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A B S T R A C T

Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food
microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible
hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide poly-
morphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for
phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to
total DNA isolated from either food materials or the production environment, allows the identification of
complete microbial populations. Metagenomics identifies the entire gene content and when coupled to tran-
scriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial
populations.

The focus of this review is on the recent use and future potential of NGS in food microbiology and on current
challenges. Guidance is provided for new users, such as public health departments and the food industry, on the
implementation of NGS and how to critically interpret results and place them in a broader context. The review
aims to promote the broader application of NGS technologies within the food industry as well as highlight
knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety
outputs from its wider use.

1. Introduction

In the last decade, next generation sequencing (NGS) has trans-
formed from being solely a research tool to becoming routinely applied
in many fields including diagnostics, outbreak investigations,

antimicrobial resistance, forensics and food authenticity (Allard et al.,
2017; Goodwin et al., 2016; Quainoo et al., 2017). The technology is
developing at a rapid pace, with continuous improvement in quality
and cost reduction ( The National Human Research Institute, 2017) and
is having a major influence on food microbiology.

https://doi.org/10.1016/j.fm.2018.11.005
Received 12 June 2018; Received in revised form 27 October 2018; Accepted 13 November 2018

* Corresponding author.
** Corresponding author.
E-mail addresses: Balamurugan.Jagadeesan@rdls.nestle.com (B. Jagadeesan), Kathie.Grant@phe.gov.uk (K. Grant).

Food Microbiology 79 (2019) 96–115

Available online 17 November 2018
0740-0020/ © 2019 International Life Sciences Institute Europe. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/07400020
https://www.elsevier.com/locate/fm
https://doi.org/10.1016/j.fm.2018.11.005
https://doi.org/10.1016/j.fm.2018.11.005
mailto:Balamurugan.Jagadeesan@rdls.nestle.com
mailto:Kathie.Grant@phe.gov.uk
https://doi.org/10.1016/j.fm.2018.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fm.2018.11.005&domain=pdf


NGS in food microbiology is predominantly used in two ways: (i)
determination of the whole genome sequence of a single cultured iso-
late (e.g. a bacterial colony, a virus or any other organism) which is
commonly referred to as “whole genome sequencing” (WGS) and (ii)
“metagenomics”, where NGS is applied to a biological sample gen-
erating sequences of multiple (if not all) microorganisms in that sample.
The high discriminatory power of WGS compared with traditional
molecular typing tools is well established and WGS is gaining accep-
tance as a prospective surveillance tool for foodborne illness (Allard
et al., 2016; Ashton et al., 2016; Jackson et al., 2016). WGS technology
is increasingly replacing traditional microbial typing and character-
isation techniques, providing faster and more precise answers.

The application of metagenomics for food safety and quality im-
provement is still in its infancy and offers exciting opportunities for
predicting the presence or emergence of pathogens and spoilage mi-
croorganisms based on changes observed in entire microbial commu-
nities, as well as the potential to characterise unknown microbiota.

The focus of this review is on the recent use and future potential of
NGS in food microbiology, also discussing current challenges in relation
to all stakeholders involved. The review also aims to promote the use of
NGS in the food industry while highlighting the knowledge gaps and
future research needs to augment the value generated from the appli-
cation of NGS technology to the users.

2. Description of technologies

Microbial genome sequencing has become main stream in the field
of food microbiology due to the increasing affordability and improve-
ments in the speed of sequencing and quality of the data. This is a
consequence of the advancements in sequencing technologies collec-
tively known as next generation sequencing. NGS encompasses both
massively parallel and single-molecule sequencing which provide short
and long sequencing reads respectively. Short-read sequencing is highly
accurate and produces read lengths of 100–300 bp which are then as-
sembled into incomplete or so called, draft genomes. Complete gen-
omes cannot be generated from the short reads obtained in a single
sequence run due to difficulties in assembling repetitive regions and
large genomic rearrangements such as insertions, deletions and inver-
sions. For many applications, including comparative genomics and
phylogeny, this is not an issue but where complete genomes are re-
quired and for determining complex genomic regions, longer reads are
necessary. Long-read sequencing produces reads from 10 to 50 Kb in
length, but this is at the cost of higher error rates (Loman and Pallen,
2015). Currently, microbial DNA sequencing can be performed on a
variety of platforms such as Illumina, Ion Torrent, PacBio and Nano-
pore. Table 1 provides a summary of these commonly used sequencing
platforms whilst more detailed technology descriptions and compar-
isons are well described in a number of recent reviews including those
of Deurenberg et al. (2017), Sekse et al. (2017) and Slatko et al. (2018).

2.1. Selection of technology

Which technology is used depends on what the sequencing data is to
be used for and also on the throughput of sequencing. Maximising high
throughput capabilities will result in low sequencing cost per sample.
However, the number of samples sequenced in a single run is a function
of the desired output and coverage and this varies depending on the
application. For example, single nucleotide polymorphism (SNP) ana-
lysis of bacterial genomes can be performed with relatively low cov-
erage meaning more DNA samples can be processed in a single se-
quencing run. In contrast, metagenomic analysis aiming to identify all
microbial genes present in a sample needs far greater coverage and this
limits the number of samples that can be included in a single run,
usually increasing the sequencing cost per sample.

3. Whole genome sequencing of isolates

3.1. Current applications

WGS of microbial pathogens has been introduced into public health
surveillance relatively rapidly compared with previous methodological
advancements, with reports of its use from early adopters from around
2011 onwards (Koser et al., 2012; Lienau et al., 2011). Whilst initially
used for the retrospective analyses of outbreaks of foodborne illnesses
detected by typing technologies such as pulsed field gel electrophoresis
(PFGE), WGS of microbial pathogens has now been introduced for
prospective surveillance of bacterial foodborne pathogens in at least
four countries: The United Kingdom, Denmark, France and The United
States (Allard et al., 2016; Ashton et al., 2016; Jackson et al., 2016;
Kvistholm Jensen et al., 2016; Moura et al., 2016). The year after WGS
implementation for prospective assessment surveillance of listeriosis in
the United States, more and smaller outbreaks were detected, outbreaks
were detected earlier, the source of outbreaks was identified more often
and the total number of outbreak related cases identified increased
(Jackson et al., 2016). In the realm of public health, WGS is being in-
troduced as a replacement technology, i.e. it will replace most current
identification and characterisation methods in the microbiology la-
boratory such as serotyping, virulence profiling, antimicrobial re-
sistance determination and previous molecular typing methods. In a
public health setting replacing the plethora of traditional micro-
biological identification and typing methods with a single efficient
analytical WGS workflow makes implementation cost-effective as well
as providing public health with more accurate, actionable data than
collected previously (Grant et al., 2018).

Following the lead of the public health sector, WGS is increasingly
being considered for application in the food industry. This is not only
due to the need to understand public health approaches but also be-
cause of the huge benefits and promises for improving food quality and
safety afforded by this technology. A key and immediate benefit for the
food industry is improved root cause analysis in a pathogen or spoilage
contamination event. For example, WGS can help distinguish between

Table 1
Summary of commonly used Whole Genome Sequencing platforms.

Platform Sequencing technology Read length Output/run Error rate Example of use Type of instrument and
run time

Illumina Sequencing by synthesis Short reads
1 × 36bp – 2 ×
300bp

0.3–1000Gb Low Variant calling Benchtop
2–29 h

Ion Torrent Sequencing by synthesis Short reads
200-400bp

0.6–15Gb Low Variant calling Benchtop
2–4 h

PacBio Single molecule sequencing by
synthesis

Long reads
Up to 60kb

0.5–10Gb High De novo assembly of small bacterial genomes and
large genome finishing

Large scale
0.5–4 h

Oxford Nanopore Single molecule Long reads
Up to 100kb

0.1–20Gb High Complete genome of isolates and metagenomics Portable
1min-48 h
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new and recurrent introduction of an organism into the production
environment. It can also be used for predicting traits such as virulence
or antimicrobial resistance of a pathogen or the ability of a spoilage
organism to break the preservation barriers of a product. Whilst, in-
dustry food safety testing does not demand the detailed microbial
characterisation required by reference laboratories, WGS is being in-
creasingly explored for tracking the source of microbial contamination
(Rantsiou et al., 2017; Hoorde and Butler, 2018). As the cost of se-
quencing decreases with technology improvements it makes it more
feasible for industry to consider incorporating its use.

3.2. The principles of WGS based tracking and tracing

Molecular subtyping methods have proved invaluable for tracking
and tracing pathogens along the food chain, helping to identify sources
of infection and the transmission route. (Gerner-Smidt et al., 2013).
This includes when the source of infection due to the consequence of
poor food handler practice as molecular typing can show that isolates
from cases, the food handler or food service environment came from a
common source. The additional information available through WGS
greatly enhances our ability to determine the source of infection. Over
time, bacteria accrue changes in their DNA and this can be used to
measure their evolution. Whilst previous molecular subtyping methods
detected sequence changes in a small portion of the microbial genome,
WGS captures them across the entire genome and thus more accurately
describes the genetic relatedness of strains. In tracking and tracing, the
relatedness of bacterial sequences from outbreaks as well as the food
production chain is assessed to determine if they could be part of the
same transmission chain. However, as discussed in section 3.3 WGS
data must be backed up by epidemiological evidence to prove and
characterise a transmission chain.

Currently there are two main approaches to analysing genomic data
to determine the relatedness between strains, namely SNP-based and
the gene by gene-based approaches. Analysis of WGS data by either
approach is a complex process in which multiple steps are combined to
produce final results, such as SNP or allele matrices and phylogenetic
trees (Timme et al., 2017). The large amount of data generated in WGS
brings challenges for its analysis (Deurenberg et al., 2017; Wyres et al.,
2014). This has led to multiple software solutions being developed,
mainly through academic endeavours, which in general require spe-
cialist knowledge and expertise to deploy and run. However, more re-
cently commercially developed software have become available,
bringing a user-friendly interface, allowing non-bioinformatic experts,
with the appropriate training in both bioinformatic software and final
WGS result interpretation, to conduct analyses. The commercial soft-
ware may be expensive but since limited bioinformatic expertise is
needed, it may nevertheless be a more cost-efficient solution for many
food industry users.

3.2.1. SNP approach
In the SNP-based approach, sequencing reads are aligned or mapped

to a known sequenced reference genome, and the nucleotide differences
in both coding and non-coding regions determined (Davis et al., 2015).
For each isolate, every SNP relative to the reference genome is recorded
and then used to quantify the genetic relatedness between strains. The
selection of the reference genome is a critical step: the reference
genome needs to be as completely sequenced, i.e. as contiguous as
possible, and closely genetically related to the genomes being analysed
(e.g. same serotype). A distantly related reference genome can result in
an underestimation of the genetic relatedness of the isolates being in-
vestigated as it increases the likelihood of mismapping and decreases
the regions that reads can be mapped to (Carriço et al., 2018; Schürch
et al., 2018).

Variation in mobile genetic elements such as plasmids and prophage
is, by definition, not restricted to vertical inheritance and therefore does
not always reflect the true evolutionary history between strains and

thus is not a reliable proxy for epidemiological relatedness. Repetitive
regions such as prophage and insertion elements are often excluded
implicitly due to ambiguous mapping (i.e. the sequencing reads can
map to multiple places in the reference genome and are therefore ig-
nored) or explicitly by masking regions of high SNP density. Despite
such exclusions SNP analysis is usually performed using greater than
95% of the sequenced genome.

The number of SNP differences can vary depending on the reference
strain, the reference mapping as well as the SNP calling method used
(Pightling et al., 2015). There are several SNP analysis tools in the
public domain which are under active development in addition to new
ones coming online. This makes it challenging to compare them, par-
ticularly as no widely accepted guidelines or standards for selecting
SNP analysis tools have been developed. Users are recommended to use
previously validated SNP-based tools, such as those developed by the
US Food and Drug Administration (FDA), Centers for Disease Control
and Prevention (CDC), Public Health England (PHE) and Center for
Genomic Epidemiology (CGE) that are available on Github and perform
in-house verification, ideally using benchmarked data sets which are
increasingly becoming available (Timme et al., 2017).

3.2.2. Gene by gene approach
Gene by gene analysis consists of assessing the variation in the

coding regions i.e. the genes (or ‘loci’) of a bacterial genome (Maiden
et al., 2013). In an extension to traditional 7-loci multi-locus sequence
typing (MLST), the genes in either a defined core genome (cgMLST) or
the whole genome (wgMLST), which includes the more variable ac-
cessory genes, are compared against a reference database of all known
gene variants (alleles) for a particular species. Each gene or allele se-
quence is reduced to a number and genomes are compared based on the
number of allele differences there are, comparable to the way the
number of SNP differences are used. Since the reference is a database of
loci and alleles from numerous strains, the analysis does not depend on
the selection of a closely related reference strain for the precise as-
sessment of the relatedness of genetically similar isolates. Often, prior
to gene by gene analysis, sequencing reads are assembled, typically
using the de novo based approach, into longer contiguous sequences
(called contigs) which constitute a draft genome (i.e. one that still
contains gaps). To assign an MLST type, the assembled short reads are
compared using BLAST to a reference allele database (MLST scheme)
holding all known allelic variants for each locus defined for a specific
species. Variations, including SNPs, indels (insertions and deletions)
and recombinations in the same gene are considered as a single allele
difference. In some MLST pipelines, allele calling is completed with
assembly-free allele calling whereby raw sequencing reads are mapped
to alleles in a database. The choice of assembly or assembly-free allele
calling usually depends upon whether a de novo assembly already exists
or if reads have been mapped to a reference genome. A valuable eva-
luation of different MLST software for NGS sequencing data has been
conducted by Page et al. (2017) using a validated dataset which pro-
vides information on accuracy, limitations and computational perfor-
mance.

Traditional 7-gene MLST provides a broad phylogenetic relevant
split of a species into sequence types (STs) and clonal complexes (CCs),
whereas cgMLST provides highly detailed phylogenetically relevant
information about the genetic relatedness of a species. wgMLST pro-
vides even more discrimination than cgMLST and this can be valuable
for cluster investigations to discriminate between closely related iso-
lates. However, because it includes sequence data possibly acquired by
horizontal transfer, wgMLST analysis may not be as phylogenetically
relevant when compared to cgMLST derived phylogeny. Thus, whilst
genes on mobile elements are usually included in wgMLST they are
often, as in SNP analysis, filtered out in the final analysis.

A public validated database with a shared nomenclature is re-
commended for comparisons, but ad hoc databases can also be created
when a public reference is unavailable or insufficient. Examples of
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publicly available cgMLST schemes for common foodborne pathogens
are provided in Table 2. There are currently no public cg/wg MLST
schemes available for other foodborne bacteria, such as spoilage bac-
teria.

3.2.3. Phylogenetic analysis
The genetic variation detected by SNP or gene-by gene analysis can

be used to infer phylogenetic relationships between bacterial isolates
and this is usually displayed in the form a phylogenetic tree. The tree
represents the calculated evolutionary model (obtained using different
possible tree inference algorithms such as parsimony, maximum like-
lihood, and Bayesian or distance methods) of the isolates as a series of
branches from the root or common ancestor. The isolates clustered
together near the leaves of the tree are more closely related than other
isolates elsewhere in the tree. The following references,
Ajawatanawong (2017), Baldauf (2003), Hedge and Wilson (2016), and
Yang and Rannala (2012) are recommended for a more in-depth review
on the principles behind the construction and interpretation of phylo-
genetic trees.

3.2.4. Comparison between SNP and cg/wgMLST
The choice of which comparative genomic approach to use depends

on the needs of the end-user and the epidemiological context. While
either SNP or gene-by-gene approaches can be used to investigate a
fixed number of strains associated with a particular contamination
event, cgMLST might be more appropriate if multiple users need to
systematically analyse every new isolate added to a common database,
e.g., in an outbreak surveillance network, especially if the sequence
information cannot be disclosed in the public domain. For investigating
phylogeny, the use of either cgMLST or cgSNP may provide more robust
analyses than wgMLST or wgSNP since it includes only regions of the
genome present in all strains, however, the use of wgMLST or wgSNP
can give higher resolution for strain discrimination. SNP and gene-by-
gene approaches assess genetic variation in slightly different ways and
should be viewed as being complementary and both used when one
method alone does not provide a clear-cut answer or for stronger sup-
port for an association between isolates e.g. to confirm the source of an
outbreak and support regulatory action. To date, both methods, have
been shown to be equally discriminatory when calling strain related-
ness and epidemiologically concordant for outbreak investigations
(Chen et al., 2017; Cunningham et al., 2017; Katz et al., 2017). How-
ever, comparisons of the two approaches using WGS data from a wider
range of foodborne pathogens in a variety of outbreak settings would be
valuable and are in progress.

A major advantage of cg/wgMLST is that it can be standardized and
harmonized by using an allele database with standardized allele calling
and this approach is being adopted by PulseNet International (Nadon
et al., 2017) to enable global strain comparisons for public health. The
cg/wgMLST allele databases must be curated to maintain quality and,
whilst most curation can be automated, manual curation by a subject
matter expert in cg/wgMLST and microbiology is required if new alleles
deviate from the quality thresholds defined for the automated curation.

An important difference between SNP and gene-by-gene approaches
is the level of computational support required. SNP analysis has tradi-
tionally been performed using open source software requiring expert
bioinformatic support, whereas cg/wg MLST has been implemented on

both command-line open-source software and commercial solutions
with user-friendly interfaces.

Maximal benefit from WGS of foodborne pathogens will be achieved
if sequenced genomes are deposited in public databases in real time.
Whilst there is general agreement on this principle, at present, not all
agencies, organisations and companies are able to share their sequen-
cing data. Raw sequencing data can be submitted to the international
public archival resource the ‘Sequence Read Archive (SRA)’ either
through the National Center for Biotechnology Information (NCBI)
(www.ncbi.nlm.nih.gov/sra), the European Bioinformatics Institute
(EBI) (www.ebi.ac.uk/ena) or the DNA Data Bank of Japan (DDBJ)
(trace.ddbj.nig.ac.jp) with data shared between all three (Kodama et al.,
2012). The NCBI pathogen detection website, which provides daily SNP
based phylogenetic trees for all publicly available data, is also available
to those able to make their pathogen sequence data public since it is a
requirement from NCBI that the users submit their sequences to their
public repository before their tools can be used. Users can upload their
genomes and collect their results the following day using online web
browsing tools. More considerations on data sharing are addressed in
section 5.

A wide range of bioinformatic tools are available for analysing WGS
data from bacterial isolates including those for the primary processing
of raw data, e.g. for quality assessment, trimming and filtering of raw
sequence data, and for secondary processing, such as sequence read
assembly or alignment. There are also the tools for more detailed
analysis of the data such as for species identification, marker gene de-
tection, variant calling and phylogenetic analysis, amongst others. A
selection of the more commonly used tools as well as bioinformatic
suites containing such tools, are provided in Table 3.

3.3. Interpretation of results

The biological interpretation of the genetic relatedness of isolates
using sequence data is often straightforward, provided all sequence
quality control parameters are within the expected values and the ge-
netic stability of the bacteria in question, e.g. their spontaneous mu-
tation rates are known. In WGS analysis, the number of SNP/allele
differences are used to construct phylogenetic trees providing in-
formation on the evolutionary history of the isolates. In a biological
sense, a high sequence similarity by WGS analysis means that isolates
share a recent common ancestor, and a low similarity means they do
not (Pightling et al., 2018). It is a fundamental assumption in molecular
epidemiology that phylogeny reflects epidemiological relatedness i.e.
clinical isolates or clinical and food or environmental isolates that are
phylogenetically closely related are likely to be epidemiologically or
causally linked (Besser et al., 2018). Although this assumption is often
true, it is not always so because of the complex or indirect connections
that can occur at any point along the farm to fork continuum. Thus it is
critical that epidemiological and food trace back evidence is used to
support and facilitate the correct interpretation of WGS analysis. A key
question to ask every time sequences are compared is: Does the phy-
logenetic result make epidemiological sense, i.e. does a sequence match
between an isolate obtained from a food production plant/retailer/food
service environment and a clinical isolate mean that the patient became
infected by consuming food produced at that plant/retailer/food ser-
vice? WGS analysis provides robust evidence that isolates are

Table 2
cgMLST and Genomic Reference databases for key food pathogens.

Pathogen DB location Hosted by Validation

Listeria monocytogenes http://bigsdb.pasteur.fr/listeria/ Institut Pasteur, FR Moura et al. (2016)
Salmonella https://enterobase.warwick.ac.uk/species/index/senterica Warwick University, UK –
Escherichia/Shigella https://enterobase.warwick.ac.uk/species/index/ecoli Warwick University, UK –
Yersinia https://enterobase.warwick.ac.uk/species/index/yersinia Warwick University, UK –
Campylobacter https://pubmlst.org/campylobacter/ University of Oxford, UK –
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genetically related but it does not necessarily mean that a clinical case
was infected directly from a food or a particular premise where WGS
matched isolates were obtained. It is essential that epidemiological
evidence is available to support the phylogenetic findings, determine
the food vehicle, the original source of contamination, and mode of
transmission.

Due to the inherent diversity of different bacterial species, different
epidemiological contexts and different WGS analysis approaches, it is
not possible, nor indeed wise, to define species-specific genetic cut off
values at which strains are considered to be closely related (Pightling
et al., 2018, Schürch et al., 2018). Some species or serotypes are more
clonal than others, e.g., Salmonella ser. Enteritidis is highly clonal
(Allard et al., 2013) whereas ser. Typhimurium is not. In addition, the
environment a bacterial species exists in may also exert evolutionary
pressure affecting mutation rate, and generation time (Deatherage
et al., 2017). Thus, interpretation of the genetic relatedness of strains
based on SNP/allele differences needs to be supported with expert
knowledge of the particular pathogen including an understanding of its
genetic diversity in the farm to fork environment and of the re-
presentativeness of the isolates under investigation (Besser et al., 2018;
Schürch, 2018). WGS analysis of each foodborne outbreak scenario
needs to be assessed independently with epidemiological and food
chain investigations undertaken to provide as much information as
possible for interpretation (Pightling et al., 2018, Schürch et al., 2018).

In general, if the sequences of two food pathogen isolates are highly
related, for example within 0–20 SNP/allele differences, it is likely that
the isolates share a recent common ancestor and probably originate
from the same source (Wang et al., 2018). If such highly related isolates
are cultured from different places in a food production plant, the most
likely scenario is that the same strain has somehow spread within the
production environment. Additional investigations are needed, how-
ever, to establish the actual transmission chain in order to mitigate the
problem most efficiently.

If the sequences of two isolates are very different, for example>
50–100 SNPs/alleles different, in general, the isolates are deemed not
to be related and it is not likely they come from the same source. Of
course, such findings may still reflect a common underlying problem
that requires investigation: multiple strains have been previously linked
to outbreaks related to consumption of the same food product (‘poly-
clonal outbreaks’) and the presence of multiple strains in the food
production environment may be indicative of general hygiene pro-
blems.

Isolates do not always fall within the above SNP/allele thresholds
and thus can appear to lie between being highly related and unrelated.
For example, isolates in a food processing plant may cluster separately
from all other isolates in a database but still be 30 SNPs/alleles from
each other. This indicates that the isolates share a common ancestor
and may have evolved from a resident strain in the premises and po-
tentially persistent (Elson et al., in publication). This can happen when
microbial populations experience frequent reduction in numbers (i.e. by
cleaning and disinfection), as random mutations can lead to diversifi-
cation of the original resident strain. In addition, a factory environment
offers several different environmental niches that enable isolates
therein to undergo genetic drift, again causing strain diversification.
Detection of isolates with this type of genetic variation, following
cleaning and disinfection of a food premises, would indicate that the
strain had not been eradicated by the cleaning/disinfection procedures
employed or had constantly been re-introduced through independent
events into the premises from external sources that supported condi-
tions for strain diversification.

Similarly, in outbreaks that are associated with a source that per-
mits propagation of isolates, the sequence definition of the outbreak
strain can be broader (up to 50 SNPs/allele differences or more). This is
often seen, for example, in zoonotic outbreaks. This was the case in an
outbreak in the US associated with exposure to small turtles, in which
three Salmonella serotypes were involved, Poona, Pomona andTa
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Sandiego. The outbreak associated isolates of ser. Poona differed by up
to 17 SNPs from each other and ser. Pomona isolates by up to 30 SNPs
(https://www.cdc.gov/salmonella/small-turtles-03-12/epi.html).
Similarly, 401 isolates associated with a multinational European out-
break of Salmonella Enteritidis 14b linked to eggs were shown to have a
maximum of 23 SNPs between any genome (Dallman et al., 2016).

In outbreak investigations, it is critical and customary practice to
gather supporting epidemiological evidence, such as patient interviews,
confirming the consumption of the suspected food product, matching
timelines, food trace backs and regulatory inspections, evidence of
breakdown of food safety measures at the food producing plant, in
addition to the phylogenetic information ascertained through WGS
analysis of isolates to establish a causal relationship of a food product to
an illness. Availability of such epidemiological evidence in addition to
supporting WGS data can also link a food product to historical clinical
cases (Schürch et al., 2018).

In conclusion, since biological relatedness, e.g. sequence similarity,
imperfectly correlates with ecology/epidemiology, all available back-
ground data about the sources of the isolates and the reason for doing
the comparison must be considered when interpreting sequence data.
Sometimes additional descriptive data needs to be gathered to under-
stand the sequence data. Therefore, for food safety and outbreak in-
vestigation purposes, sequence data alone cannot prove an epidemio-
logical relationship between isolates.

3.4. The need for standardisation

To maximise the benefits from WGS, the data generated need to be
accurate, reliable and globally comparable regardless of the sequencing
platform, the bioinformatic approach and software used.
Standardisation is the process whereby this is achieved and, whilst
standards and guidance exist for human genetic sequencing, few have
been available for microbial WGS. This is mainly because pathogen
genomics is a rapidly developing field and comprises specialties, such as
bioinformatics, which have not been subjected to microbiology la-
boratory standardisation procedures previously. However, many of the
principles and quality practices developed for human sequencing are
equally applicable to microbial WGS analysis (Gargis et al., 2016) and
specific microbial WGS specific performance criteria and standards are
becoming available (Kozyreva et al., 2017; Portmann et al., 2018). Just
as with the microbial subtyping methods it is replacing, microbial WGS
requires validation and verification and needs to be subject to all the
quality assurance procedures that constitute a good laboratory quality
management system. The WGS workflow consists of three components:
sample preparation, sequencing and data analysis and the entire pro-
cess, end to end, needs to be validated against existing typing methods
e.g. PFGE or Multiple-Locus Variable number tandem repeat Analysis
(MLVA), with a well-defined set of strains to ensure that the method
works for the intended purpose by the end-user; this also facilitates the
generation of interpretive guidelines for the consistent interpretation of
results. Validation establishes performance specifications such as ac-
curacy, precision, reproducibility, repeatability, sensitivity and speci-
ficity as well as discriminatory ability and epidemiological con-
cordance. Quality control procedures are required for all components of
the WGS process including sample DNA quality and quantity, sequence
quality scores including depth of sequence coverage, read length and
sequence quality, as well as the use of known positive and negative
sample controls. As with other WGS components, the bioinformatic
analysis process, once optimised, needs to be version controlled and any
subsequent alterations will require some form of revalidation. Once the
whole WGS process has been validated there needs to be regular in-
dependent assessment of its performance, i.e. verification, and this can
be achieved through the use of internal quality controls, external
quality controls and participation in proficiency tests.

Proficiency tests (PT) for microbial WGS analysis are being devel-
oped e.g. the Global Microbial Identifier (GMI) has been providing PTs

for microbial WGS since 2015 (http://www.globalmicrobialidentifier.
org/). Also, an end-user survey was published that provided informa-
tion on capability, attitudes and practices of GMI community members
(Moran-Gilad et al., 2015). This scheme provides bacterial strains for
end to end testing, extracted DNA for sequencing and data analysis
assessment and sequence data all from the same strain for bioinformatic
analysis. Other quality initiatives include benchmarking activities in
which well characterised sets of strains are available for evaluating the
performance of bioinformatic pipelines. Recently, an outbreak bench-
mark dataset has been publicly released consisting of sequence data,
sample metadata and corresponding known phylogenetic trees for L.
monocytogenes, S. enterica ser. Bareilly, Escherichia coli, and Campylo-
bacter jejuni and one simulated dataset (https://github.com/WGS-
standards-and-analysis/Datasets), for laboratories to use to assess
their bioinformatic tools and pipelines (Timme et al., 2017). Work has
also been carried out under the EFSA funded Engage project (http://
www.engage-europe.eu) to benchmark specific bioinformatic tools. A
standard set of sequencing data has been used to evaluate different de
novo assembly tools for predicting Salmonella serotypes as well as an-
timicrobial resistance gene profiling tools. The results of these bench-
marking studies demonstrate that serotyping and predicting anti-
microbial resistance in Salmonella using WGS data is a very feasible
option.

3.5. Public health and regulatory actions based on WGS results

Increasingly, food regulators and public health scientists are mon-
itoring sequence databases to identify indistinguishable isolates from
patients, the food chain, and clustered clinical isolates which could
indicate a foodborne outbreak. Such findings justify exploring the po-
tential link between cases, and the food isolate(s). Using a WGS profile
as part of the case definition in an outbreak investigation allows cases
to be ruled in or out of the outbreak with a higher degree of resolution
than previously possible. WGS evidence for isolates being the same
strain is allowing cases to be attributable to outbreaks over longer time
frames and to link cases from broader geographical areas than was
possible with previous typing methods e.g. L. monocytogenes isolates
from cases of listeriosis occurring over several years can be shown to be
the same strain (Chen et al., 2017; Gillesberg Lassen et al., 2016; Kleta
et al., 2017; Wilson et al., 2016); isolates of Salmonella Enteritidis from
cases in different European countries have been demonstrated to be the
same by SNP analysis and to have evolved from a common ancestor
(Dallman et al., 2016). A more robust case definition gives increased
power to subsequent epidemiological analyses such as case-control
studies, as unrelated cases which may have been previously included as
part of the outbreak, no longer confounds the analyses (Lienau et al.,
2011). Sequence data from outbreak isolates can be compared to known
sequence databases and may be found to match isolates associated with
distinct geographical signals which may give indications to the possible
original source of contamination and thus help to direct food chain and
environmental investigations (Hoffmann et al., 2016).

The increased power of WGS analysis to demonstrate unequivocal
genetic relatedness provides more robust evidence for public health
action to be taken and may allow intervention at an earlier stage.
However, as reiterated previously, epidemiological evidence is vital
together with WGS evidence to ensure the appropriate public health
and regulatory action is taken. Where WGS is being used routinely for
public health surveillance of foodborne pathogens, a greater number of
clusters or outbreaks are being detected, many of which would not have
been detected by traditional typing methods (Franz et al., 2016). This
obviously has resource implications for subsequent investigations and
priorities on which outbreaks to focus on should be determined using a
risk-based approach involving a variety of considerations, such as se-
verity of illness, virulence of pathogen, infective dose, number of cases,
time and geographical clustering of cases and likely exposure to the
source in the future.
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Outbreaks detected by WGS are investigated using similar ap-
proaches as used previously with cases being interviewed about their
food exposures and case-control or case-case studies conducted as part
of analytical epidemiological investigations to provide supporting evi-
dence for the potential food source. Food authorities will conduct tra-
ceability investigations on implicated food products in order to confirm
or refute links to the outbreak and if linked, to identify the root cause of
the outbreak so that effective control measures can be implemented. In
addition to the overwhelming evidence that WGS provides to outbreak
investigations, it also provides support to prevent false positive asso-
ciation of a food to an outbreak. Where a pathogen has been identified
in a food product or the food production environment, the isolate se-
quence can be compared with a database of human isolates to see if
there are any matches. To date, PHE has been approached by the food
industry on two separate occasions to compare pathogen WGS profiles
with those from cases of human illness, on both occasions no matches
were found (Grant, 2018; personal communication). However, regard-
less of whether any human illness is identified, the presence of the
pathogen in a finished product (food) or critical food processing en-
vironment signifies a breakdown in preventative controls or hygienic
conditions and may trigger investigation and/or compliance actions
from the regulator.

3.6. Food safety management

Accurate source tracking during the investigation of a contamina-
tion event is one of the foremost applications of WGS in food safety
management. Understanding if the pathogen or spoilage agent detected
is the result of a sporadic contamination event or a recurrent one is
essential to understanding the root cause of contamination and will
facilitate the implementation or verification of control measures. This
will allow industry to focus on priority areas for intervention either at
the factory or at supplier level and enable effective monitoring to de-
termine if the action has been successful. WGS can be used to improve
supplier and raw material management and optimize efforts on en-
vironmental pathogen verification programmes. Improved root cause
analysis will lead to better understanding of transmission routes and
identification of new sources of contamination. The findings and re-
sulting improvements in manufacturing and farming practices can then
be shared with the entire food sector, not just the facility involved in
the contamination event.

Besides direct matching of environmental isolates relative to a
contamination, it is also possible for industry to compare isolates with
entries in public databases as used by public health authorities and food
regulators. Depending on the database used for comparison, valuable
information can be gleaned such as the identification of potential novel
sources (which may provide an indication on initial route of entry into
the food production premises), geographic signals about possible origin
of contamination and association with human illness. WGS can also
lead to valuable insights to refine the ‘hazard identification’ step in
microbial risk assessment process. Existing knowledge on organisms is
most often gained by studying well characterised laboratory strains
which may not necessarily truly represent the phenotypic diversity of
the wider population. For example, Maury et al. (2016) recently iden-
tified additional novel virulence factors in L. monocytogenes by com-
paring genomes from clinical and food associated strains. Yahara et al.
(2017) examined the impact of various stages of the poultry production
chain on Campylobacter populations using WGS and Genome Wide As-
sociation Studies (GWAS). Disease-associated SNPs were distinct in ST-
21 and ST-45 complexes and investigation of the function of genes
containing associated elements demonstrated roles for formate meta-
bolism, aerobic survival, oxidative respiration and nucleotide salvage,
allowing potential links to be made between environmental robustness
and virulence.

Many disciplines including predictive food microbiology and
thermal processing are likely to benefit from the use of WGS data for

phenotypic prediction. There are a range of web-based tools and pub-
licly available databases for local use for this purpose, a selection of
which are listed in Table 3. These tools identify the genes of interest by
aligning draft genomes to a gene database. For example, the genome
data obtained through the routine sequencing of every day isolates can
be queried to predict traits such as the virulence profile, heat resistance,
stress response, biofilm formation, resistance against antimicrobials and
biocides by studying their phenotypic characteristics in parallel
(Rantsiou et al., 2017). It is important to recognize that detailed
genomic information does not necessarily translate into knowledge of
gene expression.

Another area of use of WGS for risk assessment is for source attri-
bution of sporadic foodborne illness, i.e. quantifying the relative con-
tribution of different animal, environmental and food sources, in-
cluding specific food commodity and production sources, to human
illness (Pires et al., 2009). So far, the laboratory part of this activity has
relied on phenotypic methods and older molecular subtyping methods
by looking for characteristics that uniquely identify bacterial strains to
any given source. However, recently, genomic data has been used to
identify likely sources of infection. For instance, an analysis of 1810
genes comprising the pan-genome of 884 C. jejuni genomes identified
15 novel host-specific genetic markers that were used to attribute
French and UK clinical isolates to chicken and ruminants, detecting a
possible geographic difference in the relative importance of these
sources (Thepault et al., 2017). In addition, gene by gene comparisons
of C. jejuni have linked Finnish human disease isolates to temporally
related chicken abattoir isolates (Kovanen et al., 2016). With the phy-
logenetic relevance of WGS, more reliable inferences about the common
origin and therefore also the source of strains with similar WGS profiles
can be made (Franz et al., 2016). However, to achieve this, new mod-
elling approaches that can handle the huge amounts of sequence data
must be developed. Once in place, this source attribution will become
an extremely powerful tool identifying the areas of the food production
that are associated with most human illnesses. This will help the food
industry and others to prioritize food safety activities that are most
likely to result in safer food and thereby also, reduce the burden of
foodborne illness.

3.7. Industry implementation considerations

For industries and retailers with classically trained microbiologists
and limited resources to spend, not only accuracy but also the practi-
cality, simplicity and cost of a method are to be considered before
implementing WGS. Ideally, a novel method would be cheaper or at
least on par with those in current use. Simplicity means that in addition
to sample handling, any software related solutions should be plug and
play in both setup and utilization.

The most likely route for adoption by the industry is through an
entry-level approach using cg/wg MLST with third party WGS or full
3rd party analysis. A number of commercial solutions are available and
some have both cg/wg MLST and SNP analysis in their pipelines with an
aim to identify primary clusters using MLST approach and SNP analysis
to confirm the relatedness between isolates in a cluster. Key to enable
adoption of WGS in routine application is simplification of the analysis
and most important simplification of the finite reporting. The finite
report of WGS typing analysis would ideally read: matching Yes/No/
Maybe and analysis Success/Failed, which are parameters a non-skilled
individual can interpret. The report should also include an explanation
of the results describing caveats and reasoning behind the final inter-
pretation.

A major consideration for industry adoption of WGS is that routine
microbiological testing of foods doesn't always require the detailed
characterisation provided by sequencing and required by public health.
Its adoption, use therefore will more likely to be on an as needs basis
rather than a total replacement of existing methods. WGS is becoming
more widely used by industry for tracking and tracing the origin of
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contamination; it is hoped that its success in this area, coupled with
decreasing sequencing costs, will encourage its wider use.

3.8. Challenges to be addressed

Although WGS has revolutionized the molecular typing of patho-
gens, several scientific gaps and challenges exist that must be addressed
to improve upon the interpretation of WGS data and enable widespread
use of WGS in food safety management for the food industry including:

• Further work on standardizing the end-to-end protocol to enable the
global sharing and comparisons of WGS data.

• Research to improve understanding of indistinguishable isolates
from epidemiologically unrelated sources to strengthen the inter-
pretation of WGS data.

• Investigation into the role of environmental niches on the mutation
rates of pathogens to support notions of relatedness. This would
improve the interpretation of WGS data, specifically for developing
guidance on SNP/allele cut off values and also for strains that may
originate from different environments and support different growth
rates but need to be considered in one investigation.

• Exploration of the value of mobile genetic element (MGE) WGS
analysis. In general, MGEs are excluded from WGS analysis although
it is well known that these often contribute to virulence and anti-
microbial resistance.

• WGS of bacterial isolates is a disruptive technology in that it com-
pletely changes the way microbiology, in particular subtyping has
traditionally been performed. This together with the significant
analytical costs along with the knowledge and competency re-
quirements are currently barriers for its wider use by industry.

4. Amplicon sequencing, metagenomics and metatranscriptomics

4.1. A definition of terms

Two approaches using NGS technologies are used to probe the
species and functional diversity of microbial communities without
bacterial culture: amplicon sequencing or metabarcoding, which in-
volves the amplification and sequencing of specific marker gene fa-
milies; and metagenomics, the random shotgun sequencing of the
whole genomic content of communities.

It is important to differentiate between these two approaches that
are sometimes erroneously combined under the term metagenomics
(Forbes et al., 2017). We recommend using the term ‘metabarcoding’
when applying amplicon-based techniques and the term ‘metage-
nomics’ only when untargeted shotgun sequencing is applied. Both
techniques eliminate the requirement for single colony isolation and
have been highly successful for identifying and investigating un-
cultivable microorganisms (Cao et al., 2017; Forbes et al., 2017).

4.1.1. Amplicon-based (metabarcoding) microbial community profiling
This technology requires the isolation of DNA directly from samples

that can include starter cultures, samples taken during production
processing, the final food product and environmental samples.
Extracted DNA undergoes targeted PCR amplification of phylogenetic
marker genes; commonly the 16S rRNA gene for Archaea and Bacteria,
the 18S rRNA gene for Eukaryotes (e.g. protists) and the internal
transcribed spacer (ITS) of the ribosomal gene cluster sequences for
fungal species. Massive parallel sequencing of these amplicons then
generates an array of profiling information about the often-complex
microbiota associated with food products. The sequencing data is then
processed by dedicated bioinformatic pipelines (described in section 4.3
below) to structure and annotate this raw information into knowledge.

One of the benefits of the metabarcoding approach is the ability to
follow the succession of microbial populations over time at various
taxonomic levels. For example, oligotyping allows the differentiation of

closely related microbial taxa using 16S rRNA gene sequence data (Eren
et al., 2013). Compared to random shotgun sequencing (metage-
nomics), metabarcoding provides a cost-effective overview of the
taxonomic composition of a sample and has already been applied to a
variety of food products. The use of metabarcoding approaches to study
the microbiology of fermented food production is well documented
(Bokulich and Mills, 2012; Lusk et al., 2012; Parente et al., 2016;
Warnecke and Hugenholtz, 2007) and has also been used for char-
acterising the microbiota of food spoilage (de Boer et al., 2015). Just
two examples include investigating the spoilage of dairy products by
heat resistant spores of thermophilic bacilli (Zhao et al., 2013) and the
proliferation of lactic acid bacteria in fresh cut lettuce, leading to
acidification and loss of structure (Paillart et al., 2016). By surveying
microbiota variations in fermented products during production, it may
be possible to improve the production process by improving flavour or
accelerate ripening, for example by adding novel strains at appropriate
times or by changing environmental conditions to favour the develop-
ment of specific microflora (Mayo et al., 2014). Metabarcoding ap-
proaches for the characterisation of microbial populations are currently
commercially available through a range of companies.

4.1.2. Metagenomic microbiome profiling
Metagenomics generates sequencing information from the genetic

material in a sample, permits identification of individual strains and
can allow the prediction of functions encoded by microbial commu-
nities. This approach has already permitted measurement of population
diversity levels in situ (Baker et al., 2006; Venter et al., 2004) and the
determination of gene families specific to or enriched in a habitat
(Tyson et al., 2004).

Metagenomics is also being explored for the detection, identification
and characterisation of pathogens in food (Aw et al., 2016; Leonard
et al., 2015, 2016) and in the food chain environment (Yang et al.,
2016). Whilst low detection limits have been reported for bacterial
pathogens spiked into foods this follows several hours of culture-based
enrichment coupled with high sequencing depth to ensure capture of
the genomic diversity within the sample (Sekse et al., 2017). However,
metagenomics provides an opportunity to survey the diversity and the
dynamic abundance of microorganisms within a sample in a less biased
manner than metabarcoding and is being used to improve culture-based
enrichment methods (Forbes et al., 2017). Shotgun metagenomics can
provide a valuable, rapid view of the presence of genetic markers
specifying species, serotype, virulence and AMR genes etc. although, at
present, these markers usually cannot be assigned to specific bacterial
genomes due to the complexity of the metagenomic data (Leonard
et al., 2016; Yang et al., 2016). Future metagenomic and metabarcoding
bioinformatic developments are likely to make this, and the ability to
investigate phylogeny, possible (Ottesen et al., 2016; Truong et al.,
2017).

4.2. Meta-omics for microbiome functional characterisation

The field of environmental omics (or meta-omics) has drastically
expanded our knowledge about microbial communities (Waldor et al.,
2015), prompting a paradigm shift in which the complete microbial
community is considered rather than single species. The importance of
ecological interactions among microorganisms is now recognized and
needs to be included in a global framework to further develop models of
the function of community eco-systems (Raes and Bork, 2008). Meta-
genomics alone is a powerful approach for characterising microbial
communities but holds even greater potential when combined with
other complementary “omics” technologies such as the measurement of
mRNA expression (meta-transcriptomics), detection and categorisation
of proteins (proteomics) and metabolite concentration (metabolomics)
(Warnecke and Hugenholtz, 2007). The term “foodomics” has been
coined to refer to the application of ‘omics technologies in food pro-
cessing, nutrition and food safety (Cifuentes, 2009). In particular, the
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combination of metagenomics and metaproteomics holds great poten-
tial for the survey of food production, assessing food safety, authenticity
and quality (Josic et al., 2017). It is possible to use mass spectrometry
(MS)-based proteomic methods to evaluate protein abundance and
partitioning of metabolic functions within natural microbial commu-
nities (Ram et al., 2005). Undoubtedly, the translation of ‘omics tech-
nologies to food microbiology will have an important impact in the food
industry (Brown et al., 2017; Walsh et al., 2017). Noteworthy, com-
putational biology advances enabling the description of environmental
genomes and their expression in situ have accompanied these new
technologies (Segata et al., 2013).

4.3. Computational tools for microbiome characterisation

Most barcoding bioinformatic pipelines start by the cleaning and
quality-filtering of 16S rRNA gene or other conserved target amplicons,
before their clustering in Operational Taxonomic Units (OTUs), typi-
cally at 97% similarity (Konstantinidis and Tiedje, 2005). Pipelines
such as mothur (Schloss et al., 2009) and QIIME 2 (http://qiime.org/;
Caporaso et al., 2010) perform the entire analysis from raw sequences
to OTUs abundance matrices. OTU delineation is useful to detect dis-
tinct lineages, to estimate diversity and assess microbial community
structure. Nonetheless, this approach is far from perfect and suffers
from the fact that a single sequence identity cut-off is inappropriate to
delineate true taxonomic lineages such as the species or genus levels,
since it overestimates the evolutionary similarity, underestimates the
number of substitutions compared to a multiple alignment and does not
consider the variability of the 16S rRNA gene or other conserved targets
across the tree or network of life (Nguyen et al., 2016).

An attractive alternative to the delineation of OTUs are oligotyping
approaches. They take advantage of the ever-increasing quality of
reads, do not rely on any clustering algorithm or sequence identity
thresholds to identify OTUs and enable analysis of the diversity of
closely related but distinct bacterial organisms usually grouped into
OTUs (Eren et al., 2013). Two oligotyping implementations are cur-
rently available, a supervised ‘oligotyping’ (Eren et al., 2014) and an
unsupervised one ‘MED’ (Eren et al., 2015). Another promising ap-
proach aims at correcting sequencing errors to enable resolving the
fine-scale variation of 16S rRNA reads. The DADA2 package extends the
Divisive Amplicon Denoising Algorithm (DADA), a model-based ap-
proach for correcting amplicon errors without constructing OTUs
(Rosen et al., 2012), which appears to surpass the current state of the
art algorithms including QIIME, mothur and MED (Callahan et al.,
2016).

Co-occurrence and correlation analyses applied to metabarcoding
and metagenomics data (Table 4) are increasingly being used for the
prediction of species interactions and the analyses of microbial com-
munity structures (Faust and Raes, 2012). A variety of tools are cur-
rently available to reconstruct ecological networks and network ana-
lyses are revealing unexpected keystone species involved in key
ecosystem functions at the global level (Guidi et al., 2016).

These tools are very useful to predict microbial interactions and
capture the structure of microbial ecosystems but their predictions are
very difficult to validate due to the lack of known and validated species
interactions in the environment. In addition, predictions of these tools
vary widely in sensitivity and precision (Weiss et al., 2016).

Various pipelines for the pre-processing, assembly, clustering and
analyses are available for genomic/metatranscriptomic bioinformatic
analyses (Table 44), such as MOCAT2 (Kultima et al., 2016), MetAMOS
(Treangen et al., 2013) and IMP (Narayanasamy et al., 2016) as stan-
dalone frameworks and MG-RAST (Wilke et al., 2016) and Anvi'o (Eren
et al., 2015b) as web-based platforms. For the functional annotations of
meta-omics data, the most commonly used databases remain KEGG
(Kanehisa et al., 2017), COG (Huerta-Cepas et al., 2016) and Pfam (Finn
et al., 2016) for functional classifications. Last but not least, bioinfor-
matic platforms implementing complete workflows such as Galaxy Ta
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(Afgan et al., 2016; Bornich et al., 2016) and EDGE (Li et al., 2017)
allow development and deployment of customized pipelines tailored to
the needs of the biologists. In-depth bioinformatic expertise will be
required to use these tools and to interpret the results obtained, though
customization options and the availability of commercial solutions aim
to simplify these steps and make it more accessible to the micro-
biologists.

4.4. Applications of metagenomics in food safety

The absence of a well-curated and high-quality standard database of
genomic sequence for pathogenic, probiotic, and functional microbes is
a significant hindrance to the implementation of metagenomic-based
methods for food safety management (Weimer et al., 2016). Groups
such as the Consortium for Sequencing the Food Supply Chain (CSFSC),
founded by IBM and Mars Incorporated, are putting efforts into col-
lecting genome information on pathogenic bacteria across the food
supply chain, as well as characterising and quantifying the microbiome
before and after processing to use genomic and metagenomic data to
assure food safety, authenticity and traceability (IBM, 2015; Mars,
2015; Weimer et al., 2016; Welser, 2015). DNA and RNA sequence
information collected from food samples by the CSFSC will be used to
describe a microbial baseline representing normal microbe commu-
nities, which can be applied to track the source of contamination and
for food authentication (IBM, 2015; Mars, 2015). Using data from
CSFSC's research, IBM is developing a scalable web-based bioinformatic
workbench, the Metagenomics Computation and Analytics Workbench
(MCAW), designed to analyse metagenomic and metatranscriptomic
sequence data for assessing microbiological hazards and for food au-
thentication in the supply chain. It also provides a service for the sto-
rage and management of raw genomic sequences and analysis results
(Edlund et al., 2016). The work done to date within the CSFSC and its
related MCAW bioinformatic tool offer a model of high-quality genomic
and metagenomic database collection, as well as a bioinformatic
workbench that can eventually apply NGS to food safety. Similar ap-
proaches are being applied by smaller service providers, who are
aiming to use NGS to characterise pathogens in food ingredients and
products. These combined studies and efforts will potentially bring
about a new perspective on microbiological risk assessment and a basis
for mitigation strategies as well as related implications for current food
safety management norms.

4.5. Issues and challenges

The evaluation of the complete functional repertoire of a microbial
population remains difficult due to the incomplete nature of the func-
tional annotation of individual genes or proteins in public databases. As
an example, a recent global ocean reference gene catalogue has been
annotated at roughly 50% using the eggNOG orthologous genes data-
base (Huerta-Cepas et al., 2016) and only at roughly 30% using the
KEGG metabolic pathways database (Kanehisa and Goto, 2000). In re-
cent years, detailed functional categories present in the KEGG
(Kanehisa et al., 2017) and SEED (Aziz et al., 2012; Overbeek et al.,
2005) databases have been used to annotate and compare genomes and
metagenomes using the KEGG Automatic Annotation Server (KAAS)
(Moriya et al., 2007), Metagenomics Rapid Annotation using Subsystem
Technology (Wilke et al., 2016), and Metagenome Analyzer systems
(Huson et al., 2007, 2016). However, these functional categories often
remain broad and do not allow the distinguishing of metabolic and
physiological features. New tools are required to characterise potential
physiological and metabolic pathways (De Filippo et al., 2012) such as
the MAPLE system (Takami et al., 2016) which uses KEGG module
annotations and permits the estimation of functional abundance and
indicates the working probability of the KEGG module based on com-
pletion ratio results.

As with traditional microbiological methods, sampling is an

extremely important first step in collecting relevant microbiological
information from the food processing environment and final products
(International Commission on Microbiological Specifications for Foods
and Christian and Roberts, 1986; Ni et al., 2013). The diversity in types
of samples will be reflected in variations in cell densities, cell viability
and the presence of biofilms. Unfortunately, the large variety of ma-
trices in food production does not allow for a one-size fits all solution.
Therefore, process and product specific sampling schemes need to be
designed. Misinterpretation of results, especially in samples containing
low number of microbial cells, can be caused due to the contamination
that may originate from reagents used for DNA extraction (Biesbroek
et al., 2012). DNA from dead cells may also give a false impression of
the microbial load in a food product or processing environment. Pre-
culturing may be used for enrichment of viable cells. However, this
must consider microorganisms that require specific growth conditions
such as higher temperature, oxygen availability and/or specific nutri-
tional factors (Zhao et al., 2013) and growth requirements for every
microorganism are not known). In the case of metatranscriptomic
analysis, pre-culturing is of course undesirable, as it would affect the
physiological state of the cells. In addition, samples need to be pro-
cessed as quickly as possible for RNA extraction, stored at −80 °C or
fixed using solutions such as RNALater. This is crucial to get an accurate
picture of the microbial activity in a sample.

Nucleic acid extraction methods undoubtedly affect the nature as
well as the quality and quantity of DNA/RNA obtained from the mi-
croorganisms present in a sample, and thus they influence the experi-
mental results. It is essential to keep this in mind during data inter-
pretation and highlights the need to use extraction methods that are
optimal for a given study or know what biases the nucleic extraction
method may introduce (Bag et al., 2016; Klenner et al., 2017; Cottier
et al., 2018; Panek et al., 2018; Vaidya et al., 2018). The matrix from
which DNA or RNA is purified for metagenomic/metatranscriptomic
analysis also requires special attention. In the case of DNA isolation, the
product often contains plant or animal nucleic acid that would also
yield sequence information, thereby diluting relevant microbial se-
quence information. To overcome this there are protocols for removing
non-microbial DNA (Feehery et al., 2013, Gosiewski et al., 2014, 2017).
The matrix contents may also interfere with performance of molecular
analysis as it may inhibit the required biochemical reactions (de Boer
et al., 2015). A potential approach to eliminate matrix components is to
retrieve microbes by differential centrifugation and filtration from
aqueous solutions. Biofilms are sometimes highly rigid making these
complex microbial communities difficult to homogenize (Corcoll et al.,
2017). Options to open-up these communities include enzyme treat-
ment combined with strong shear forces such as sonication and bead
beating.

The issue of metagenomic approaches to detect and characterise
specific strains and traits in clinical specimens without the need for
using culture is becoming pressing in public health as clinical labora-
tories are increasingly moving away from culturing bacterial pathogens
to detecting them directly in specimens by PCR or enzyme im-
munoassays (Marder et al., 2017). Metabarcoding after amplification of
a single or a few conserved genes may be used to detect different spe-
cies in a specimen but will fail to detect pathotypes within a species that
includes commensals, e.g., E. coli which includes the verocytotoxin
producing (Shiga toxin producing, VTEC/STEC), enteroaggregative
(EAEC), enteropathogenic (EPEC), entero-invasive (EIEC) pathotypes
and Shigella, and less virulent variants of pathogenic species, e.g. non-
O1, non-O139 serotypes of Vibrio cholerae. This problem could be
solved by targeting genes that encode the virulence factors associated
with these pathotypes or serotypes but while this might be feasible with
serotype encoding genes, it is often not feasible with virulence asso-
ciated genes that are commonly present on mobile genetic elements,
e.g. plasmids and phages, as it might be impossible to determine which,
of multiple bacteria in the specimen, they belong to. This is an active
area of current research (Spencer et al., 2015).
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Traditional metabarcoding usually does not provide sufficient re-
solution to differentiate between different isolates or between samples.
This is needed for source tracking similar to WGS of cultured isolates.
One solution to this problem is to use a similar and potentially com-
patible approach to wgMLST for analysing sequences of cultured iso-
lates. As many loci as possible (up to a few thousand) are selected from
the wgMLST schemes for amplification and sequencing directly from
the specimen. This approach is currently being tested for detection and
subtyping of Salmonella with the goal of designing a culture in-
dependent detection and subtyping system that approximates the re-
solution of the wgMLST scheme (CDC unpublished).

Metagenomic shotgun sequencing is also being pursued for si-
multaneous detection and subtyping of pathogens without culture. It
has worked in retrospective studies of specimens from outbreaks where
the pathogen involved had already been identified by culture (Huang
et al., 2017; Loman et al., 2013). However, without prior knowledge of
the pathogen, a number of issues need to be resolved such as the
aforementioned linking of genes on mobile genetic elements to the
strains they belong to. Recent developments in single cell sequencing
look promising in addressing this issue for both metabarcoding and
metagenomics (Lan et al., 2017; Spencer et al., 2015).

In addition to the issues discussed here, critical improvements in the
sequencing technologies and bioinformatics are needed before meta-
barcoding or shotgun metagenomics can be implemented cost-effec-
tively for diagnostics and subtyping of foodborne pathogens in support
of public health and food safety. However, the rapid progress of de-
velopments in NGS is likely to herald the demise of bacterial culture as
one of the principle methods in food microbiology.

4.6. Validation and benchmarking

As with any new technology undergoing rapid development, end-to-
end validation and standardization of NGS is challenging. However, the
need for validation, benchmarking and standardization are crucial to
define guidelines and best practices for application in food safety and
quality management.

Despite the availability of various laboratory protocols and many
dedicated tools for the analysis of amplicon and metagenomic se-
quencing data, their validation is often limited due to the complex
nature of environmental or food samples. The variety of protocols and
software solutions for NGS applications continues to expand, which
makes validation and standardization a hurdle for specific applications.
However, several comparative studies have been carried out to test the
performance and benchmark various methods and tools at the different
steps of a meta-omics survey; namely the sample preparation
(Lewandowska et al., 2017), the DNA/RNA extraction (Knudsen et al.,
2016; Yuan et al., 2012), the library preparation (Jones et al., 2015;
Schirmer et al., 2015), the sequencing platform used (Tremblay et al.,
2015) and the bioinformatic approach applied (Siegwald et al., 2017).
Nevertheless, standardization in the field is still in its infancy and the
comparison and validation of these protocols and tools are essential to
gain meaningful information and to make intra- and inter laboratory
exchange of information effective (Costea et al., 2017).

With respect to bioinformatic analyses, state of the art pipelines
exist that include crucial steps such as adaptor removal, matrix genome
sequence removal (meat, vegetables, fruit etc.), low-quality read fil-
tering, contig assembly and finally perform searches against regularly
updated databases (Olson et al., 2017; Schlaberg et al., 2017). Singer
et al. (2016) reported the use of a defined mock community with
complete reference genomes for the benchmarking and validation of
metagenomic sequencing and a public resource has recently been cre-
ated for microbiome bioinformatic benchmarking (Bokulich et al.,
2016; Singer et al., 2016). The importance of validation and bench-
marking is often overlooked but is essential for a sound interpretation
of the data in the context of food safety (e.g. pathogen identification).

The current stage of validation and standardisation with respect to

strain detection as well as the assignation of virulence and resistance
markers to specific species or strains is more advanced in WGS com-
pared to metagenomics. This can easily be explained by the inherent
differences between both approaches: WGS enables easy access to
genomes one at a time, at low throughput, while metagenomics is
adapted to assess fragmented genomes of complex samples at a high
throughput. Nevertheless, new bioinformatic approaches are now en-
abling the identification of conspecific (i.e. belonging to the same
species) strains from metagenomic sequence data (Luo et al., 2015;
Zolfo et al., 2017), although these approaches often rely on complete
genome information available in public databases.

5. Considerations and challenges related to data sharing

The food industry is truly global, producing and trading items
around the world. Processed goods and raw commodities are trans-
ported between continents and undergo a variety of investigations by
exporting, as well as importing, countries. This results in data genera-
tion at several stages and in different countries by different organiza-
tions and companies. In this context, NGS is increasingly being applied,
as outlined in detail in the preceding sections. It is widely acknowl-
edged that maximal benefit from NGS will be fully realised through the
global sharing of sequence data together with an agreed minimal set of
descriptive metadata (FAO, 2016). Industry will benefit if their isolates
are included in scientific analyses that ultimately leads to a deeper
understanding of global microbial diversity, ecology and distribution of
organisms. Public health will benefit both from enhanced outbreak
detection and resolution but also because industry will proactively
implement more effective prevention and control measures based on
NGS intelligence.

Currently, industry is concerned that safeguards do not exist to
protect companies from regulatory actions, as well as for protecting the
company's reputation and brand equity and this is forcing companies to
limit sharing to a legal minimum even though the benefits of data
sharing are readily recognized. Thus, to encourage sharing, risk needs
to be reduced whilst benefits enhanced, and value demonstrated (FAO,
2016). Some of the key aspects to be addressed to encourage data
sharing are described in the following sections.

5.1. Correct data interpretation

WGS data amenable to gross misinterpretation at the hands of
poorly-trained personnel can pose serious risks to the food industry,
especially in the age of social media. Mechanisms to prevent and tackle
these concerns must be addressed for industry to engage with an open
data model (FAO, 2016; Taboada et al., 2017). This was highlighted
recently by the Technical University of Denmark, where a preliminary
analysis reported the presence of monkey DNA in burgers. Following
further analysis, this was shown to be cattle DNA (Sep 2016 http://
www.food.dtu.dk/english/news/2016/08/mapping-foods-dna-can-
reveal-fraud?id=800739d1-f72d-4c57-bab1-4376e0a87bc7). Database
limitations and short reads used for data comparison were identified as
reasons for the erroneous interpretation of the sequence results, high-
lighting the critical importance of specialised knowledge for analysing
and interpreting WGS data.

Furthermore, particularly within the field of microbial metage-
nomics, standards for data interpretation are not available or agreed
upon, and this can lead to conflicting reporting of the same results
(Clooney et al., 2016). This applies not only to the different approaches
and data analysis methods, but also when the same approach is used but
the conclusions differ.

5.2. Legal clarity/due diligence

In the majority of WGS source tracking investigations, sequence
data from closely related strains are included in the analysis to precisely
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understand the relatedness of the isolates being studied. This is usually
achieved by querying the sequences of interest against a public se-
quence database comprising strains isolated from multiple sources. This
can potentially result in the clustering of a food/environmental isolate
being analysed with a clinical isolate. The situation becomes compli-
cated when a link is found between a historical patient and a recent in-
house isolate and vice-versa with regards to the subsequent steps which
must be taken by the food processor from a due diligence perspective.
In the USA, all foodborne pathogens obtained through surveillance and
inspection are sequenced and the sequences are uploaded into the
public domain where they will reside for the life of the database.
Matches to any isolates that share a recent common ancestor may cause
further investigations by the federal government. In most cases, no
regulatory actions will occur without supplemental information, either
regarding food exposure or unhygienic observations within the farm to
fork continuum. The regulatory response depends on what is found
during inspection and how the industry responds according to long
term existing practices to inspection and regulation. WGS is just the
newest subtyping tool being applied but fundamentally regulatory de-
cision-making and actions are largely unchanged. WGS helps regulators
to recognize potential problems earlier because of the higher precision
of the technology leading to a more rapid response to improve food
safety and public health. Regulators are interested in when a company
became aware of a contamination issue and what was done to alleviate
this, and prevent recurrence. However, uptake of NGS technologies by
industry will also enable industry to investigate potential hygiene or
contamination issues in their premises more thoroughly, facilitating
root cause analysis and provide them with the opportunity to be far
more proactive in tackling such contamination issues (Amini, 2017;
FAO, 2016b). Routine use of WGS will mean that food companies are
far more aware of what is going on in their production environments
and be more pre-emptive in preventing foodborne illness rather than
just reacting to it.

5.3. Data ownership

There are concerns that the use of publicly available WGS data
could result in trade barriers and even lead to local legal actions due to
countries operating within different legal frameworks. Thus, there is a
strong desire to establish and agree on a global, harmonised legal fra-
mework to facilitate open sharing (FAO, 2016). Potential solutions to
some of the issues could be agreed defined delays in data sharing or
even a 'grace period' without legal consequences in order to promote
active data sharing. Considerable effort in terms of cooperation and
coordination in this area is required to achieve the aim open sharing of
WGS data. It is important for industry to develop mechanisms to both
share and protect sensitive information so it can contribute to WGS
databases more comfortably.

6. Future prospects for improving food safety

The food industry will increasingly adopt NGS technologies for a
wide variety of food microbiological investigations and Fig. 1 sum-
marizes the four different approaches that might be taken depending on
the requirement, the available resources and the interest and experi-
ence of each company.

6.1. Whole genome sequencing

One of the key applications of WGS in the food industry will be to
understand the root cause of a contamination event in so it can be
addressed swiftly. The entire end to end WGS process needs to be
convenient, rapid and affordable for WGS to be widely used routinely.
The further development of easy-to-use bioinformatic pipelines and the
harmonization of analysis methods will help to facilitate this. WGS
needs to be adopted not as an add-on to existing microbiological

characterisation techniques but as a replacement for existing identifi-
cation and typing methods in order for the cost benefit to be realised.

Industry will greatly benefit if phenotypic characteristics such as
growth and inactivation profiles can be predicted based on analysis of
the genome. However, because phenotypic responses are often also
controlled at the transcriptional and post-transcriptional level, multi-
omics approaches will play a key role for pathogen characterisation in
the future. Furthermore, data generated from WGS and metagenomics
are likely to be integrated with predictive microbiology for greater
control of food safety and quality along the food chain. In the future,
genomic databases may be linked to websites dealing with predictive
microbiology such as ComBase (http://www.combase.cc/index.php/
en/).

Maximal food safety benefit from WGS depends on data sharing and
it is anticipated that industry will develop a mechanism to both share
and protect sensitive information, so it can contribute to the WGS da-
tabases more comfortably. The further development of easy to use
bioinformatic pipelines and the harmonization of the methods are also
required.

6.2. Metagenomic analysis

Metagenomic tools can improve understanding of the microbial
ecology of food processing lines. Within a microbial community, in-
teractions between pathogens and the associated microbiome may in-
dicate the existence of a specific pathogen species or impact its colo-
nization. Variations in environmental factors such as pH, salt
concentration, and water activity, caused by processing and handling
treatments may lead to corresponding changes in the microbial com-
munity (Weimer et al., 2016). Food producers will be able to either
validate or improve current microbial hazard management using the
metagenomic approach to monitor the occurrence and abundance of
microbes and genes in the microbial community of food processing
lines.

For microbial spoilage risk management, it is important to monitor
changes in the microbial community during storage to plan appropriate
processing, treatment and storage conditions for food products
(Ercolini, 2013). Metagenomic tools can help anticipate microbial
spoilage by studying changes in the diversity or proportion of spoilage
associated microbes in the microbiota of food products (Ercolini et al.,
2011; Kable et al., 2016), as well as monitoring the behaviour of
starter/spoilage-associated populations in cultured food (Masoud et al.,
2012). These tools have allowed researchers to develop understanding
of defects with unknown origin and to develop strategies to eliminate
those defects such as those affecting meat and seafood (Chaillou et al.,
2015), sausage meat (Hultman et al., 2015), Chinese rice wine (Hong
et al., 2016) and continental cheeses (Quigley et al., 2016). The in-
formation gleaned from these applications has been used to select
starter cultures used to produce fermented foods with more consistent
quality (Galimberti et al., 2015), to identify biomarkers for ripeness and
quality, and to optimize environmental conditions during production of

Fig. 1. Summary of potential NGS use by the food industry.
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cheeses (Wolfe et al., 2014), by driving formation of microbial com-
munities to produce foods with desired properties. Applications of
metagenomic studies have revealed that difference in soil microbiota
have an impact on the flavours of wines produced in different geo-
graphic regions (Zarraonaindia et al., 2015).

Metagenomic and metatranscriptomic approaches also have great
potential in becoming valuable options for detecting food authenticity
and integrity by precisely describing the microbial community of a
specific food product. Traditional DNA barcoding methodologies based
on (PCR) and Sanger sequencing are limited by their low-throughput
nature and the need for high DNA purity and concentration of food
samples (Shokralla et al., 2014). These limitations are being addressed
by high-throughput NGS technologies including metagenomic ap-
proaches, which provide more information on the microbial community
populations and biological ingredients of a food product, as well as
allowing culture-independent testing. Metagenome prediction software
has also been used to understand the impact of modified atmospheres
on metabolic pathways, to aid the design of preservation systems
(Ferrocino and Cocolin, 2017). These metagenomic approaches, when
combined with other ‘omics technologies such as proteomics and me-
tabolomics have the potential to link particular species in a community
with functional characteristics, such as flavour production or produc-
tion of harmful metabolites such as biogenic amines in rice wine (Liu
et al., 2016).

There are challenges regarding utilization of the metagenome for
the food industry including the detection of DNA originating from dead
microbes as well as low sensitivity of detection compared with culture
based methods as well as the relatively high costs and further devel-
opments in these areas are being pursued.

6.3. The impact of NGS application on food trade and food industry

NGS application in food safety management is likely to become a
game changer for global food trade. While the main players continue to
push for NGS technologies for global food safety management, there is
also an urgent need to close the technological gap between the less-
advanced food producing countries to facilitate global food trade.
Developing countries have significant concerns over the possible im-
balance of trade opportunities, since they might not be able to provide
the same level of WGS-based data as others (FAO, 2016). Obstacles to
using WGS include lack of infrastructure e.g. basic utilities and/or in-
ternet access and the need to develop a skilled trained workforce both
at regulatory and food industry level to perform and interpret WGS
data.

It is important that international efforts to facilitate the transition
from old technologies to NGS globally continue to offer opportunities to
these countries, in terms of technology and training, knowledge ex-
change, restructuring of the food safety system within the country and
also by improving the local food industry in the country. The emer-
gence of NGS technology could be a turning point to bridge the gap
between less-advanced food producing countries and the developed
nations.

Finally, the ultimate extension of the impact of NGS will be a re-
duction in food industry costs. The cost of generating bacterial genomic
sequences is still decreasing rapidly and within the next few years it is
expected that the cost of applying NGS technology will easily out-
compete the cost of microbiological culture and physiological ex-
amination. This cost reduction is additional to the transformational
food industry benefits that this new technology is set to deliver.
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