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Abstract

This work is concerned with modelling steady-state slow flow of incompressible power-law fluids in
porous media. The macroscopic filtration law is derived by upscaling the pore-scale description. The up-
scaling technique in use is the homogenisation method of multiple scales. Then, the filtration law is in-
vestigated by means of the theory of representation of isotropic tensor function of tensor arguments. The
general form of the filtration law is given for isotropic, transversely isotropic, orthotropic and fully an-
isotropic systems.
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1. Introduction

Knowledge of the filtration law for the flow of power-law fluids through porous media is of first
importance in numerous engineering areas, e.g., petroleum engineering, paper manufacturing,
composite manufacturing, etc. However, there have been very few theoretical investigations that
focused on the general form of this law. Indeed, most of them aimed at proposing one-dimen-
sional modified versions of Darcy’s law in non-algebraic forms that are obtained on the basis of
phenomenological considerations. Wissler [1] used a geometric similarity condition and the ho-
mogeneity condition (see (7) below) and obtained the following one-dimensional filtration law:
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where ¢ is the Darcy flux, Ap is the pressure drop across a porous sample of length L; " and K are
two parameters that are dependent on the exponent n. Larson [2] obtained the same filtration law
(1) by assuming that the streamlines are independent of the volumetric flow rate. This latter
property is actually a direct consequence of the homogeneity condition (7), see below. Slattery [3]
derived the three-dimensional isotropic law by volume averaging, considering the homogeneity
condition (7) and using a dimensional analysis (Buckingham-Pi theorem). The resulting filtration
law can be expressed as follows:

Vp+Kv=0, K=K|Vp" " (2)

where K| depends on n, and on a characteristic length of the porous system. Both filtration laws
(1) and (2) have similar structures. When n = 1, they reduce to Darcy’s law. More recently, there
have been several works that aimed at obtaining the filtration law by upscaling the pore-scale
behaviour. Getachew et al. [4] applied the method of volume averaging to derive the macroscopic
isotropic filtration law. Shah and Yortsos [5] and Bourgeat and Mikelic (6] used the homogeni-
sation method of multiple scales. In [5], the filtration law is obtained in a formal way and its
structure is investigated by using physical considerations at the macro-scale. In [6] the existence of
the filtration law and the convergence of the expansions are rigorously demonstrated. Other
references concerning the flow of a power-law fluid in a porous medium and its applications can
be found in [7].

The present work is aimed towards rigorously deriving the most general form of the filtration
law in systems of different types of anisotropy. The macroscopic filtration law is obtained by
upscaling the pore-scale physical description, by using the homogenisation method of multiple
scales.

Let us assume the medium to be locally characterised by a representative elementary volume
(REV) whose size 1s O(/) (Fig. 1). Let us consider the physical description at the pore scale, i.e.,
within this REV. It consists of the momentum balance (3), the fluid constitutive equations (4), the
incompressibility condition (5) in the pores €, and of the no-slip condition (6) over the pore
surface I

Fig. 1. Periodic cell of the porous medium.
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= 0, (3)
1 (n—1)/2

oy =—ply+1;, 1= y(éD,,,D,,‘,) Dy, (4)

du, .

ax 0 in Q, (5)

v;=0 onlI. (6)

In these equations, p is the pressure, v is the velocity, g > 0 and » > 0 are two constants. D 1s the
rate-of-deformation tensor

D 18y dy
v =a\ax, Tax )

As it can be seen from (4), the stress deviator t is a homogeneous function of degree n of the
velocity v:

T, (Av) = 21(v). (7)

The purpose of our work 1s to upscale the pore flow description (3)-(6). We use a rigorous up-
scaling process to obtain the macroscopic law without any prerequisite on the form of the
macroscopic behaviour. Section 2 is devoted to a short presentation of the upscaling technique,
the homogenisation method of multiple scales. The upscaling is conducted in Section 3. It yields a
vectorial relationship between the Darcy velocity and the macroscopic pressure gradient. We
present a demonstration which is different from that carried out in [6]. This new formulation, see
(26), 1s of practical interest since it is suitable for numerical calculations. The purpose of Section 4
is to analyse this filtration law by means of the theory of representation of isotropic tensor
functions of tensor arguments and the homogeneity condition (7). Different cases of anisotropy
are investigated: isotropy, transverse isotropy, orthotropy and general anisotropy.

2. Upscaling technique

The essence of homogenisation method is to determine an equivalent macroscopic behaviour by
upscaling the local description. The fundamental assumption behind homogenisation theory is
that the scales must be separated:

| <L, (8)

where / and L are the characteristic lengths at the heterogeneity scale and at the macroscopic scale,
respectively. As this definition conjures up a geometrical separation of scales, we shall draw at-
tention to the fact that this fundamental condition must also be satisfied regarding the



phenomenon. For example, in the case of wave propagation, the microscopic characteristic
length, /, must also be small compared to the wavelength.

In this study, we use the method of homogenisation for periodic structures — also called method
of multiple scales — introduced by Bensoussan [8] and Sanchez-Palencia [9]. The key parameter of
the method is the small parameter

/
e=7 < 1, 9)
in which L 1s the macroscopic characteristic length and, depending on the problem under con-
sideration, is either geometrical (i.e., the sample size) or related to the excitation (e.g. wavelength).
The pore size [, can vary in the REV and can be different in different directions. Thus the porous
medium can show macroscopic anisotropy. However, we assume /, is of the order of magnitude of
I, 1, = O(l) or equivalently & < [/l < &',

We also assume the medium to be periodic. This assumption is actually not a restriction, see
[10] for details. In the context of a periodic medium, the REV is simply the period.

In this study, we use the approach suggested in [10], by which the problem is tackled in a
physical rather than mathematical manner. Indeed, it offers the additional benefit that the con-
ditions under which homogenisation does apply are expressly stated. This formulation of the
method is on the basis of definition and estimation of the non-dimensional numbers arising from
the local description under consideration. This fundamental step is called normalisation and 1s
aimed at specifying all cases that can be homogenised.

As a result of the separation of scales, two non-dimensional space variables may be defined:

X

y=7
X

=T

where X is the physical space variable.

If the condition of separation of scales is verified, then y and x appear as two independent space
variables: y is the microscopic variable and describes the heterogeneity scale whereas x is the
macroscopic variable.

As a consequence, the physical variables of the problem, p and v, are a priori functions of y and
X:

p = ply.x),
v =v(y, x).

Moreover, the partial denivative with respect to the physical space vanable X can be written
as

d

57 (10)
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When using / as the reference characteristic length, the non-dimensional gradient operator is given
by

V, + &V, (11)

where V, and V, are the gradient operators with respect to variables y and x, respectively.

The homogenisation method of multiple scales is based on the fundamental statement that if
the scales are well separated, then all physical variables can be looked for in the form of as-
ymptotic expansions in powers of &

p=p"y.x) +ep'(y,x) +---, (12)
v=v(y, x) F ey, x) (13)

in which the functions p/ and v' are y-periodic.
The method consists in incorporating expansions (12) and (13) in the dimensionless form of the
local description (3)—(6). Solving the boundary-value problems arising at the successive orders of ¢

leads to the macroscopic description. The method allows determination of the macroscopic be-
haviour without any prerequisite on the form of the macroscopic equations.

3. Derivation of the macroscopic filtration law

Firstly, we shall cast the set (3)(6) in a dimensionless form. It turns out that only one di-
mensionless number,Q, may be defined from this set of equations

_ |
Q‘\ﬁ\/

The fluid is driven through the pores by a macroscopic pressure gradient which is of the order of
op/L, where dp is the macroscopic increment of pressure. This macroscopic pressure gradient is
balanced by the viscous forces which act at the pore level

atuj a 1 (n—1)/2
L ) D, |.
dy; Oy (#( 2 "’”’D"’”') W

where the subscript y designates the partial derivative with respect to y. Let us arbitrarily choose /
as the reference characteristic length. Therefore we have

d Tif

x| (14)

op/l L
=Pl 1
O |07, /By;| ! ¢ (15)

For the sake of simplicity we use similar notations for dimensional and dimensionless quantities,
with the exception of the space variables. Thus, when cast in a dimensionless form the set (3)—(6) is
written as follows:



ap a 1 (n—1)/2
3, + sa—h # 3 Doy D, | =0, (16)

du.
a—: =0 In Q,,, (17)
v, =0 onl. (18)

Let us now incorporate expansions (12) and (13) in the set (16)-(18). At the first order, (16) gives

o

=0, p=p'(x). 9
i p=pix) (19)

The next order in Egs. (16)18) yields a boundary-value problem for v’ and p':

apl apo a 1 0 . (n—1)/2
T oy oxg M Ay, (“(ED.‘WDW) o, ) =0, (20)
1/ a0 o’
D =— 2L+,
=1 (a_;-, W )
avf’ .
8_;, =0 in Q,, (21)
v/ =0 onlI. (22)

Let us introduce the vector space W of free-divergence periodic vectors that are zero-valued over
I', and which is equipped with the scalar product

(v, W) Ou; 0wy

VW), = — —

LR y y :
o, Oy Oy

Then, the set (20)+22) 1s equivalent to the following variational formulation:

0
Vac W, / 1,(V)Dy(2)dQ = — / aiz.ds), (23)
y o, Ox;

1 (n—1)/2
60 = (30 (PIDA0 ) DY)

From (23) it is clear that, if v¥ does exist, then it is a homogeneous function of degree 1 /n of the
macroscopic gradient V p = G. The stress deviator t is the gradient of a potential function



aw 2‘( 1 (n4+1)/2 1
= — DD = 1,.D,,
“=ap, ¥ n+1(2 " '“') PN ag

and ¥ 1s convex

Va B e W, Y@ —v(B) - (B)(Dy(x) ~ Dy()) > 0. (24

Letting « = v’ in (23) and using the convexity property (24) yield the following variational in-
equality:

vae W, | (Wa)— w(¥') = Gz —v"))dQ = 0. (25)
Q;

This variational inequality can be rewritten as
Yac W, J(a) -J(¥)=0, (26)

in which
J(a) = ) (Y(a) — Ga)dQ

is convex. The problem is then to find « € ¥ that minimises J(a). Therefore, there exists a unique
v

v = E(G, pu, n), (27)

where E i1s a homogeneous vector function of degree 1/n of its argument G. Clearly, E also de-
pends on the fluid properties g and n. We refer to [6] for the demonstration of the convergence of
expansions (12) and (13).

The next orders of the volume balance (17) and of the no-slip condition (18) are
written

el @’
8_\‘, +a_r‘, = in Q,, v} =0 onl.

Integrating this volume balance on Q,, using the divergence theorem, the periodicity of v' and the

adherence condition yield the macroscopic volume balance

u;

— =0, 28

ax; (28)
1

u=— [ v'dQ = F(G, un), (29)

Q Jo,



where F is a homogeneous vector function of degree 1/n of its argument G. As for E, F also
depends on g and n. Egs. (28) and (29) represent the macroscopic model of the fluid flow. Relation
(29) stands for the macroscopic filtration law. Letting a = v” in (23) gives

1
Gu = Qo 7,(v)Dy,(v') dQ < 0, (30)

which means that the macroscopic dissipation density is equal to the pore dissipation average.
We shall now examine the vector function F by means of the theory of representation of
isotropic tensor function of tensor arguments.

4. The anisotropic filtration law
4.1. General representation

According to Lokhine and Sedov [11], Boehler [12-14], and Liu [15] any anisotropic function
can be represented by an isotropic function after introducing additional arguments that are re-
lated to the anisotropy. By using this isotropic extension method, the filtration law (29) can be
rewritten as

u=F(G,un) =F(Ga;a,...,a, un), (31)

where F' is an isotropic function of all its arguments, and an anisotropic function of G. Re-
member that F* also depends on p and n. The additional arguments a,, i = 1,2, ..., r are struc-
tural tensors that characterise the anisotropy. Let S be the material symmetry group of the
filtration law (29). The additional arguments are chosen so as to possess S as material symmetry
group. In the following, the additional arguments are vectors w,, / = 1,2,...,m, or symmetrical
second order tensors M, p=1,2,... 1.

Asshown in [16,17], the isotropy property enables F* to be resolved into components on a finite
functional basis. In the present case this basis is constituted of vectors H, that represent an ir-
reducible functional basis of the arguments of F*. We have

F. =“/’ql-[qw “/'ll =“/’q(ll1121131“‘11.\‘)‘ (32)
The y,’s are arbitrary scalar functions of the invariants /,, j = 1,2,. .. s, of the functional basis. In

the present case, the H,'s are the following [16,17]:

{G, wi, MG, Myw, MG, Mw, (33)

(M,M, - M,M,)G, (M,M, — M,M,)w,

and the invariants /; are [12,14,17],



( GG, w-w, G-w, w-w,
trM,, trM;, trM,, trM,M,, trM;M,,
trM,M;,  trMoM;, trM,M,M,,
§ G-MG, w-Mw, G-Mw, w-MG, (34)
G-M;G, w,-Mw, G-Mw, w- MG,
G-M,M,G, w;- M,M,w,,
[ G- (MM, - MM, )w,, w,- (MM, - M,M,)G.

The purpose of the next paragraphs is to successively examine the properties of the function F' in
the cases of isotropy, transverse isotropy, orthotropy and general anisotropy. In this analysis to
follow, the homogeneity property (7) i1s used, which can be expressed as follows. Let
plx1,x2,...,x,) be a homogeneous function of degree m of its arguments. Consider an x, such that
x, # 0. Then f can be written as

/1=-\”,,"¢(x‘,x—2,...,x—"), (35)

X, Xp X,
where ¢ is an arbitrary function of its ¢ — I arguments 22 ... =
L
4.2, Isotropy

In the case of isotropy, F* has a single argument G. There is no additional argument. The basis
vectors (33) reduce to the single vector G and the invariants (34) reduce to the single invariant
G - G. The filtration law takes the form

u=f(G-G,unG. (36)

f 1s a scalar function which is homogeneous of degree (1/n — 1)/2 of its argument G - G. f also
depends on p and n. Therefore, from (35) we have

/} — —C’(ll,)l)(G X G)Il—n'l,"lnﬂ u= —C’(}l,)l)(G X G)ll-m".b’G, (37)

where C(pu,n) i1s independent of G. From (30), the dissipation —G - u is positive. The filtration law
takes the form

u=—C(u,n)|G|" "G, (38)
with C = 0. We recover in this case a filtration law similar to (1) and (2).
4.3. Transverse isotropy
Let e, e,, e; be three orthogonal unit vectors and e; be the axis of transverse isotropy. In this

case, see [14], there is only one additional argument to F*, i.e. M; = e; @ e;. The basis vectors (33)
are G and G;e; and the invariants (34) are G - G and Gj. The filtration law is written



u=p(G-G.G.unG+ (G- G, G3, ju,n)Gses, (39)

where f# and f#, are homogeneous functions of degree (1/n — 1)/2 of their arguments. They also
depend on p and »n. Then, from (35) we get

-

—n)/2n_« G <2 —n)/2n G ~
u:(G.G)"l ) (p(r};,y,n)G-}-(Gg)” ) (p3(ﬁ,y,n)(;3e3. (40)

-

The positivity of the dissipation entails

S

—n)/n G - —n)/n G -
u= —|G|"l ) (p(G -3G’#’ n)G - |(;3|"l ) (p3(G -3G’#’ n)(;;e3, (41)

S

2

where ¢ and ¢, are positive arbitrary functions of G3/(G - G) that depend also on p and n. Re-
mark that the transverse isotropic law (41) reduces to the one-dimensional law (2) when the flow
direction 1s a principal direction of the anisotropic medium, only.

4.4. Orthotropy

The axis of orthotropy are chosen to be the coordinate axes (e, e, e;). The additional argu-
ments that characterise the orthotropy are the three following tensors, [14]:

M =e¢ @e, Mi=e:x2e, M;=e e (42)
The basis vectors (33) reduce to

Gie, Grer, Gies, (43)
and the invariants (34) are

Gi. G, G (44)
Therefore the filtration law is expressed as

u=fGe + fi,Gye; + f;Gses, (45)
where the fi’s are in the form

B = B(G1.G3 G, ). (46)

The f’s are homogeneous functions of degree (1/n — 1)/2 of their arguments. Choosing G, # 0
gives from (35)

o 5 2y (=) /20 ((;p-l)2 (G;H-l):
Bi=((G)) ¢‘( (G,,)z 1 (G,,)z «F‘«”)« (47)



where the components of G are arranged in the order G,,G,,Gs, Gy, ... The positivity of the
dissipation then yields

(1=n)/n (’; (lm
u= _IGpI‘l ’ d’l ( (((,]p)l) (( ,p)lz L n) Ge

. Gp)’ (Gpr)
_IGPIH-m,nd)Z(( i '1) ,( “l,) ,ll,n)Gze:

(G) (G

— G, " g, (("’f'l) ,(('”f':) n | Gaes, (48)
(G (Gy)

where the ¢,’s are positive arbitrary functions that depend also on y and n. As for the transverse
1isotropic law, orthotropic law (48) reduces to the one-dimensional law (2) when the flow direction
1s a principal direction of the anisotropic medium, only.

4.5. General anisotropy
The additional arguments are now vectors e, €», e; [12]. The basis vectors (33) are G, e, e, €;
and the invariants (34) are G, G> and Gs. The filtration law 1s written as
3
u= (G, G, Gy, u,n)G + Z/I,(Gl, Gy, Gy, i, nje,. (49)

i=1

f and the f’s are homogeneous functions of their arguments of degree (I —n)/n and 1/n, re-
spectively. Therefore we obtain with G, # 0,

\/ G, G, 1 Gy
u= G})l-n‘l,vn(p- ( (;} 1 (;:l )G + Z(’l " ( l‘ 1 ) (;;l " n)e” (50)
P F

P 4

where the components of G are arranged in the order G|, G,, G3, Gy, ... Using the positivity of the
dissipation finally vields

—n)/n G;-l Gwl 1/ n n— 1 (’wl
u=—W$'“w(47,' ) G, |” ’ S n e, (51)
g G, G, Z g G,,

where the ¢'s are positive arbitrary functions that depend also on g and n. Filtration laws (48) and
(51) obtained in the cases of orthotropy and general anisotropy, respectively, are quite different.
Anyhow, when the fluid is viscous Newtonian (n = 1), the ¢,’s, ¢ and the ¢’s are constant and, as
a consequence, the fully anisotropic law reduces to the orthotropic law in this particular case.
Anisotropic law (51) 1s not reducible to one-dimensional law (2).




5. Conclusions

We have used the homogenisation technique and the theory of representation of isotropic
tensor function so as to derive and then to investigate the general form of the filtration law for
slow permanent flow of power-law fluids in porous media. This model is valid under quite re-
strictive conditions as in particular inertial terms were neglected in the momentum balance (3).
Anyhow the model is rigorous within its domain of validity. We have examined four cases of
structural symmetries: isotropy, transverse isotropy, orthotropy and general anisotropy. We have
shown, as expected, that in the very specialised case of linear fluids (# = 1), the most general
anisotropy reduces to orthotropy. For non-linear fluids, it is worthwhile noticing that the iso-
tropic filtration law (38) is similar to Slattery’s law (2). We have demonstrated that for trans-
versely i1sotropic and orthotropic systems the structure of the one-dimensional law (2) remains
valid, but only when the flow direction is parallel to a principal axis. The most important result is
the proof that for fully anisotropic systems, one-dimensional flows never verify (2).

The above results are derived for macroscopically homogeneous porous media. They can be
directly extended to macroscopically heterogeneous media. In effect, the space variable x plays the
role of a parameter throughout the homogenisation process: integrations are conducted with
respect to variable y. Therefore, considering porous media where g, n as well as the period Q are x
dependent yields to macroscopic equivalent descriptions whose effective coefficients are also x
dependent, i.e. to macroscopically heterogeneous porous media. These macroscopic descriptions
are similar to those presented in the paper.

It would have been of interest to get explicit expressions for the effective coeflicients entering the
filtration laws. Unfortunately, owing to the nonlinear constitutive equation of state, an analytical
solution of the local boundary value problem is not possible, unless the pore geometry is very
simple as for plane fissures. Although the results for such simplified pore systems agree with our
theoretical results, they are of low interest in case of anisotropy. To check our results, an ex-
perimental setup is under construction.
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