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A new approach of the Ellipsoidal Statistical
Model.

Stéphane Brull*, Jacques Schneider*

Abstract

In this paper we aim to introduce a systematic way to derive relax-
ation terms for the Boltzmann equation based under minimization
problem of the entropy under moments constraints [7], [11]. In partic-
ular the moment constraints and corresponding coefficients are linked
with the eigenfunctions and eigenvalues of the linearized collision oper-
ator through the Chapman-Enskog expansion. Then we deduce from
this expansion a single relaxation term of BGK-type. Here we stop
the moments constraints at the order 2 in the velocity v and recover
the Ellipsoidal Statistical model [8].

*Imath, Université de Toulon, avenue de l’université, 83957 La Garde, France.
E-mail: brull@univ-tln.fr, jacques.schneider@univ-tln.fr

1 Introduction.

Solving the Boltzmann equation [6] involves computing a collisional term
which is a very hard task. Different approaches can be considered: either
find approximating models of the interaction term that are easier to compute
or/and try to improve numerical approximations. We do not want here to
give a huge review of all works that have been done in the two directions but
to follow a way that was initiated by Bhatnagar, Gross and Krook [4] and
their famous BGK model. Namely the BGK model consists in replacing the
interaction term with the relaxation term

R(f) = λ(M− f) (1)
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where f = f(t, x, v) is the distribution function with (t, x, v) ∈ R+×R3×R3,
M = M(t, x, v) is the local equilibrium function (Maxwellian distribution)
defined by

M(v) =
1

(2πT )3/2
exp

(
−(v − u)2

2T

)
(2)

with

ρ(t, x) =

∫
R3

fdv, u(t, x) =
1

ρ

∫
R3

vfdv, T (t, x) =
1

3ρ

∫
R3

|v − u|2fdv. (3)

Here ρ, u, T are the local mass, density and temperature of the distribution
function and λ = λ(ρ, T ) is a relaxation coefficient. The interest of such a
model is that it inherits most important physical properties of the true one:
mass, momentum and energy are conserved, the (mathematical) entropy de-
cays and equilibrium states are the Maxwellian distributions. Unfortunately
the BGK model does not allow to recover the true Navier-Stokes equation at
the hydrodynamic limit. That is a correct Prandtl number Pr which defines
the ratio between the viscosity µ and thermal conductivity κ coefficients

Pr =
5

2

µ

κ
.

Different models have been proposed to recover the correct Prandtl num-
ber. The most famous is the Ellipsoidal Statistical model (ES or ES-BGK
model) [8]. Other models were proposed later on in [5] and finally in [12].
For numerical comparisons between the BGK model, the ES-BGK model and
eventually other models one refers to [9],[1].

A new approach of relaxation models can also be found in [7]. Roughly
speaking the idea is to add different relaxation terms toward ”generalized”
Maxwellians that are associated to different relaxation coefficients.

Finally one of the author [11] has proposed in the case of Maxwellian
molecules a relaxation term of the form ρ(G − f) that fits exactly to the
Boltzmann collision operator in the following weak sense∫

ρ(G− f)m(v)dv =

∫
Q(f, f)m(v)dv ∀m ∈ P (4)

where P can be any polynomial space. This model allows to recover the
right Prandtl number. Unfortunately this model cannot be extended to other
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potentials. Here G is the solution to the minimization problem of the entropy
functional H(f) where

H(f) =

∫
R3

f (ln f − 1) dv (5)

under the moment constraints (4). Such minimization problems are the basis
of the work by D. Levermore [7]).

In this paper we rather look for a single relaxation term of the form
λ(G−f) that can generalize the BGK-type models. The idea is the following:
G is defined through a minimization principle of the entropy under moments
constraints. More precisely let P be a given polynomial space of maximum
order p with vector basis m(v) = (m1(v), ...,mN(v))T , λ and (λi)i=1,...,N be
some nonnegative real number and f ∈ L1 be a nonnegative function such
that

∫
f(v) (1 + |v|p)dv < +∞. Then we introduce the following minimiza-

tion problem

”Find G solution to the minimization problem

G = min
g∈Cf

H(g) (6)

where Cf is the set of functions g ≥ 0 s.t the following equations hold∫
R3

λ(g − f)mi(v) dv = −λi

∫
R3

fmi(v)dv, ∀i = 1, ..., N.” (7)

λ together with (λi)i=1,...,N are seek so as to satisfy the physical properties of
Q(f, f). In particular (λi)i=1,...,N are parameters to be chosen later for fitting
the hydrodynamic limit of the Boltzmann equation at different level with
respect to the Knudsen number (see [6]) . Notice that the idea is different
from the one developed in [11] where the relaxation model is set through an
approximation theory principle.

The question whether this problem admits a solution or not is subjected
to the value of λ and (λi)i=1,...,N and to the so-called realizability moments
problem (see [7],[10], [11]).

In this paper we restrict our approach to the case of

P = span[1, v, v ⊗ v].
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It is divided as follows. After setting the problem we construct in section 3
a relaxation operator. This relaxation operator shows up to be the ES-BGK
model henceforth giving a new approach of it. Section 4 is devoted to the
study of the entropy dissipation of our model. We obtain a different proof
of the entropy decay than that in [2]. Finally we compare in section 5 the
different relaxation models -ES-BGK, the one of Bouchut and Perthame [5]
and and the one of Struchtrup ([12], [9])- enjoying an entropy decay and
giving the right Prandtl number. We show a general variational principle
that gives new proofs for the existence of those models ([5], [12], [9]) and we
end up with a discussion comparing the different models.

2 Setting of the problem.

Recall that in our paper we look for a relaxation model of the form

R(f) = λ(G− f) (8)

where G is the solution to the following minimization problem

G = min
g∈Cf

H(g). (9)

Cf is the set of functions g ≥ 0 s.t the following equations hold∫
R3

(1, v, |v|2) gdv =

∫
R3

(1, v, |v|2) fdv, (10)∫
R3

λ(g − f)A(V ) dv = −λ1

∫
R3

fA(V )dv, (11)

where A(v) are the Sonine polynomials defined by

A(v) = v ⊗ v − 1

3
|v|2Id, (12)

Id being the matrix identity in R3 and

V =
v − u√

T
. (13)

u and T are defined by (3).
λ is the relaxation coefficient to G while λ1 is the relaxation rate of the
moment ∫

R3

fA(V )dv.
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This means that we restrict our approach to the case where the polynomial
space is

P = span[1, v, v ⊗ v].

The equations (10) just express the conservation laws of mass, momemtum
and energy. The relation (11) can be interpreted in the following sense∫

R3

fA(V )dv =

∫
R3

L(
f

M
)L−1(A(V ))M(v)dv,

where L(f) is the linearized Boltzmann operator [6]. The interest is that
L−1(A(V )) = α(T, |V |)A(V ) is somehow an ”eigenfunctions” of the linearized
collision operator. Then R(f) is chosen to mimic the behaviour of L(f) or
equivalently the behaviour of Q(f, f) closed to equilibrium. This explains
why λ and λ1 are seek so as to match the hydrodynamic limit of the true
Boltzmann equation.

Now introducing the stress tensor Θ,

Θ =
1

ρ

∫
R3

c⊗ c fdv, c = v − u, (14)

(11) can be rewritten in the form

1

ρ

∫
R3

c⊗ c gdv = (1− λ1

λ
)Θ +

λ1

λ
TId. (15)

We see that this equation only depends on the fraction λ1

λ
which must be

dimensionless.
In order to compare the present result with the other works on the Ellipsoidal
Statistical Model, we set ν = 1− λ1

λ
and (15) takes the form

1

ρ

∫
R3

c⊗ c gdv = νΘ + (1− ν)TId = T . (16)

3 Construction of the Ellipsoidal Statistical

Model.

In this section we construct the ES-BGK model performed in three steps.

1. We solve exactly the minimization problem for different values of the
ratio between λ and λ1 relaxation coefficients.
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2. By using the hydrodynamic limit of our formal model through a Chapmann-
Engskog expansion up to the order 1 one can define a relaxation rate
λ1 for given moments (namely the Sonine polynomials A(v) defined
below) of the distribution function independently of the relaxation
coefficient λ.
Then the relaxation coefficient λ is defined by equating the different
terms appearing in the Chapmann-Engskog expansion at order 0.

3. λ is set so as to match with the Navier-Stokes equation at the hydro-
dynamic limit with the true Prandtl number Pr = 2

3
. From this we

recover the ES-BGK with a new interpretation.

3.1 Realisability conditions for the existence of the so-
lution to the minimization problem (9).

Our first purpose is to construct the relaxation function G. As we are going
to see a necessary and sufficient coefficient for the problem (9) to possess
a solution is ν ∈ [−1

2
, 1[. This improves the result found in [2]. So let us

consider the weighted space L1
2 = {f ∈ L1 s.t. (1 + |v|2)f ∈ L1}. Then we

have the following result

Theorem 1. For all nonnegative functions f ∈ L1
2 and ν ∈ [−1

2
, 1[, the

tensor T is symetric positive definite and the problem (9) admits a unique
solution G defined by

G(v) =
1√

det(2πT )
exp

(
−1

2
〈c, T −1c〉

)
. (17)

Conversely, if (9) admits a unique solution for all nonnegative function f ∈
L1

2, then ν ∈ [−1
2
, 1[.

The existence of a solution to the minimization problem (9) requires the
condition Cf 6= ∅. In [2] this is done by exhibiting the function G (17) for
T semi definite positive and then proving that this function is the solution
to the minimization problem. Nevertheless this can be done by using more
general arguments [7], [10], [11]. As shown in those papers a necessary and
sufficient condition is Cf 6= ∅ for P of maximal degree two.
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Lemma 1. Let χ be a symetric definite tensor of order two and consider the
set C of functions g ≥ 0 s.t.∫

gdv = ρ,
1

ρ

∫
vgdv = u,

1

3ρ

∫
|v − u|2gdv = T (18)

for some (ρ, u, T ) in R∗
+ × R3 × R∗

+ and

1

ρ

∫
R3

c⊗ c gdv = χ.

then C is not empty.

The proof of lemma 1 is given in appendix.

Proof. (Theorem 1)
For the sake of clarity we recall here why Cf 6= ∅ (see [2]).
By denoting with θ1, θ2, θ3 the eigenvalues of Θ the eigenvalues of T are

(1− ν)

3
(θ1 + θ2 + θ3) + νθi, i = 1, 2, 3.

These values are obviously nonnegative for ν ∈ [0, 1]. The previous expression
writes for i = 1

1 + 2ν

3
θ1 +

(1− ν)

3
(θ2 + θ3)

and is therefore nonnegative for ν ≥ −1
2
. So T is symmetric definite positive.

Then Cf is non empty according to Lemma 1. Since the condition (16) is of
power 2 in v then the moments (10, 15) are realizable ([10], [11]) and the
minimization problem 9 has a unique solution which writes (17).

Conversely let f be a nonnegative function in L1
2 and Θ be defined as

in (14). Θ is symetric and one can diagonalize it as Θ = P t∆P where the
diagonal terms of ∆ are θ1, θ2, θ3 with 0 < θ1, θ2, θ3 < 3T and θ1+θ2+θ3 = 3T .

Now if (9) admits a solution one can compute this solution which is
exactly given by (17). Both Θ and T −1 can be diagonalized in the same
basis such that G writes

G(v) =
1√

det(2πT )
exp

(
−1

2
〈c, P t D−1 Pc〉

)
.
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Clearly each term of the diagonal matrix D−1 or equivalently D satisfies the
same conditions as ∆. That is writing (16) in the diagonalization basis

θiν + (1− ν)T ∈ ]0, 3T [ ∀i = 1, 2, 3. (19)

Since those conditions must be valid for all f then letting for example θ1

tend to 0 gives ν ≤ 1 and letting θ1 tend to 3T gives ν ≥ −1
2
.

3.2 Definitions of λ1 and λ: the Ellipsoidal Statistical
model

The classical way to obtain the hydrodynamic limit of (1) consists in ex-
panding f in power of ε around the local equilibrium function M (Chapman-
Engskog expansion ).

f = M(1 + εf (1) + ε2f (2) + . . . ), (20)

and then inserting it in (1). In our case we just have to replace the interaction
term Q(f, f) with λ(G−f) and since G depends itself on f one has to expand
G as

G = M(1 + ε
∂G

∂Θ
: Θ(1) + . . . ).

Then comparing the Chapman-Engskog expansion of the kinetic equation(
∂

∂t
+ v · ∇x

)
f =

λ

ε
(G− f).

at order 0 gives(
∂

∂t
+ v · ∇x

)
M = λ(

∂G

∂Θ
: Θ(1) − f (1))M.

And so this provides as usual(
A(V ) : D(u) +

B(V )√
T

· ∇xT

)
M = λ(

∂G

∂Θ
: Θ(1) − f (1))M, (21)

where the stress tensor D(u) is defined as

D(u) =
1

2
(∇xu +∇xu

t)− 1

3
div(u)Id
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and

B(V ) =
V

2
(V 2 − 5

2
).

One can also expand equation (11) (replacing g with G) and compare the
left and right hand sides at order 1.

λ

∫
R3

(∂G

∂Θ
: Θ1 − f (1)

)
Mdv = −λ1

∫
R3

f (1)MA(v)dv. (22)

Inserting it in equation (21) gives after multiplication with A(V ) and inte-
gration ∫

R3

(A(V ) : D(u))MA(V )dv = −λ1

∫
R3

A(V )Mf (1)dv.

Hence ∫
R3

A(V )Mf (1)dv = − 1

λ1

∫
R3

A(V ) : A(V )Mdv D(u).

This sets a relationship between the relaxation rate λ1 and the viscosity µ

λ1 =
ρT

µ
(23)

which defines λ1. Remark that this definition does not depend on λ.
Now

λ =
λ1

1− ν
=

ρT

µ(1− ν)
(24)

which entirely defines our relaxation model

R(f) =
ρT

µ(1− ν)
(G− f) (25)

with

G(v) =
1√

det(2πT )
exp

(
−1

2
〈c, T −1c〉

)
(26)

and T is defined by (16) (recall also the equality (24)). This turns out to be
the Ellipsoidal Statistical model [8].
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3.3 Thermal conductivity and Prandtl number.

Multiplying (21) with B(V ) and integrating with respect to v yields∫
R3

B(V )f (1)Mdv = − 1

3λ

(∫
R3

B(V ) ·B(V )Mdv

)
∇xT√

T

= − 5

2λ

∇xT√
T

= − κ

ρT

∇xT√
T

.

where κ is the thermal conductivity of our model. This sets the other rela-
tionship between λ and κ as

λ =
5

2

ρT

κ
.

This means that the Prandtl number of this model is

Pr =
5

2

µ

κ
=

λ

λ1

=
1

1− ν

Remark that two important cases of this model are those where
1- ν = −1

2
which gives the important physical case Pr = 2

3
that holds for

monatomic gas,
2- ν = 0 which gives the classical BGK model [4] whose Prandtl number is
Pr = 1 and is not physical.

4 H-Theorem.

In this section we want to prove the entropy dissipation law for any −1
2
≤

ν ≤ 1. Though this has already been done in [2] we give here another proof.
We denote with Gν the anisotropic Gaussian function defined by (26)

Theorem 2. For all −1
2
≤ ν ≤ 1 the entropy dissipation term satisfies

D(f) = −
∫

(Gν − f) ln f dv ≤ 0

where G is defined in (26).
Moreover D(f) < 0 for −1

2
≤ ν < 1 with equality iff f = M.
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Proof. The convexity of x ln x− x yields the inequality

−
∫

(Gν − f) ln f dv ≤ H(Gν)−H(f) ≤ H(Gν)−H(G1)

The last inequality is a direct consequence of the minimization problem tak-
ing ν = 1. The computation of H(Gν) gives

H(Gν) = ρ ln
ρ√

2πdetT
− 5

2
ρ.

This function is a strictly convex function of ν since it is the minimum of
the entropy functional under linear constraints in ν. Therefore it is enough
to prove that G− 1

2
≤ G1.

Remark that the minimum of H(Gν is the physical entropy

H(M) =
3

2
ρ log

ρ2/3

T
− Cρ

and is obtained in ν = 0. Next

H(Gν)−H(G1) =
1

2
ρ log

detΘ

detT
is of the same sign as

p(ν) = detΘ− det(νΘ + (1− ν)TId)

Let us recall that θ1, θ2, θ3 are the eigenvalues of the symmetric definite pos-
itive matrix Θ so that on one side detΘ =

∏
i θi while on the other side

det(Θ− λId) = −
∏

i(λ− θi) implies

detT =
∏

i

(νθi − (ν − 1)T ).

Then one has

p(ν) =
∏

i

θi +
∏

i

(ν(T − θi)− T )

Setting θ̃i = θi/3 then we have

p(ν) = T 3(
∏

i

θ̃i +
∏

i

(ν(1− θ̃i)− 1)).
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In particular

p(−1

2
) = T 3 3

8
(3θ̃1θ̃2θ̃3 − θ̃1θ̃2 − θ̃2θ̃3 − θ̃1θ̃3)

Now 0 < θ̃1, θ̃2, θ̃3 ≤ 3 and θ̃1 + θ̃2 + θ̃3 = 3 so that using Lagrange multipliers
the maximum of p(−1

2
) is 0 and is obtained for θ̃1 = θ̃2 = θ̃3 = 1. This

corresponds to G0 = M.

5 Comparison between different models giv-

ing the right Prandtl number.

In this section we want to compare different models of the BGK form giving
the right Prandtl number and having an entropy decay. Namely we compare
the ES-BGK model, the model of Bouchut and Perthame ([5]) and those of
Struchtrup ([12], [9]). We first recall those models and then derive a general
variational principle that can be applied to each of them. Finally we compare
them from a theoretical point of view.

So let us first recall the model of Bouchut and Perthame ([5]). It writes

RBP (f) = ηλ̃(V )(Mλ̃ − f) (27)

where η = η(t, x) = η(ρ, T ) and λ̃(V ) = λ̃(|V |) is a multiplier acting on

V (t, x, v) =
v − u(t, x)

[T (t, x)]
1
2

)

Here ρ, u and T are the mass, velocity and temperature of f (3). Finally
Mλ̃ is a Gaussian distribution

Mλ̃(v) = ρλ̃

1

(2πTλ̃)
3/2

exp

(
−(v − uλ̃)

2

2Tλ̃

)
(28)

whose parameters (ρλ̃, uλ̃, Tλ̃) are implicitly defined through the relations∫
R3

λ̃(V )(1, v, |v|2)Mλ̃dv =

∫
R3

λ̃(V )(1, v, |v|2) fdv. (29)

λ̃ can be fitted to give the right Prandtl number.
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H.Struchtrup ([12]) introduced later on the following relaxation term

RS(f) = λ̄1(V )(Mλ̄ − f) (30)

where λ̄1(V ) is a velocity-dependant collision frequency of the form λ̄1 =
ζ|V |α. Mλ̄ is a Gaussian distribution (see above) whose parameters (ρλ̄, uλ̄, Tλ̄)
are implicitly defined through the relations∫

R3

λ̄(V )(1, v, |v|2)Mλ̄dv =

∫
R3

λ̄(V )(1, v, |v|2) fdv. (31)

Here ζ depends on macroscopic variables and α > 0 can be fitted to give the
right Prandtl number. Remark that f does not relax toward Mλ̄ at v = u
so that he choose the more appropriate form [9]

λ̄2(V ) = ζ(1 + C|V |α) = ζλ̄(V ) (32)

Again constants C, α > 0 can be fitted to give the right Prandtl number.
At this stage this last model seems to be just a particular choice of the

relaxation model (30) since it suffices to take λ̃(w) = λ̄1(w) or λ̃(w) = λ̄2(w).
But it is not since λ̃(w) satisfies

∃C1, C2, 0 < C1 ≤ λ̃(w) ≤ C2 < +∞, ∀w ∈ R3. (33)

Nevertheless there is some similarity as will be shown in the next section.

5.1 Variational principles

As was shown in section 3.1 (Theorem 1), the ES-BGK model enjoys a vari-
ational principle. That is GES is is the solution to the minimization problem

GES = min
g∈Cf

H(g).

where H(g) is the classical entropy functional (5) and Cf is the set of
functions satisfying conditions (10), (11) for a given nonnegative function
f ∈ L1

2(R3).
Now let ω(v) = ω(|v|) be a function such that either

∃C1, C2, α > 0 s.t 0 < C1 ≤ ω(v) ≤ C2(1 + |v|α) ∀v ∈ R3.

13



or
ω = |v|α

It is clear that for fixed u ∈ R3, T > 0 there exists C2(u, T ) such that

ω̃(v)dv = ω((v − u)/
√

T )dv (34)

is a measure in L1
2+α, respectively in

V = L1
2+α ∩ {f ∈ L1/

∫
|f | |v − u|α < +∞}.

Then one defines the weighted entropy functional

Hω̃(f) =

∫
R3

f (ln f − 1) ω̃(v)dv. (35)

One has the following general theorem.

Theorem 3. Let u ∈ R3, T > 0 and h 6= 0 be a nonnegative function
in L1

2+α (respectively in V ) then there exists a unique solution Mω̃ to the
minimization problem

Mω̃ = min
g∈Ch

Hω̃(g). (36)

where Ch is the set of function g ≥ 0 s.t. the following relations hold∫
R3

ω(
v − u

T
1
2

)(1, v, |v|2) gdv =

∫
R3

ω(
v − u√

T
)(1, v, |v|2) hdv. (37)

Moreover this solution is the Gaussian distribution

Mω̃(v) =
ρω̃

(2πTω̃)3/2
exp

(
−(v − uω̃)2

2Tω̃

)
(38)

where (ρω̃, uω̃, Tω̃) are uniquely determined by the relations (37) (replacing g
with Mω̃(v)).

Proof. One can easely extend the proof of Theorem 1 and Remark 1 [11] to
the case of the weighted entropy Hω̃.
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Now let f ∈ L1
2+α (respectively in V ) such that

ρ =

∫
R3

fdv, u =
1

ρ

∫
R3

vfdv, T =
1

3ρ

∫
R3

|v − u|2fdv, (39)

then applying the above theorem with h = f and taking successively ω = λ̃,
ω = λ̄1 and ω = λ̄2 proves at the same time the existence of Mλ̃(v) satisfying
successively (29), (31) and the variational principle (36). Remark that this
simplifies the proof in [5] (see Proposition 2 and Theorem 3) for the model
RBP (30) since the above variational principle proves at the same time the
existence and uniqueness of Mλ̃ for f satisfying (39).

5.2 Discussion

This subsection is devoted to the comparison between the ES-BGK and the
two others models introduced on one hand in [5] and on the other hand in
[9], [12].

Let us denote that all the models are solutions to a suitable variational
problem. This allows to get the conservation laws and to obtain an H-
theorem in the case of [5], [12], [9]. Nevertheless this variational principle
-and especially the constraints (37) cannot be used to obtain an H-theorem for
the Ellipsoidal Statistical model because of the additional condition (11)(see
Theorem 2).
Considering the way to obtain the right Prandtl number one can distinguish
two strategies:

• In the ES-BGK model one imposes a relaxation to 0 of the tensor∫
f A(V )dv with a suitable rate λ1 (23). This leads to the right stress

tensor with proper viscosity but not (at first sight) to the right thermal
conductivity. Then one compensates this deficiency by modifying the
relaxation rate λ to the local equilibrium state (Maxwellian function).
Notice at this point two facts. One f tends in reality to an anisotropic
Gaussian before this Gaussian becomes the local Maxwellian. Two it
is quite remarkable that this anisotropic Gaussian is well defined up to
the limit of ν = 1/2 which on one side corresponds to the important
physical value of Pr = 2/3 and on the other side still gives the H-
theorem.

• For the other models the conditions the idea is rather to introduce ve-
locity dependant relaxation coefficients λ̃, λ̄1, λ̄2. In [5] the relaxation
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coefficient λ̃ is bounded from above and below (essentially for math-
ematical reasons) and gives the right Prandtl number. But it is the
coefficient η(ρ, T ) that gives the correct viscosity (and henceforth the
correct thermal conductivity through Pr) -that is the one correspond-
ing to a given interaction law between particles. This is exactly the
choice that is made for the Ellipsoidal statistical model. On the other
side the functions λ̄1, λ̄2 in [12], [9] are rather seek on a physical ba-
sis, that is to fit with a collision frequency expected to grow up as
|v| → +∞. The interest is that from this collision frequency (though
not realistic [9]) one deduces explicit expression for the viscosity and
the thermal conductivity.

6 Conclusion and perspectives.

We have constructed a BGK-type operator that replaces the Boltzmann col-
lision operator. This relaxation operator -known as Ellipsoidal statistical
model [8]- is here presented through a problem of minimization of the en-
tropy under moments constraints. More precisely beside the classical conser-
vation laws one adds a relaxation constraint on the moment of the operator
with respect to A(V ) (see (12), (11)). This leads to the correct choice of the
Prandtl number.
A new proof of entropy dissipation for this model is given (theorem 2) to-
gether with a general variational problem for other models [5, 12, 9] giving
the right Prandtl number.
We shall address in forthcoming papers the case of polyatomic gases and a
possible generalization of this model to more moments constraints so as to
fit with higher order(s) in the Chapman-Enskog expansion.
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A proof of lemma 1

For any function h ∈ L2
1 the function gα defined by

gα =
1

Iα

1

(det(χ))
1
2

h(α〈v − u, χ−1(v − u)〉)
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with

Iα =
1

ρ

∫
R3

1

(det(χ))
1
2

h(α〈v − u, χ−1(v − u)〉)dv

and

α =
2

3

tr(χ)

T

∫
R3 |c1|2 h(|c|2)dc∫

R3 h(|c|2)dc
.

belongs to Cf . Indeed the first and the second constraints of (18) on the
moments being satisfied let us check that the third relation relation is also
satisfied.∫

R3

|v|2gαdv =
1

Iα

∫
R3

1

(det(χ))
1
2

|v − u|2 h(α〈v − u, χ−1(v − u)〉)dv

+
1

Iα

∫
R3

1

(det(χ))
1
2

|u|2 h(α〈v − u, χ−1(v − u)〉)dv.

χ being symetric definite and positive such that χ = S2. Then,∫
R3

|v|2gαdv =
1

Iα

∫
R3

|S c|2 h(α|c|2)dc + ρ|u|2.

But, as ∫
R3

|S c|2 h(α|c|2)dc =
tr(χ)

α
5
2

∫
R3

|c1|2 h(|c|2)dc,

Iα =
1

ρ α
3
2

∫
R3

h(|c|2)dc.

By choosing α such that

α =
2

3

tr(χ)

T

∫
R3 |c1|2 h(|c|2)dc∫

R3 h(|c|2)dc
.

the third condition of (18) is satisfied.
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