution of the bitemperature Euler model even
in the general case γe 6= γi.

Definition 2.2. A solution U of system (1) is said to be admissible if it satisfies inequality (62).

3. Numerical Approximation

The spatial discretization is defined by a step ∆x and discretization cells Cj =]xj− 1
2
, xj+ 1

2
[. We consider that

∆x is constant, except in the Lagrangian formalism below. The time step can be variable in the applications
and is denoted ∆t: t0 = 0, tn+1 = tn +∆t.

We adopt the finite volume viewpoint: for an unknown V (x, t), we look for approximations V n
j of the average

of V at time tn on cells Cj .
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3.1. A kinetic scheme

In this section we design a numerical approximation of the bitemperature Euler model (1) by using the kinetic
approximation (31-33). We use the well-known transport-projection method that can be described as follows.

An initial data U0 being given, for α = e, i, we set ρ0α = ρ0cα, n
0
α = ρ0α/mα, and u

0
α = u0.

Suppose that at time tn an approximate solution Un = (ρn, (ρu)n, En
e , En

i ) is known and that we have been
able to define Un

e and Un
i such that

ρnα = ρncα, unα = un, α = e, i. (64)

As a consequence, nn
α = ρnα/mα is also well defined for α = e, i and we are able to compute the microscopic

quantities fn
e (v), f

n
i (v) by

fn
α (v) = Mα(U

n
α ), α = e, i. (65)

We recall that the moment operator Pα is defined by (29) and satisfies (30). We obtain:

Pα(f
n
α ) = Un

α , Pα(v1Mα(U
n
α )) = Fα(U

n
α ), (66)

where Fα is the flux function of Euler equations with γ = 5/3.
Now, at the microscopic level, we approximate the equations

∂tfα + v1∂xfα +
qα
mα

E∂v1fα =
1

ταβ
(Mα − fα), α = e, i, β 6= α. (67)

Definition 3.1. For each value of v we define a numerical flux hα,j+ 1
2
(v) = hα(fα,j(v), fα,j+1(v), v) such that

for all v, hα(., ., v) is Lipschitz continuous and for all f :

hα(f, f, v) = v1f. (68)

For α ∈ {e, i} with α 6= β, we define f
n+ 1

2

α,j and Un+1
α as

f
n+ 1

2

α,j = fn
α,j −

∆t

∆x
(hnα,j+ 1

2

(v)− hnα,j− 1
2

(v)) −∆t
qα
mα

En+1
j ∂v1f

n+ 1
2

α,j +
∆t

ταβ
(Mα(f

n+ 1
2

e,j , f
n+ 1

2

i,j )− f
n+ 1

2

α,j ), (69)

and

Un+1
α,j = Pα(f

n+ 1
2

α,j ). (70)

En+1
j not being defined, we impose the two following relations, which are the relaxed limit of the last two

equations of (31):










qe
me

ρn+1
e,j +

qi
mi

ρn+1
i,j = 0,

qe
me

ρn+1
e,j un+1

e,j +
qi
mi

ρn+1
i,j un+1

i,j = 0.
(71)

Therefore un+1
i,j = un+1

e,j and we define Un+1
j by setting

ρn+1
j = ρn+1

e,j + ρn+1
i,j , un+1

j = un+1
i,j = un+1

e,j .

Consequently, relations (64) are satisfied at level n+ 1. For α = e, i, we set

Fα,j+ 1
2
= Fα(Uα,j, Uα,j+1) (72)

with
Fα(Uα, Vα) = Pα(hα(Mα(Uα),Mα(Vα), ·)). (73)
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This is a consistent numerical flux for Euler system of species α:

Fα(Uα, Uα) = Pα(v1Mα(Uα)) = Fα(Uα).

Now we proceed as in section 2.3.2. First we note again that

Pα(∂v1fα) = (0,−ρα,−ραu).

We thus obtain the following relations:

ceρ
n+1
j un+1

j = ceρ
n
j u

n
j − ∆t

∆x

(

Fn
e,j+ 1

2
,2 − Fn

e,j− 1
2
,2

)

+
∆t qe
me

En+1
j ρn+1

e,j ,

ciρ
n+1
j un+1

j = ciρ
n
j u

n
j − ∆t

∆x

(

Fn
i,j+ 1

2
,2 − Fn

i,j− 1
2
,2

)

+
∆t qi
mi

En+1
j ρn+1

i,j .

Hence, denoting
δnj+ 1

2

= −ciFn
e,j+ 1

2
,2 + ceF

n
i,j+ 1

2
,2, (74)

we have

ciceρ
n+1
j En+1

j

(

− qe
me

+
qi
mi

)

=
1

∆x

(

δnj+ 1
2

− δnj− 1
2

)

.

Therefore by (3) and (39):

− qe
me

En+1
j ρn+1

e,j =
qi
mi

En+1
j ρn+1

i,j =
1

∆x

(

δnj+ 1
2

− δnj− 1
2

)

.

It is clear that δn
j+ 1

2

is consistent with −cipe + cepi:

δnj+ 1
2

= δ(Un
j ,Un

j+1), δ(U ,U) = −cipe + cepi.

Finally, if we define Fj+ 1
2
as

Fj+ 1
2
=











Fe,j+ 1
2
,1 + Fi,j+ 1

2
,1

Fe,j+ 1
2
,2 + Fi,j+ 1

2
,2

Fe,j+ 1
2
,3

Fi,j+ 1
2
,3











(75)

we obtain the following consistent scheme.

Proposition 3.1. A consistent scheme for Euler bitemperature system (1) is constructed as follows. For all
n ≥ 0 if Un = {Un

j }j∈Z is the approximate solution of system (1) at time tn, we set

Un
α,j = (cαρ

n
j , cαρ

n
j u

n
j , Eα), α = e, i. (76)

A kinetic flux hα is chosen as in definition 3.1. We then define the numerical fluxes Fα,j+ 1
2
, Fj+ 1

2
and δj+ 1

2

by (72), (73), (74), (75). The approximate solution at time tn+1 is defined by the implicit system:











































ρn+1
j = ρnj − ∆t

∆x

(

Fn
j+ 1

2
,1 − Fn

j− 1
2
,1

)

,

ρn+1
j un+1

j = ρnj u
n
j − ∆t

∆x

(

Fn
j+ 1

2
,2 − Fn

j− 1
2
,2

)

,

En+1
e,j = En

e,j −
∆t

∆x

(

Fn
e,j+ 1

2
,3 − Fn

e,j− 1
2
,3

)

− un+1
j

∆t

∆x

(

δnj+ 1
2

− δnj− 1
2

)

+∆tνei(T
n+1
i,j − T n+1

e,j ),

En+1
i,j = En

i,j −
∆t

∆x

(

Fn
i,j+ 1

2
,3 − Fn

i,j− 1
2
,3

)

+ un+1
j

∆t

∆x

(

δnj+ 1
2

− δnj− 1
2

)

−∆tνei(T
n+1
i,j − T n+1

e,j ).

(77)
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At the implementation level, the values of ρ and u are computed explicitly. It just remains to handle the
source terms, and this happens to be a linear problem.

Remark 3.1. The relations (77) lead to a conservative numerical scheme for the conservative system satisfied
by ρ, ρu and E = Ee + Ei.
Remark 3.2. (77) gives rise to a numerical scheme as soon as the fluxes coming from a discretisation of the
conservative Euler system. In particular, starting from (77), the numerical fluxes do not need to come from a
kinetic process. For example, HLLC fluxes for Euler can be chosen. This point needs further investigations.

As an example, suppose that

hα(f, g, v) =
v1
2
(f + g)− |vmax|

2
(g − f). (78)

Then

Fα(Uα, Vα) =
1

2
Pα(v1Mα(Uα) + v1Mα(Vα)− |vmax|(Mα(Vα)−Mα(Uα))),

that is

Fα(Uα, Vα) =
1

2
(Fα(Uα) + Fα(Vα))−

|vmax|
2

(Vα − Uα) . (79)

Consequently:

Fj+ 1
2
=

1

2





















ρjuj + ρj+1uj+1 − |vmax|(ρj+1 − ρj)

ρju
2
j + ρj+1u

2
j+1 + pe,j + pe,j+1 + pi,j + pi,j+1 − |vmax|(ρj+1uj+1 − ρjuj)

uj+1(Ee,j+1 + pe,j+1) + uj(Ee,j + pe,j)− |vmax|(Ee,j+1 − Ee,j)

uj+1(Ei,j+1 + pi,j+1) + uj(Ei,j + pi,j)− |vmax|(Ei,j+1 − Ei,j)





















.

The nonconservative part is approximated with

δj+ 1
2
= −ci

2
(pe,j + pe,j+1) +

ce
2
(pi,j + pi,j+1).

Finally, denoting ηe = 1, ηi = −1 the scheme reads as:

ρn+1
j = ρnj − ∆t

2∆x

(

ρnj+1u
n
j+1 − ρnj−1u

n
j−1

)

+
|vmax|∆t
2∆x

(

ρnj+1 − 2ρnj + ρnj−1

)

, (80)

ρn+1
j un+1

j = ρnj u
n
j − ∆t

2∆x

(

ρnj+1(u
n
j+1)

2 + pne,j+1 + pni,j+1 − ρnj−1(u
n
j−1)

2 − pne,j−1 − pni,j−1

)

(81)

+
|vmax|∆t
2∆x

(

ρnj+1u
n
j+1 − 2ρnj u

n
j + ρnj−1u

n
j−1

)

,

En+1
α,j = En

α,j −
∆t

2∆x

(

unj+1(En
α,j+1 + pnα,j+1)− unj−1(En

α,j−1 + pnα,j−1)
)

(82)

+
|vmax|∆t
2∆x

(

En
α,j+1 − 2En

α,j + En
α,j−1

)

+ ηα ∆t νei(T
n+1
i,j − T n+1

e,j )

− ηαu
n+1
j

∆t

2∆x

(

−ci(pne,j+1 − pne,j−1) + ce(p
n
i,j+1 − pni,j−1)

)

, α = e, i.

For the numerical tests, we used the more general HLL flux, which is obtained by the choice

hα(f, g, v) = v1

(

λ3
λ3 − λ1

f − λ1
λ3 − λ1

g

)

− λ1λ3
λ3 − λ1

(g − f). (83)
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Here λ1 and λ3 are constants to be fixed. The fact that this scheme satisfies discrete entropy inequalities is not
clear at this point because the transport scheme with flux (78) or (83) is not monotone for all v, but it is actually
true, as it will be proved in section 3.2. In the situation where for any v1, one has |v1| ≤ |vmax|, a discrete
entropy inequality can be proved. This condition is fullfilled, when the velocity grid that is used is compactly
supported. This situation is classical in kinetic theory for gas dynamics, where the authors consider velocity
grids equal to [u − 4

√
RT, u + 4

√
RT ] (see [12]). In particular, the Maxwellian distributions are truncated

beyond this domain. There is another way to proceed which consists in replacing the Maxwellian by compactly
supported distributions shearing the same macroscopic quantities as the associated Maxwellian.

3.2. Discrete BGK schemes

In this section we start from the discrete BGK approach of [28], [4] to construct another family of schemes
for system (1). An important feature of those schemes is that they satisfy discrete entropy inequalities. As a
particular case, we recover the scheme (80-82), which is therefore entropic.

The model developped in section 2 deals with a monoatomic setting. That is why the values γi = γe =
5
3 are

imposed. Here the situation γi 6= γe is allowed.

3.2.1. Models

We take a discrete BGK model with L velocities ( [4]) for Euler equations with γ = γα, α = e, i: denoting
Fα(U) the Euler flux function, there exists L functions Mα,l : R

3 → R
3 and λ1,α, . . . , λL,α ∈ R such that

∀U ∈ R
3,

L
∑

l=1

Mα,l(U) = U,

L
∑

l=1

λα,lMα,l(U) = Fα(U). (84)

We denote Mα = (Mα,l)1≤l≤L, Λα = diag(λα,1I3, . . . , λα,LI3) where I3 is the 3 × 3 identity matrix, P =
(I3, . . . , I3) ∈ M3,3L(R), so that relations (84) may be written as follows:

∀U ∈ R
3, PMα(U) = U, PΛαMα(U) = Fα(U). (85)

Moreover we denote

Nα =
qα
mα





0 0 0
1 0 0
0 1 0



 , Nα = diag(Nα, . . . , Nα) ∈ M3L(R).

For all f = (f1, . . . , fL) ∈ R
3L, the macroscopic variables ρ, u, E and ε are defined by:

Pf = U =





ρ
ρu

E = ρε+ 1
2ρu

2



 .

For α, β ∈ {e, i}, α 6= β, we define

τα,l = νei
mα

kB
(γα − 1)

(

1

ρα
fα,3,l −

ραuα
2ρ2α

fα,2,l

)

, Bαβ,l(fe, fi) = (0, 0, τβ,l − τα,l) , Bαβ = (Bαβ,l)1≤l≤L
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and we set














































∂tf
ε
e + Λe∂xf

ε
e − Eε(x, t)Nef

ε
e =

1

ε
(Me(U

ε
e )− f ε

e ) +Bei(f
ε
e , f

ε
i ),

∂tf
ε
i + Λi∂xf

ε
i − Eε(x, t)Nif

ε
i =

1

ε
(Mi(U

ε
i )− f ε

i ) +Bie(f
ε
e , f

ε
i ),

∂tE
ε = − 1

ε2

(

qe
me

ρεeu
ε
e +

qi
mi

ρεiu
ε
i

)

,

∂xE
ε =

1

ε2

(

qe
me

ρεe +
qi
mi

ρεi

)

,

(86)

with Uε
α defined by Uε

α = Pf ε
α, α = e, i.

If f ε
α → fα when ε tends to 0 (α = e, i), then passing to the limit in the last two equations of (86) we obtain

that
ue = ui = u,

qe
me

ρe +
qi
mi

ρi = 0 . (87)

Moreover qe = −e and qi = Ze, so that miρe = Zmeρi. As ce and ci satisfy (3), we obtain that ρα = cαρ,
α = e, i.

We have also for α = e, i:
Mα(Uα) = fα.

We apply P on the two first equations of (86) and we obtain the relaxed system:







































∂tρα + ∂x(ραu) = 0, α = e, i,

∂t(ραu) + ∂x(ραu
2 + pα)−

qα
mα

Eρα = 0, α = e, i,

∂t(ρeεe +
1

2
ρeu

2) + ∂x(u(ρeεe +
1

2
ρeu

2 + pe))−
qe
me

Eρeu = νei(Ti − Te),

∂t(ρiεi +
1

2
ρiu

2) + ∂x(u(ρiεi +
1

2
ρiu

2 + pi))−
qi
mi

Eρiu = −νei(Ti − Te).

(88)

We then proceed as in the proof of Proposition 2.2: we retrieve Ohm’s law and U is a solution of the bitemper-
ature Euler system.

3.2.2. Compatibility of microscopic entropies

In this paragraph we suppose that the Maxwellian functions are of the following form:

Mα,l(Uα) = ξα,lUα + ζα,lFα(Uα), 1 ≤ l ≤ L, α = e, i. (89)

Here ξα,l, ζα,l are real constants. For instance, this is the case for the model (100-101) below. We also suppose
that those functions are one-to-one and that for all Uα under consideration:

σ(M ′
α,l(Uα)) ⊂]0,+∞[, α = e, i. (90)

This condition is related to the well-known Liu’s subcharacteristic condition, see [25], [4]. The Euler entropy
being fixed as in property 2.1, we define

Gα,l(U) = ξα,lηα(U) + ζα,lQα(U), Hα,l(fl) = Gα,l(M
−1
α,l (fα,l)), 1 ≤ l ≤ L, α = e, i.

Then F. Bouchut proved that the following properties hold for α = e, i ( [8]):

• for l = 1, . . . , L, Hα,l is convex, (E0)

•
L
∑

l=1

Hα,l(Mα,l(U)) = ηα(U), (E1).
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• for all f , if Uf = Pf , one has

L
∑

l=1

Hα,l(Mα,l(Uf )) ≤
L
∑

l=1

Hα,l(fl). (E2)

Those properties are similar to the ones of the Boltzmann entropy for the physical Maxwellian distributions of
paragraph 2 and the same formalism could be used for both of them. Using moreover the fact that

η′(Uα)NαUα = 0, α ∈ {e, i} (91)

we can prove straightforwardly that our relaxation model preserves the entropy properties of the solutions:

Proposition 3.2. If U is a solution of system (1) obtained as a limit of the discrete BGK model (86) then U
is an admissible solution.

The counterpart of this result is that the related numerical scheme is entropic, as it is stated in the following
paragraph.

3.2.3. An entropic numerical scheme

We proceed as in section 3.1. Here hα is a numerical flux for the linear system of transport equations

∂tf
ε
α + Λα∂xf

ε
α = 0,

that is

Definition 3.2. For α = e, i we define a numerical flux hα = (hα,l)1≤l≤L:

∀l ∈ {1, . . . , L}, hα,j+ 1
2
,l = hα,l(fα,j,l, fα,j+1,l) :

hα is Lipschitz continuous and satisfies the following consistency property

(∀ f ∈ R
3L) hα(f, f) = Λαf. (92)

An approximate solution Un being known and Un
e , U

n
i having been defined, we set

fn
α,l =Mα,l(U

n
α ). (93)

For α, β ∈ e, i, with β 6= α, we define (f
n+ 1

2

α,j )α=e,i as

f
n+ 1

2

α,j = fn
α,j −

∆t

∆x
(hnα,j+ 1

2

− hnα,j− 1
2

) + ∆tEn+1
j Nαf

n+ 1
2

α,j +∆tBαβ(f
n+ 1

2

α,j , f
n+ 1

2

β,j ). (94)

We define Un+1
α , α = e, i, as

Un+1
α,j = P (f

n+ 1
2

α,j ) (95)

and we impose (71). The remaining of the method follows the lines of paragraph 3.1, simply replacing the
numerical flux (73) by

Fα(Uα, Vα) = P (hα(Mα(Uα),Mα(Vα))). (96)

It is easy to see that this is a consistent numerical flux for Euler system of the species α. As a final result, we
obtain the following consistent scheme.

Proposition 3.3. A consistent scheme for Euler bitemperature system (1) is constructed as follows. For all
n ≥ 0 if Un = {Un

j }j∈Z is the approximate solution of system (1) at time tn, U
n
e,j and Un

i,j are defined by (76).
A kinetic flux hα is chosen as in definition 3.2. We then define the numerical fluxes Fα,j+ 1

2
, Fj+ 1

2
and δj+ 1

2

by (72), (96), (74), (75). The approximate solution at time tn+1 is defined by the implicit system (77).
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In all the sequel, we choose hα as the upwind flux: denoting for λ ∈ R

λ− = max(0,−λ), λ+ = max(0, λ), (97)

we define

∀f, g ∈ R
3L, hα,l(fl, gl) = λ+α,lfl − λ−α,lgl. (98)

We then find

Fα(Uα, Vα) =

L
∑

l=1

(

−λ−α,lMα,l(Vα) + λ+α,lMα,l(Uα)
)

. (99)

A first choice of parameters is as follows, for both α = e, α = i. As the parameters are the same, we omit to
mention α in the notations. The characteristic velocities are:

λ1 < λ3, λ2 =
1

2
(λ1 + λ3) (100)

while the Maxwellian functions depend on a parameter κ ≥ 0:

M1(U) =
(λ3 − κ)U − F (U)

λ3 − λ1
, M2(U) =

2κU

λ3 − λ1
, M3(U) =

−(λ1 + κ)U + F (U)

λ3 − λ1
. (101)

The subcharacteristic condition

∀λ ∈ σ(F ′(U)), λ1 + κ < λ < λ3 − κ

ensures that if κ > 0 then condition (90) is satisfied for l = 1, 2, 3. If κ = 0, then M2 = 0, the model reduces to
a 2× 2 one and the condition (90) is satisfied.

The related numerical flux reads as an upwind flux if λ1λ3 ≥ 0. Otherwise we obtain, setting again α:

Fα(Uα, Vα) =− λ1
λ3 − λ1

Fα(Vα) +
λ3

λ3 − λ1
Fα(Uα) (102)

+
λ1λ3
λ3 − λ1

(Vα − Uα) +
κ

λ3 − λ1
((−λ1 − (λ1 + λ3)

−)Vα + (−λ3 + (λ1 + λ3)
+)Uα).

If κ = 0, one retrieves the HLL flux given by (83). If κ = 0 and λ1 = −|vmax| = −λ3, one retrieves (79).
The entropic behaviour of our schemes is proved by the same method as in [5] because (91) holds. We denote

f̃
n+ 1

2

α,j,l = fn
α,j,l −

∆t

∆x

(

hα,l(f
n
α,j,l, f

n
α,j+1,l)− hα,l(f

n
α,j−1,l, f

n
α,j,l)

)

, 1 ≤ l ≤ L. (103)

Theorem 3.1. Suppose that the Maxwellian functions are of form (89) and that condition (90) is satisfied.
Suppose moreover that for α = e, i and for all l ∈ {1, . . . , L} there exists a numerical entropy flux Gn

α,j+ 1
2
,l
=

Gα,l(f
n
α,j,l, f

n
α,j+1,l) such that

Hα,l(f̃
n+ 1

2

α,j )−Hα,l(f
n
α,j)

∆t
+

Gn
α,j+ 1

2
,l
− Gn

α,j− 1
2
,l

∆x
≤ 0. (104)

Then the following discrete entropy inequality holds for the numerical scheme defined in proposition 3.3:

η(Un+1
j )− η(Un

j )

∆t
+

Qn
j+ 1

2

−Qn
j− 1

2

∆x
≤ − νei

kBT
n+1
i,j T n+1

e,j

(T n+1
i,j − T n+1

e,j )2, (105)
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where the numerical entropy flux Qn
j+ 1

2

= Q(Un
j ,Un

j+1) is defined by

Q(U ,V) =
∑

α=e,i

L
∑

l=1

Gα,l(Mα,l(Uα),Mα,l(Vα)) .

In the applications, as we choose the upwind flux for the transport equations, the numerical entropy fluxes
Gα,l exist under the CFL condition

max{|λα,l|
∆t

∆x
, 1 ≤ l ≤ L, α = e, i} ≤ 1. (106)

They read as
Gα,l(f, g) = λ+α,lHα,l(f)− λ−α,lHα,l(g).

This is different from the kinetic scheme of section 3.1 where the CFL condition cannot be satisfied for all v, so
that the scheme with flux (78) is not entropic.

In the present case we have

Gα,l(Mα,l(Uα),Mα,l(Vα)) = ξα,l

(

λ+α,lηα(Uα)− λ−α,lηα(Vα)
)

+ ζα,l

(

λ+α,lQα(Uα)− λ−α,lQα(Vα)
)

.

3.3. Relaxation approach (Suliciu)

3.3.1. Relaxed system and relations of Suliciu

We consider a relaxation approach to solve the bitemperature Euler equations (1). As for the Euler system
described in [9] for one species, the partial pressures pe and pi are replaced by passive scalar variables πe and
πi. These new variables are relaxed towards partial pressures pe and pi.

We consider the system under the form (56). The Suliciu relaxation system can be written as :











































































∂tρ+ u∂xρ+ ρ∂xu = 0,

∂tu+ u∂xu+
1

ρ
∂x(πe + πi) = 0,

∂tεe + u∂xεe +
πe
ρe
∂xu =

νei
ρe

(Ti − Te),

∂tεi + u∂xεi +
πi
ρi
∂xu = −νei

ρi
(Ti − Te),

∂tπe + u∂xπe +
a2ce
ρ
∂xu =

1

τ
(pe − πe),

∂tπi + u∂xπi +
a2ci
ρ
∂xu =

1

τ
(pi − πi).

(107)

When the positive relaxation parameter τ tends to zero one has

πα = pα + δτ +O(τ2), α = e, i. (108)

From equation (108) and system (107), we can deduce that :

δ =
cα
ρ
(ρ2a2α − a2)∂xu+O(τ), aα =

√

γαpα
ρα

.

Hence the stability condition needed by the parameter a is :

a2 ≥ ρ2 max(a2e, a
2
i ) . (109)
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It is necessary to diminish the numerical diffusion induced by the increasing of parameter a to insure stability.
Hence, a new equation about a is introduced:

∂ta+ u∂xa = 0. (110)

Finally, with respect to the primal variable, system (107, 110) reads as follows:































































∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + πe + πi) = 0,

∂tEe + ∂x(u(Ee + πe))− u∂x(ciπe − ceπi) = νei(Ti − Te),

∂tEi + ∂x(u(Ei + πi)) + u∂x(ciπe − ceπi) = νei(Te − Ti),

∂t(
ρeπe
(ace)2

) + ∂x(u(
ρeπe
(ace)2

+ 1)) =
ρe

(ace)2τ
(pe − πe),

∂t(
ρiπi
(aci)2

) + ∂x(u(
ρiπi
(aci)2

+ 1)) =
ρi

(aci)2τ
(pi − πi),

∂t(ρa) + ∂x(ρau) = 0.

(111)

The Suliciu relaxation scheme for system (1) consists in three steps. The approximate solution Un of (1) being
known, we define an such that condition (109) is satisfied and we project the pressures onto equilibrium:

πn
α = pnα, α = e, i.

Then we use an exact Riemann solver for the homogeneous system related to (111):































































∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + πe + πi) = 0,

∂tEe + ∂x(u(Ee + πe))− u∂x(ciπe − ceπi) = 0,

∂tEi + ∂x(u(Ei + πi)) + u∂x(ciπe − ceπi) = 0,

∂t(
ρeπe
(ace)2

) + ∂x(u(
ρeπe
(ace)2

+ 1)) = 0,

∂t(
ρiπi
(aci)2

) + ∂x(u(
ρiπi
(aci)2

+ 1)) = 0,

∂t(ρa) + ∂x(ρau) = 0.

(112)

Remark that the nonconservative product u∂x(ciπe − ceπi) makes difficult the definition of a weak solution
for this system. However, we show here below that the solution of the Riemann problem is well defined and

this is the only property we need. Let Un+ 1
2 be the obtained solution. The third step takes the temperatures

interaction into account implicitly: the approximate solution of system (1) at time tn+1 is defined by

ρn+1 = ρn+
1
2 , un+1 = un+

1
2

and






En+1
e = En+ 1

2

e +∆t νei(T
n+1
i − T n+1

e ),

En+1
i = En+ 1

2

i +∆t νei(T
n+1
e − T n+1

i ).

This system is linear and owns an explicit solution.
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ρL, uL, εe,L, εi,L

πe,L, πi,L, aL

ρ
∗

L, u
∗
, ε

∗

e,L, ε
∗

i,L

π
∗

e,L, π
∗

i,L, aL ρ
∗

R, u
∗
, ε

∗

e,R, ε
∗

i,R

π
∗

e,R, π
∗

i,R, aR

πe,R, πi,R, aR

ρR, uR, εe,R, εi,R

Figure 1. Structure of the Riemann problem.

3.3.2. Riemann solver for the homogeneous system (112)

By using the variable U = (ρ, u, εe, εi, πe, πi, a), one can easily compute the eigenvalues of system (112).
They read as {u− a/ρ, u, u+ a/ρ} where u is an eigenvalue of order 5. All the fields are linearly degenerated.

Let UL, UR be a Riemann data for system (112). We look for a weak solution as a superposition of three
contact discontinuities propagating with velocities uL − aL

ρL
, u∗ (to be determined), uR + aR

ρR
with

uL − aL
ρL

≤ u∗ ≤ uR +
aR
ρR

, (113)

Riemann invariants can be given by :

Field (u− a
ρ ) : u− a

ρ , a, πe +
a2ce
ρ , πi +

a2ci
ρ , εe − π2

e

2(cea)2
, εi − π2

i

2(cia)2
.

Field (u) : u, πe + πi .

Field (u+ a
ρ ) : u+ a

ρ , a, πe +
a2ce
ρ , πi +

a2ci
ρ , εe − π2

e

2(cea)2
, εi − π2

i

2(cia)2
.

As a consequence, ciπe − ceπi is a Riemann invariant for both extreme eigenvalues. This means that this
quantity remains constant through the related contact discontinuities, so that u∂x(ciπe − ceπi) = 0 there. For
the central discontinuity, u is constant so that u∂x(ciπe − ceπi) = ∂x(u(ciπe − ceπi)). Hence, this product is
also well defined in the usual weak sense. Hence the superposition of the three discontinuities is actually a weak
solution of system (112). The Riemann invariants lead to the following system:



















































































uL − aL
ρL

= u∗ − aL
ρ∗L
, uR +

aR
ρR

= u∗ +
aR
ρ∗R
,

πe,L +
a2Lce
ρL

= π∗
e,L +

a2Lce
ρ∗L

, πe,R +
a2Rce
ρR

= π∗
e,R +

a2Rce
ρ∗R

,

πi,L +
a2Lci
ρL

= π∗
i,L +

a2Lci
ρ∗L

, πi,R +
a2Rci
ρR

= π∗
i,R +

a2Rci
ρ∗R

,

εe,L −
π2
e,L

2(ceaL)2
= ε∗e,L −

(π∗
e,L)

2

2(ceaL)2
, εe,R −

π2
e,R

2(ceaR)2
= ε∗e,R −

(π∗
e,R)

2

2(ceaR)2
,

εi,L −
π2
i,L

2(ciaL)2
= ε∗i,L −

(π∗
i,L)

2

2(ciaL)2
, εi,R −

π2
i,R

2(ciaR)2
= ε∗i,R −

(π∗
i,R)

2

2(ciaR)2
,

π∗
e,L + π∗

i,L = π∗
e,R + π∗

i,R.
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Denoting π = πe + πi:














1

ρ∗L
=

1

ρL
+
aR(uR − uL) + πL − πR

aL(aL + aR)
,

1

ρ∗R
=

1

ρR
+
aL(uR − uL) + πR − πL

aR(aL + aR)
,

u∗ =
aRuR + aLuL + πL − πR

aL + aR
, (114)



















































π∗
e,L = πe,L + aLce

πR − πL − aR(uR − uL)

aL + aR
,

π∗
i,L = πi,L + aLci

πR − πL − aR(uR − uL)

aL + aR
,

π∗
e,R = πe,R + aRce

πL − πR − aL(uR − uL)

aL + aR
,

π∗
i,R = πi,R + aRci

πL − πR − aL(uR − uL)

aL + aR
,



















































ε∗e,L = εe,L +
1

2(ceaL)2
((π∗

e,L)
2 − π2

e,L),

ε∗i,L = εi,L +
1

2(ciaL)2
((π∗

i,L)
2 − π2

i,L),

ε∗e,R = εe,R +
1

2(ceaR)2
((π∗

e,R)
2 − π2

e,R),

ε∗i,R = εi,R +
1

2(ciaR)2
((π∗

i,R)
2 − π2

i,R).

We must now provide some sufficient conditions on aL and aR in order to satisfy (113) and the realisability
of the intermediate states, that is positivity of ρ∗L, ρ

∗
R, ε

∗
e,L, ε

∗
i,L, ε

∗
e,R and ε∗i,R. First we can note that (113)

implies the positivity of ρ∗L and ρ∗R. On the other hand, from a straightforward calculation, ε∗e,L, ε
∗
i,L, ε

∗
e,R and

ε∗i,R are positive if condition (109) is fulfilled.
Finally we can deduce that a must satisfy















aL(aL + aR) ≥ ρL(pe,R + pi,R − pe,L − pi,L),
aR(aL + aR) ≥ −ρR(pe,R + pi,R − pe,L − pi,L),

aL ≥ ρLcL,
aR ≥ ρRcR,

where the two first conditions are set to satisfy (113).
The so defined solver is entropic for the case of Euler one temperature conservative system (see [7] paragraph

4.2). By analogy, one can expect that this property remains true for the bitemperature system, but this needs
to be proved.

3.3.3. Numerical Scheme

In this paragraph we detail the second step of the scheme, namely the use of the Riemann solver to define

the approximate solution Un+ 1
2 = {Un+ 1

2

j }j∈Z. At each interface {xj+ 1
2
}× [tn, tn+1] we use the Riemann solver

with UL = Un

j , UR = Un

j+1. The speed of the different waves are

λ1,j+ 1
2
= unj −

anj
ρnj
, λ2,j+ 1

2
= u∗j+ 1

2

, λ3,j+ 1
2
= unj+1 +

anj+1

ρnj+1

.

We define U(x, t) on [xj− 1
2
, xj+ 1

2
]× [tn, tn+1] as the superposition of the Riemann solutions (see fig 2). In order

to avoid overlapping Riemann problems on [xj− 1
2
, xj+ 1

2
], the following CFL condition is used :

λmax
∆t

∆x
≤ 1

2
, λmax = max

j∈Z

( max
1≤k≤3

(λ+
k,j− 1

2

, λ−
k,j+ 1

2

)).

We then define Un+ 1
2

j as

Un+ 1
2

j =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

U(x,∆t)dx.
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∆x

∆t

xj− 1

2
xj xj+ 1

2

U
n

j−1

U
L

j− 1

2

U
R

j− 1

2

U
n

j

U
L

j+ 1

2

U
R

j+ 1

2

U
n

j+1

Figure 2. Structure of Riemann solutions on [xj− 1
2
, xj+ 1

2
]× [tn, tn+1].

We set :

U−

j =
1

∆x

∫ xj

x
j− 1

2

U(x,∆t)dx, U+

j =
1

∆x

∫ x
j+1

2

xj

U(x,∆t)dx.

Finally, using notation (97) we obtain



























U−

j =
1

2
Un

j − ∆t

∆x

(

λ+
3,j− 1

2

(Un

j − UR

j− 1
2
) + λ+

2,j− 1
2

(UR

j− 1
2
− UL

j− 1
2
) + λ+

1,j− 1
2

(UL

j− 1
2
− Un

j−1)
)

,

U+

j =
1

2
Un

j +
∆t

∆x

(

λ−
3,j+ 1

2

(Un

j+1 − UR

j+ 1
2
) + λ−

2,j+ 1
2

(UR

j+ 1
2
− UL

j+ 1
2
) + λ−

1,j+ 1
2

(UL

j+ 1
2
− Un

j )
)

,

Un+ 1
2

j = U−

j + U+

j .

3.4. Lagrangian approximation

The system (6) is solved by using a splitting. The gas dynamic is first solved using Lagrangian formalism.
Then the computation of the new ion and electron internal energies is done in two steps. First, after the
Lagrangian step we have a new total internal energy which is the sum of ion and electron internal energy. To
compute the electron internal energy we make the assumption that the entropy deposition due to the shock
is done on the ion internal energy [36]. Thus, electrons follow an isentropic evolution. Then the exchange of
energy between ion and electron is computed. Finally, the Lagrangian solution is conservatively interpolated
on the initial grid. This approach is also called Lagrange-projection scheme ( [10], [14], [15]).

3.4.1. Lagrangian phase

In Lagrangian hydrodynamic methods, a computational cell moves with the flow velocity its mass being time-
invariant. Thus, Lagrangian methods can capture contact discontinuities sharply in multi-material fluid flows.
Here the Lagrangian scheme is based on a cell-centered discretization of Lagrangian hydrodynamics equations.
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This scheme is written in total energy form. Here, e is the total specific energy.







ρdtτ − ∂xu = 0,
ρdtu+ ∂xp = 0,
ρdte+ ∂xpu = 0,

(115)

where p = pi + pe and e are respectively the total pressure and the total energy. From total energy we can get
internal energy from ε = e− 1

2u
2. As the mesh is moving we have to add the local kinetic equation : dtx = u.

3.4.2. Numerical scheme

In order to find an approximation of the flux of (115) we use the Godunov Riemann solver and we denote
p∗, u∗ the intermediate quantities. By using the Riemann invariants (u∗, p∗) are given by















u∗ =
pl − pr + arur + alul

ar + al
,

p∗ =
arpl + alpr + alar(ul − ur)

ar + al
.

(116)

The problem is solved on the interval [0;L] which is discretized in N elements C1, . . . , CN . Furthermore, we
can define the jth cell center as xj =

1
2 (xj+ 1

2
+ xj− 1

2
).

We perform first the integration in space on ∆xj = [xj−1/2, xj+1/2] :











































ρ
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dt

∫ x
j+1

2

x
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2

τ(x, t) dx −
[

u(xj+ 1
2
, t)− u(xj− 1

2
, t)

]

= 0,

ρ
d

dt

∫ x
j+1

2

x
j− 1

2

u(x, t) dx +
[

p(xj+ 1
2
, t)− p(xj− 1

2
, t)

]

= 0,

ρ
d

dt

∫ x
j+1

2

x
j− 1

2

e(x, t) dx +
[

pu(xj+ 1
2
, t)− pu(xj− 1

2
, t)

]

= 0.
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Let be ϕj =
1

∆xj

∫ x
j+1

2

x
j− 1

2

ϕ(x, t) dx, now we integrate in time :
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Now with ϕn = ϕ(tn) and ϕ
∗
j+ 1

2

=
1

∆t

∫ tn+1

tn

ϕ(xj+ 1
2
, t) dt, the system becomes :















mj(τ
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j − τnj )−∆t(u∗j+ 1

2
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2

) = 0,

mj(u
n+1
j − unj ) + ∆t(p∗j+ 1

2

− p∗j− 1
2

) = 0,

mj(e
n+1
j − enj ) + ∆t(p∗j+ 1

2

u∗j+ 1
2

− p∗j− 1
2

u∗j− 1
2

) = 0,

(119)
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with mj = ρj∆xj , (pu)
∗ = p∗u∗ and where (p∗, u∗) are given by (116).

Thanks to (119) we can compute a discrete form for internal energy using the difference between the total
energy and the kinetic energy.

Next remark that the scheme (119) is entropic. More precisely, considering a macroscopic expression s of the
entropy (see [22]), the second law of thermodynamics writes

T
ds

dt
=
dε

dt
+ p

dτ

dt
.

In that case, it is shown in ( [26]), that the numerical scheme defined by (119) satisfies

mjTj
dsj
dt

= ρjcj

(

u∗j+ 1
2

− uj

)2

+ ρj+1cj+1

(

u∗j− 1
2

− uj

)2

≥ 0, (120)

corresponding to a semi-discrete entropy inequality.

3.4.3. Bitemperature model

Based on total energy conservation, the Lagrangian scheme must deal with the exchange between the kinetic
energy and the internal energy of ion and electron. The system we aim to solve for the internal energy of ion
and electron is

ρ

(

dεe
dt

+ pe
dτ

dt

)

= νei(Ti − Te),

ρ

(

dεi
dt

+ pi
dτ

dt

)

= νei(Te − Ti).

As the scheme is written in total energy formulation after the Lagrangian hydrodynamic step, we need to
solve the exchange of energy in the system. The new ion and electron internal energy are computed in two
steps. First, after the Lagrangian step we have a new internal energy which is the sum of ion and electron
internal energy. To compute the electron internal energy we make the assumption that the entropy deposition
is done on the ion internal energy [36]. Thus, electrons follow the isentropic evolution

m
d εe
dt

+ pe
d V

dt
= 0,

where m = ρ V is the mass, V the volume and d V
dt is the change of volume during the Lagrangian step. We

can deduce ion internal energy from εi = ε− εe, where ε = e− 1
2u

2 is the mean total internal energy. Then, to
solve the energy transfer between ion and electron we solve

ρ
dεe
dt

= νei(Ti − Te),

ρ
dεi
dt

= νei(Te − Ti).

3.4.4. Remap step

As we deal here with a Lagrange-projection like scheme the remapping phase corresponds here to a conser-
vative interpolation of the physical variables from the Lagrangian grid at time tn+1 onto the initial grid. Since
we are using a Lagrangian scheme where in the placement of the variables is cell-centered, we are developing a
cell-centered remapping phase. In what follows, all quantities related to the initial grid are denoted here with
the tilde accent. Let ψ be a physical variable of the flow defined on a cell by its piecewise constant representation
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ψ̄j . Being given ψ(x, t), on the Lagrangian grid we want to compute

ψ̃j =
1

Ṽj

∫ x̃
j+1

2

x̃
j− 1

2

ψ(x, t) dx. (121)

That is, knowing the mean value of ψ(x, t) = ψ̄ over each cell of the Lagrangian grid, we want to compute its
mean value over each cell of the initial grid. After the remap of all the conservative quantities we can reconstruct
our solution.

4. Numerical results

In this part, some comparisons of the numerical schemes designed in Section 3 are performed. When γe = γi,
the total density, total momentum and total energy E = Ee + Ei are solutions to the conservative 3 × 3 Euler
system. Therefore exact solutions of the Riemann problem are known for those quantities.

Firstly, we consider a robustness test case dedicated to a double rarefaction wave whose parameters are

kB = 1, γe = γi = γ =
5

3
, Z = 1, me = 1, mi = 1.

Next we present two other test cases in order to check the validity of the source term approximation and to
study the behaviour of shocks. In order to compare our results to more realistic physical situations ( [36]), the
physical parameters are set as follows:

kB = 1, γe = γi = γ =
5

3
, Z = 1, me = 10−3, mi = 1.

This choice allows us to isolate the small me/mi mass ratio feature.
The characteristic velocities σi of system (1) are u (double), u± a, with

a =

√

γepe + γipi
ρ

.

In all the test cases that are presented, the time step ∆tn satisfies the CFL condition over all the cells:

max
1≤i≤4

|σi|
∆tn

∆x
≤ 0.25.

4.1. Double rarefaction wave

The double rarefaction waves test case does not involve shocks. The goal of this test case is to check the
robustness of the different schemes.

The left and the right states of the Rieman problem are the following

ρL = 1, uL = −10, Te,L = 1000, Ti,L = 1,

ρR = 1, uR = 10, Te,R = 1000, Ti,R = 1.

The solutions are computed for x ∈ [0, 1] at time t = 0.05 for 200 cells. On the pictures, the term AN3V is
for the discrete kinetic scheme of subsection 3.2 with the choice κ = (λ3 − λ1)/5 in (101), while HLL is for the
kinetic scheme of subsection 3.1 with the flux (83). In both cases, λ1 and λ3 are computed locally, at each cell
interface. The term relaxation refers to the scheme presented in subsection 3.3.

The numerical results presented in figures 3 and 4 are in good agreement with the exact solutions for the
conserved quantities. The results of the Lagrange remaping method show important descrepancies on the ionic
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Figure 3. Density, velocity and pressure computed with AN3V, HLL and Lagrangian remap-
ing schemes compared with exact solution for the double rarefaction waves problem.

temperature. This fact is well known and is due to the isentropic assumptions on the electrons. Then the
entropy of the ions is overestimated in a problem without any shock. We remark also that AN3V and HLL give
very close results. Indeed if κ = 0, HLL and AN3V coincide. A different value of this parameter does not seem
to improve the results. For these reasons, in the following we chose to focus on HLL and relaxation schemes.
Others schemes based on the approach of subsection 3.2 are to be tested in a forthcoming work.

4.2. Source-term approximation: an analytical solution

We take initial data such that

∀x ∈ R ρ(x, 0) = 1, u(x, 0) = 10, Ti(x, 0) + Te(x, 0) = T = 2.

As

ρeεe + ρiεi =
pe + pi
γ − 1

=
ρkB

(γ − 1)(mi +me)
(Te + Ti),
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Figure 4. Electronic and ionic temperatures computed with AN3V, HLL, Lagrangian remap-
ing and relaxation schemes for the double rarefaction waves problem.

an exact solution of system (1) is available:

∀(x, t) ∈ R× R
+, ρ(x, t) = 1, u(x, t) = 10, Tα(x, t) = e−2µt

(

Tα(x− ut, 0)− T

2

)

+
T

2
, α = e, i (122)

where µ = k−1
B νei(γ − 1)(me +mi). Here we choose T = 2,

Te(x, 0) = 1 if x < 1/2, Te(x, 0) = 1 + exp(−200(x− 1/2)2) else. (123)

We compute the solution on [0, 1] at time t = 0.01 with 1000 points. The results that are obtained for the HLL
and the relaxation scheme displayed in figure 5 are in good agreement with the analytical solution (122, 123).

4.3. A Riemann problem with a stationary shock

The left and right states of the Riemann problem are the following:

ρL = 1.001, uL = 10, Te,L = 1, Ti,L = 1,

ρR = 3.640330609, uR = 2.749750250, Te,R = 3., Ti,R = 17.5060240977.

Then the solution of the 3× 3 Euler system is a stationary shock. The solutions are computed for x ∈ [0, 1] at
time t = 0.05 with 1000 cells. The results are depicted figures 6 and 7.

For νei = 0, we observe a contact discontinuity propagating at velocity uR = 2.749750250, see figure 7 left.
For the 3 × 3 Euler equations, u is a single eigenvalue and the left and right values of a contact discontinuity
lie on an integral curve of the eigenvector (−ρ, 0, ε), in (ρ, u, ε) variables. Thus, a contact discontinuity must
involve a jump of ρ. For the Euler bi-temperature system, the eigenvalue u is double and the eigenvectors are
r2 = (0, 0,−(γi− 1)ci, (γe− 1)ce) and r3 = (−ρ, 0, εe, εi). The observed contact discontinuity lies on an integral
curve of r2: only electronic and ionic temperatures jump. We also observe that the intermediate values of those
temperatures differ with respect with the scheme. This is due to the fact that each scheme has a different
viscosity, and therefore converges to a different interpretation of the nonconservative products in the equations.

For νei = 100, both schemes give similar results. For all x, density, velocity and total energy remain the same
and are not depicted again. Electronic and ionic temperatures are represented on figure 7 right. For x < 0.5,
as Ti = Te, the value of νei does not influence the solution. For x > tuR, by finite propagation speed, one can
compute the value of Te and Ti as in subsection 4.2. For x ∈ [0, tuR] the result is qualitatively in coherence
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Figure 5. Electronic and ionic temperatures computed with HLL and relaxation schemes for
the analytical test case. Left : νei = 0, right : νei = 100.

with the physical behavior of the plasma, as predicted in Zeldovitch ( [36]). In particular, we observe a high
ionic temperature at the shock, and then a decrease, while the electronic temperature increases.
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Figure 6. Density, velocity and pressure computed with HLL and relaxation schemes com-
pared with exact solution for the stationary shock problem.

5. Conclusion

In this paper we have investigated at the modelling and numerical point of views the bitemperature Euler
system.

At the modelling point of view, we have proposed a multicomponent BGK kinetic system enjoying funda-
mental mathematical properties (positivity of the distribution function, conservation properties, H theorem)
coupled with Ampère and Poisson equations. Next, be perfoming an hydrodynamic limit the bitemperature
Euler model has been recovered. Moreover, we have shown for this system the existence of an entropy that is
consistent with Boltzmann entropy.

At the numerical level, we have investigated and compared four numerical schemes for the bitemperature
Euler system. We have firstly presented a kinetic scheme based on a discrete hydrodynamic limit. Next, the
numerical method of Aregba-Natalini based on discrete BGK schemes has been generalized to a nonconservative
setting. Doing this we show that the previous kinetic scheme is entropic and we recover a HLL scheme for the
non-conservative system. A Suliciu relaxation approximation has also been designed. Finally all these schemes
are compared to a Lagrangian scheme. Moreover, the kinetic and discrete BGK approaches are consistent with
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Figure 7. Electronic and ionic temperatures computed with HLL and relaxation schemes for
the stationary shock problem. Left : νei = 0, right : νei = 100.

the entropy dissipation properties of the model, which should play a fundamental role for selecting the correct
solutions.

We shall address to forthcoming papers the following different points. Firstly, we plan to propose high
order and multi-dimensionnal versions of the schemes developped in this paper. Moreover, the derivation of
a polyatomic BGK model based on an additional continous internal energy variable has to be performed.
Indeed, this model will be devoted to lead to general γe and γi for the fluid system. The case of Navier-Stokes
asymptotics has also to be considered. In another direction, we aim to take into account the magnetic field in
the equations with a coupling through the Maxwell system.
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