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Coriolis Effects on Filtration Law in Rotating
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Abstract. We investigate the filtration law of incompressible viscous Newtonian fluids in rigid non-
inertial porous media, for example, rotating porous media. The filtration law is obtained by upscaling
the flow at the pore scale. We use the method of multiple scale expansions which gives rigorously the
macroscopic behaviour without any prerequisite on the form of the macroscopic equations. For finite
Ekman numbers the filtration law is shown to resemble a Darcy’s law, but with a non-symmetric
permeability tensor which depends on the angular velocity of the porous matrix. We obtain the
filtration analog of the Hall effect. For large Ekman numbers the filtration law is a small correction to
the classical Darcy’s law. The corrector is antisymmetric. In this case we recover a structure of law
which is similar to phenomenological laws introduced in the literature, but with a dissimilar effective
coefficient.
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Nomenclature

Roman Letters

A dimensionless ratio of rotational to translational.
convective inertia.

Ek Ekman number.

G macroscopic driving force.

H second order tensor.

k. k” k! microscopic velocity fields.

K. K K! tensorial permeabilities.

1 characteristic size of the pores.

L macroscopic characteristic length.

P pressure.

P characteristic pressure difference over sample.

Q dimensionless ratio of pressure to viscous forces.

R dimensionless ratio of translational convective inertia

to viscous force.
vector in ‘W,
fluid velocity.

- =
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v characteristic velocity.
w Hilbert space.

X dimensionless macroscopic space variable.
v dimensionless microscopic space variable.

Greek Letters

£ small parameter of scale separation.

€ijk permutation symbol.

Vr-Ve Ve relative, convective and Coriolis accelerations.
respectively.

r pore surface.

w angular velocity.

I viscosity.

Q periodic cell.

Q2p pore volume in the periodic cell.

¢ porosity.

P fluid density.

1. Introduction

Fluid flow in non-galilean porous matrix is concerned with numerous practical
applications going from geological applications to industry. A good review of ap-
plications is given in Bear ef al. (1984), Vadasz (1997). The filtration law in use is
generally Darcy’s law (Bear er al., 1984; Jou and Liaw, 1987:; Arulanandan et al.,
1988; Mitchell, 1994; Lord, 1999). However, fluid flow through a rotating porous
media is submitted to a Coriolis force that deviates the flow from its direction.
One can find in the literature a few expennmental works on cylindrical pipes, for
example Bentom and Boyer (1966), Hart (1971), Johnston er al. (1972), Lezius
and Johnston (1976) and some numerical works on porous media, (Vadasz, 1993,
1997), that account for this phenomenon. The Coriolis force is considered in the
filtration law in a phenomenological way (Chakrabarti and Gupta, 1981; Patil and
Vaidyanathan, 1983; Palm and Tyvand, 1984; Rudraiah er al., 1986; Vadasz, 1993)
by the direct introduction in the seepage law of the Coriolis inertia term that appears
in Navier—Stokes equations, see Equations (4) and (7) below. In Vadasz (1993), for
example, the following dimensionless isotropic filtration law is introduced

q=—k(Vp+Ek e, xq), (D

where q is the flow rate vector, k is the permeability, V p is the pressure gradient, e,
1s a unit vector in the direction of the rotational velocity and Ek is the Ekman num-
ber, that is the ratio of viscous term to Coriolis term in Navier-Stokes equations.
On the other hand, to our knowledge there is no theoretical work on the modelling
of fluid flow in non-galilean porous matrix.

The aim of this paper is to investigate the tensorial filtration law in non-galilean
rigid porous matrices for steady-state slow flow of an incompressible viscous New-
tonian fluid that is outlined in Auriault er al. (2000). Extensions to deformable



porous media, to compressible fluids and to transient flows are evoked in the con-
cluding remark section. We use an upscaling technique, that is the method of
multiple scale expansions to determine the macroscopic flow from its description at
the pore scale. Heterogeneous system as, for example, porous media may be mod-
elled by an equivalent macroscopic continuous system if the condition of separation
of scales 1s verified (Bensoussan et al., 1978; Sanchez-Palencia, 1980).

[
£=—<& 1, 2
7 (2)
where [ and L are the characteristic lengths of the heterogeneities and of the mac-
roscopic sample or excitation, respectively. The macroscopic equivalent model is
obtained from the description at the heterogeneity scale by (Auriault, 1991):

(1) assuming the medium to be periodic, without loss of generality:
(11) writing the local description in a dimensionless form;
(111) evaluating the dimensionless numbers with respect to the scale ratio £
(iv) looking for the unknown fields in the form of asymptotic expansions in powers
of £;
(v) solving the successive boundary-value problems that are obtained after intro-
ducing these expansions in the local dimensionless description.

The macroscopic equivalent model is obtained from compatibility conditions which
are the necessary conditions for the existence of solutions to the boundary-value
problems. The main advantages of the method rely upon the possibility of:

(a) avoiding prerequisites at the macroscopic scale;

(b) modelling finite size macroscopic samples;

(c) modelling macroscopically non-homogeneous media or phenomena;

(d) modelling problems with several separations of scales;

(e) modelling several simultaneous phenomena;

(f) determining whether the system ‘medium + phenomena’ is homogenisable or
not;

(g) providing the domains of validity of the macroscopic models.

Coriolis effects are measured by the inverse of Ekman’s number Ek~' =
2pwl* /i, where 2 and p are the dynamic viscosity and the density of the liquid,
respectively, w is the angular velocity of the porous matrix and / is the pore charac-
teristic size. For example, consider a geotechnical centrifuge with an angular veloc-
ity @ ~ 300 rpm, and filtrating water with iz ~ 107 Pas and p ~ 10 kg/m*. Then,
Ek~' number goes from 62 for [ ~ 10~ m, for sand, t0 6.2 x 107> for/ ~ 10~° m,
for clay. Earth’s rotation may also cause Coriolis suction, but in much larger pores:
Ek~'~ linfracture networks of fracture width / ~ 10 cm. A typical angular veloc-
ity for air rotating multipore distributors in experimental fluidized bed reactors is
about 2s~! (Kvasha, 1985). If we assume / ~ | mm, we obtain Ek~! ~ (.4. Rota-
tion of remelted alloy ingots in semi-solid state is used to avoid segregation during



solidification (Kou er al., 1978). Typical angular velocity is 76 rpm. Considering,
for exmple, liquid steel with ¢z ~ 107 Pass and p ~ 7.3 x 10*kg/m? and pore size
[ ~ 100 um, we have Ek~' ~ 1.2. In the paper we firstly investigate Ek~' numbers
of O(1), thatis, £ € Ek™' <« ¢!, and secondly, we focus on small Ek™"' numbers,
e K Ek'< L

In Section 2, we give the description of the flow at the pore scale relatively to
the moving matrix frame. This description is made dimensionless and we evaluate
the different dimensionless numbers with respect to the scale ratio £. Section 3
is devoted to the upscaling for steady-state slow flow with Ekman number O(I).
The filtration law resembles a Darcy’s law. However, it is shown in Section 4 that
the permeability tensor is non-symmetric and depends on the angular velocity
of the matrix frame. The case of large Ekman numbers is investigated in Section 5.
The filtration law that is obtained shows a similar structure to the phenomenolo-
gical law (1), but with a different effective coefficient in front of the vector product.
Finally, the case of parallel plane fissures is investigated in Section 6.

2. Local Flow Description and Estimations

Consider the flow of an incompressible liquid through a porous medium. The
porous medium is spatially periodic and consists of repeated unit cells (paral-
lelepipeds), see Figure 1. There are two characteristic length scales in this problem:
the characteristic microscopic length scale / of the pores and of the unit cell, and
the macroscopic length scale that may be represented by either the macroscopic
pressure drop scale or by the sample size scale. For simplicity, we assume both
macroscopic length scales to be of similar order of magnitude, O(L). Moreover we
assume that the two length scales [/ and L are well separated

I < L. (3)

The unit cell is denoted by €2 and is bounded by €2, the fluid part of the unit cell
is denoted by €2, and the fluid—solid interface inside the unit cell is I'. Relatively

Figure 1. The porous medium.



to the moving porous matrix frame, the momentum balance for the incompressible
viscous Newtonian liquid is

Vv —Vp=p(y, +y.+y.) nQ, (4)

where v is the velocity vector relative to the matrix frame, p is the pressure, p is the
density and g is the viscosity. Gravitational acceleration is included in the pressure
term. y,, ¥, and y, are the acceleration relative to the matrix frame, the convective
and the Coriolis accelerations, respectively

av
= — -V)v,
Y= +(v-V)v (5)
dw
)’e=Y(O)+d—tXOM+“’X (@ x OM), (6)
Y. =2 XV, (7)

where @ is the angular velocity of the porous matrix, O is a fixed point of the porous
matrix in the investigated period and M is a current point in €. Equation (4) is
completed by the incompressibility condition and the adherence condition on I

V:v=0 in 2, (8)
v=0 on T. (9)

Since the ratio between microscopic and macroscopic length scales is small, the
fundamental perturbation parameter ¢ is chosen to be

[

e_L. e 1. (10)
The independent dimensionless numbers which characterize the liquid flow prob-
lem may be related to the magnitude of «.

We use the local length scale of a pore [ as the characteristic length scale for the
variations of the differential operators: we apply the so-called microscopic point
of view (Auriault, 1991). To fix the ideas we consider a centrifuge of radius r at
constant angular velocity @ = we,, @ = constant. We consider a steady-state
fluid flow which is slow relatively to the porous matrix. Therefore, the relative
acceleration ¢, in Equation (4) is negligible . We also assume the matrix movement
to be steady-state. Then, there remain four dimensionless numbers: the ratio Q of
pressure to viscous forces, the ratio R of the translational convective inertia to the
viscous force, the ratio A of the rotational to the translational convective inertia
and the ratio Ek (the Ekman number) of the viscous force to the Coriolis inertia.
We have A = O(e’ 1/w2 r) = O(g) and we assume R = O(l). The estimation
of R is the consequence of the hypothesis of separation of scales. Higher values
would yield non-homogenisable problems, that is, problems for which equivalent



macroscopic description do not exist. For evaluating the two latter dimensionless
numbers Q and Ek, we introduce characteristic values shown by a (*). In particular,
P is the characteristic pressure increment in the sample. We obtain
'l
put’
M
2pwl?

(1D

Ek (12)

The estimate for Q comes from a phenomenological argument, that is, the
viscous flow is locally driven by a macroscopic pressure gradient

“1: =o(%), (13)
and thus
Q=0 (14)

The estimate of Ek will be introduced below. For simplicity we use the same
names for the dimensionless variables as for the original variables. The formal
dimensionless set that describes the flow is in the form

puViv—e"'Vp

= p(y(0) + Ek 20 x v+ c@ x (@ x OM)) in Q. (15)
V.ov=0 in (16)
v=0 on T. (17)

3. Homogenisation

The next step is to introduce multiple scale coordinates (Bensoussan er al., 1978;
Sanchez-Palencia, 1980). The macroscopic space variable x is related to the micro-
scopic space variable y by

X = gy, (18)
and the derivative operator becomes
V=V +£V,, (19)

where the subscripts x, and vy denote the derivatives with respect to the variables x
and y, respectively. Clearly, the flow behaviour depends strongly on the evaluation
of Ek as function of the perturbation parameter £. At this stage we assume that

e & Ek < &7 !, Ek = O(1). (20)



Following the multiple scale expansion technique (Bensoussan er al., 1978;
Sanchez-Palencia, 1980), the velocity v and the pressure fluctuation p are looked
for in the form of asymptotic expansions of powers of ¢

vavlxy+e vy e vP oy 4+, (21
p=p%=xy) +epPx.y)+ pPx.y)+.... (22)

Substituting these expansions in the set (15-16-17) gives, by identification of
the like powers of &, successive boundary value problems to be investigated. The
lowest order approximation of the pressure verifies

ap®

a)';

=0, P = pPx). (23)

The first order approximation of the velocity v’ and the second order approxima-
tion of the pressure p'" are determined by the following set

a?v® apV ©
G- =2pe€prwi vy, In 24
#6)'16)'1 i oy P Eijrwj Uy P (24)
9 .
a% =0 in @, (25)
Vi
v =0 onT, (26)

where v'” and p'"’ are Q-periodic. ;¢ is the permutation symbol. G is the macro-
scopic driving force which is independent of y and which is defined by

G =V p" + py(0). 27

To investigate the above set, we introduce the Hilbert space ‘W of Q-periodic,
divergence free vectors, where the vectors vanish on I', with the scalar product

u; v
(W, V)y = f 52 gy (28)
, 0V dY;

Now, let us multiply Equation (24) by u € ‘W and integrate over ,. By
using integration by parts, the divergence theorem, periodicity, and the boundary
condition on I', one obtains

R all,‘ an(O) ()
YueW, o dv+ [ 2pepwjvy uidy =— | u;Gidy.
o, dy; 9y; 2 2,

(29)



For any u, v in W we have

ou; dv;
V| n=dy+ | 2 pejew; v dy|< cillull [[v]],
Q 3\' 3\" Q

ou; ou;
|f [—lav‘ a“ d\' +f 2 0 eijk w; Ul dvl 2“2”“”2,
Q, OV oV; 2

where ¢| and ¢, are positive constants. Therefore, the formulation (29) is strongly
elliptic, (John, 1970), and there exists a unique v9 which is a linear vector function
of G

L‘!(]) ] _k‘l Gl' (30)

where the tensor field k depends on @ and y.
Finally, the volume balance (16) gives at the second order

avi(l) N av(()) 0 ) Q (31)
_— _— mn .
dy; | ax; P

By integrating over £2,, we obtain

()
ay; ) ()

|
= 0. (L ) K‘I Gl Kij = 5 pr k,‘j d\' (32)

ax;

Remarks are as follows
e The filtration tensor K depends on the rotational velocity @
e Model (32) is an approximation since v'” = v + O(¢).
e Model (32) is valid in the range ¢ < Ek <« &' which can be quite large if

the separation of scales is good.

e Filtration law (32), is not likely to reduce to phenomenological law (1).

An example of K(w) is given in Section 6.

4. Properties of the Permeability K(w)

Letting u = v'” in formulation (29) gives
(0) av(m 1 (0)
e d)’ - - G‘ d\' = K‘IG G‘ (33)
6\' 6\'1 Qp Qp

The left-hand member is positive. We deduce that K is a positive tensor.

We now investigate the symmetries of tensor K. k;, is the solution of (29) for
Gy=—1ifl = p,G; = 01ifl # p. Consider now formulation (29) successively
with v/” = kip, u; = kiy and v\"’ = kiy), u; = ki,. We obtain

aki, ok;
f I avq a‘vp d f 2 P eijk wl kkl’ ki‘l d-v
2, 2,



- f kyy dy = QK. (34)
QP

ok;, ok;
f [.l’a—vp'# d\'+/ pr,‘jk w; kkq kipd,v
o, 9y 9y, 2,

- f k,p dy = K. (35)
2p

Subtracting member to member yields
Q(qu_qu)=4pfijk Ll)l f kkpkiq d'\v' (36)
2,

which generally does not cancel out when @ # (. Therefore, unlike the classical
permeability tensor K(0), K() is not a symmetric tensor. The divergence operator
in the balance (32), kills the antisymmetric part of K. However, this antisymmetric
part is of importance for porous media that are heterogeneous at the macroscopic
scale or in case of flux boundary conditions. By following a similar route, it is
possible to show that

qu(u) - qu(—ﬁ)).

which stands for the filtration analog of the Hall effect.

5. Large Ekman Number

We now consider the case of large Ekman numbers, n = Ek~' <« 1, which is
satisfied in many practical applications (Vadasz, 1993). We look for v/ and p
in the form of the expansions

VO =y vl vl (37)
pP=p"+np P pi 4. (38)

The substitution of expansions (37) and (38) into expansions (21)—(22) shows
expansions (37) and (38) are valid up to the term in n" provided that

M n <. (39)

Introducing the above expansion in the formulation (29) and identifying like
powers of 7 yields, to the zeroth order in n

au; v’
Vuew, f il y=—f u,G, dy. (40)
2, Y9y 2



As expected, this is the linear Darcy formulation (Sanchez-Palencia, 1980). For-
mulation (40) shows that v" is a linear vectorial function of G. The Lax-Milgram
theorem ensures a unique solution. Let kg be the particular solution on v? when
Gk = —8kj- We have

v = —k{. G}, (41
which by averaging yields Darcy’s law
() = —K;G;, (42)
1
K’ = (k% = S / k“dy = K(0). (43)
2

The second rank permeability tensor K” is symmetric and positive
(Sanchez-Palencia, 1980).
The first order problem in 7 is the rotation correction problem

) du; av} o
YueW, uIWd.\'ﬁ- 2p6;jk wj v lt,‘d)’
2 j 9OYj 2
du; dv}
= / u%ﬁ d\' - / 2 0 €iji wj k?,G] uj d\' = (), (44)
Q joyj 2

which is also a linear problem with respect to G that has a unique solution

L‘il = —k‘lj Gj. (45)
where k' itself is a linear function of @. By averaging we obtain

(v/) = —K}G, Kl = (k). (46)

Tensor K' depends linearly on @, like k'. Finally, up to the two first terms the
expansion (37) gives

W) = ) + Ek™" o) = —(K{, + EK'K])) G, (47)

which is valid for £ <« Ek~' <« 1. Relation (47) represents an approximation of
the filtration law at large Ekman numbers.

To investigate K' and to get more insight in the filtration law (47), consider the
formulation (40) with v¥ = kf}, and u; = k}q

aki, okj, | |
/ pta e gy =/ KL dy = QK. (48)
Qp

and formulation (44) with v} = k! and u; = k;)



k), ok,
f “Wmﬁ dy+f 2p € 0 ki ki), dy = 0. (49)
2
By subtracting member to member these two relations we deduce
1 ! 0 1,0
KI"I = —5 szpé,‘jk wj kquip d\' (5())

Remark the resemblance between the expressions of K' and the antisymmetric part
of K(w) in (36). Let us show that K' is antisymmetric. We have

1 l 0 1,0
qu = —5 o 2p Eijr Wj kkpkiq dy,
1
= - 5 pr 2 P Eji Wj k:(;)k?q d)’.
1 0,0 1
= + 5 2 0 €Eiji wj kipkkq d)’ = —qu. (Sl)
Q,

Tensor K! is antisymmetric. Therefore, K! is associated to a vector. Because K' is
linear with respect to @, this vector is in the form H - @ where H is a second order
tensor and we have

K' -G=H -wxG. (52)

Incorporating expression (50) for K' into Equation (52) and identifying the factors
of w;G, yields

1
€pmg Hmj = -2 P €ijk 5 pr k[(,]qu) d."~

which, by multiplying both members by €,;, and by using the identity €., €pny =
21, gives

1
Hij = —p €piy €iji Q pr k/?.,kf; dy. (53)

Finally the filtration law (47) for large Ekman numbers is in dimensional form
and at the second order of approximation in the form

v) = ~(K"- + H -wx)G. (54)

(K- + H - @x) stands for an approximation of K(w) at large Ekman numbers.
Tensor (K°-+ H-@x) is not symmetrical. Remark that both K” and H are obtained
by averaging and that we need only the local Darcy’s velocity field k” for their
determination.

To compare the filtration law (54) to phenomenogical law (1), let us first assume
K and H to be isotropic, K” = K°I, H = HI. The filtration law (54) becomes



v) = —(K°G + Hw x G). (55)

Performing a vector product by @ to both members in the above equality and taking
notice of the smallness of the term in H yields

ox v)=-K'oxG- @ x (Hw x G),

5

H H
meG:—me <V > +wa(me)%—me (v).
Introducing this expression for He x G into Equation (55) gives

v) = -K"G -

(1:!0)2"”( <V =), (56)

which has to be compared to phenomenogical law (1). The structures of the two

filtration laws are similar. However, identification of both laws is obtained under
the condition that

H e
2p (K92 -
which is not likely to be verified since we have from (43) and (53)

(57)

H = Hyy = 2p (kK3 — k3skss),

K= K?l = (k?l)-

6. Example

Analytical results are of great interest because they permit us to point out general
features concerning effective coefficients. Unfortunately, such results are available
for a few pore geometries. We investigate in this section porous media which pore
system consists of parallel plane fissures, as shown in Figure 2. & is the porosity
and the pore thickness is denoted /1. The porous medium is rigid and it is submitted
to an angular velocity @ = we,, perpendicular to the pore surfaces. The pore
domain under consideration is —//2 < z < h/2. The periodicity is arbitrary in the
directions x and y. Therefore, v and p are functions of z only. Consider G = G e,.
Equations (24-26) become

d*v

u dz; — G = —2wpuva, (58)
dv

I dz; = 2wpv,, (59)
dvy dp

— - — =0, (60)



Figure 2. Flat pore.

dz 2
The solution is in the form

v

i,

iz
A7z

duy h
— = (), v iEt—=) =0.

_ Gy(cos B cosh Bsinazsinh ¢z — sin B sinh § cosazcoshaz)

+ 2!
= R
: 2pw

2a2pu(cos? B cosh? B + sin” B sinh? B)

G (cos B cosh 8 cos @z coshaz + sin § sinh £ sinez sinh «z)

2pw(cos? B cosh® B + sin® B sinh? 8)

vy =0, p = constant,
with
wp h
o= w b=« 5

By averaging we obtain the macroscopic flux in the form

¢G(cos Bsin 8 — cosh §sinh )

i} = 2a? ph(cos? B cosh? B + sin’ B sinh? )

(v2) ¢ G (cos Bsin  + cosh B sinh 8) ¢G,

v2) = — )
. 2pwah(cos® Bcosh® B + sin® Bsinh? B)  2pw

(3) = 0.

The solution for G = G»e, is obtained by rotating the axes. Finally we get

K“(U)) - Kll(w) -_— -

¢(cos B sin B — cosh 8 sinh )
203 ph (cos? B cosh? B + sin® Bsinh? §)’

T T e >

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)



(K
1 11
0.8
0.6
0.4
0.2
o*
2 a 6 8 10
Figure 3. Dimensionless permeability K l*l = Kj1(@)/K11(0) versus dimensionless fre-
quency & = ph’w /4.
Ky (w) = —Kz(w),
¢(cos B sin B + cosh 8 sinh ) ¢

= 3 . 2 . .7 - . (69)
2pwah(cos® B cosh™ B +sin” Bsinh™ B)  2pw

In this very particular case, tensor K is antisymmetric. The dependence of
Ki(w)/K1(0) and K7(w)/K11(0) upon @ is shown in Figures 3 and 4. Both
Ky and K, are strongly varying with . Permeability K, decreases to zero
with increasing . Permeability K, is negative and shows a minimum for @* =
ph*w/4p =~ 1. The rotation gives rise to a filtration analog of the Hall effect. Al-
though these general behaviours may be similar for less simplistic pore geometries,
we should remember that the above investigation is valid for Ekman numbers O(1),
1.e. for not too large frequencies. Note also that the inplane pore flow perpendicular

Figure 4. Dimensionless permeability K ;l = K71(w)/K11(0) versus dimensionless fre-
quency & = ph’w /4.



to G is not constrained by the surface of the plane fissure. For actual porous media
Coriolis effects may be less important.

Large Ekman number permeabilities can be obtained by following two ways.
Firstly, by letting @ to be small in Equations (68—69) we obtain, when neglecting
higher order terms than @

2

h? n
Kn@ ~2 k0. Ko@)~ =222
12 602

Secondly, these results are also obtained from (53) where we use

(70)

1 [h?
Ky = kS, = — (— - ) . k% = 0otherwise.

<= 2\ 4
That yields
14
n= —Z’; ',. H;; =0 otherwise.
e

Introducing these values of H;; in Equation (54) yields relations (70).

7. Concluding Remarks

We have used the homogenisation method so as to describe the steady-state slow
filtration law of an incompressible liquid in a rotating porous media. The filtration
law is shown to strongly depend on the angular velocity of the porous matrix. For
a low angular velocity, that is a large Ekman number, the filtration law reduces to
the phenomenological law (1), but with a different effective coefficient. Moreover,
for both large and O(1) Ekman numbers, the filtration tensor K is not a symmetric
tensor. The rotation gives rise to a filtration analog of the Hall effect. Although
the divergence operator in the flow mass balance (32), for macroscopically homo-
geneous porous media kills the antisymmetric part of K, this later one can play
an important role in non-homogeneous porous media or in presence of impervious
boundary conditions.

As for classical Darcy’s law, filtration laws (32), and (54) are valid for com-
pressible fluids, since compressible fluids are asymptotically incompressible when
the condition of separation of scales (3) is verified, see (Auriault er al., 1990) for
details. Only the macroscopic mass balance (32); is changed. The above results
are also valid when the porous medium is deformable, as it is for classical Darcy’s
law. As in the present study, the velocity (v) stands for the relative velocity to the
porous matrix.

Acknowledgement

J.-L. Auriault wishes to thank Mobil Oil Technology Company for financial sup-
port via a research gift.



References

Arulanandan, K., Thompson, P. Y., Kutter, B. L., Meegoda. N. J.. Muraleetharan, K. K. and
Yogachandran, C.: 1988, Centrifuge modelling and transport processes for pollutants in soils,
J. Geotech. Engng 114(2), 185-205.

Auriault, J.-L.: 1991, Heterogeneous medium. Is an equivalent macroscopic description possible?,
Int. J. Engng Sci. 29(7). 785-795.

Auriault, J.-L., Strzelecki, T., Bauer, J. and He, S.: 1990, Porous deformable media saturated by a
very compressible fluid: quasi-statics, Eur: J. Mech., A/Solids 9(4). 373-392.

Auriault, J.-L., Geindreau, C. and Royer, P.: 2000, Filtration law in rotating porous media, C.R A.S.
I1'b 328, 779-784.

Bear, J., Corapcioglu, M. Y. and Balakrishna, J.: 1984, Modeling of centrifugal filtration in
unsaturated deformable porous media, Adv. Water Resour. 7, 150-167.

Bensoussan, A., Lions, J.-L. and Papanicolaou, G.: 1978, Asymptotic Analysis for Periodic Struc-
tures, North Holland.

Benton G. S. and Boyer D.: 1966, Flow through a rapidly rotating conduit of arbitrary cross-section,
J. Fluid Mech. 26(1), 69-79.

Chakrabarti A. and Gupta A. S.: 1981, Nonlinear thermohaline convection in a rotating porous
medium, Mech. Res. Com. 8(1), 9-22.

John, J.: 1970, Partial differential equations, in: E. Roubine (ed.). Mathematics Applied to Physics,
Springer-Verlag, Berlin.

Johnston J. P, Halleen R. M. and Lezius D. K.: 1972, Effects of spanwise rotation on the structure
of two-dimensional fully developed turbulent channel flow, J. Fluid Mech. 56(3), 533-557.
Kou, S., Poirier, D. R. and Flemings, C.: 1978, Macrosegregation in rotated remelted ingots, Metall.

Trans. B9B, 711-719.

Kvasha, V. B.: 1985, Multiple-spouted gas-fluidized beds and cyclic fluidization: operation and sta-
bility, in: J. F. Davidson, R. Cift and D. Harrison (eds.), Fluidization, 2nd edn., Academic Press,
London, pp. 675-701.

Liou, J. J. and Liaw, J. S.: 1987, Thermal convection in a porous medium subject to transient heating
and rotation, Int. J. Heat Mass Trans. 30(1), 208-211.

Hart J. E.: 1971, Instability and secondary motion in a rotating channel flow, J. Fluid Mech. 45(2),
341-351.

Lezius D. K. and Johnston J. P.: 1976, Roll-cell instabilities in rotating laminar and turbulent channel
flow, J. Fluid Mech. T7(1), 153-175.

Lord, A. E.: 1999, Capillary flow in geotechnical centrifuge, Geotech. Test. J. 22(4), 292-300.

Mitchell, R. J.: 1994, Matrix suction and diffusive transport in centrifuge models, Can. Geotech. J.
31, 357-363.

Palm E. and Tyvand P. A.: 1984, Thermal convection in a rotating porous layer. J. Appl. Math. Phys.
35, 122-123.

Patil P. R. and Vaidyanathan G.: 1983, On setting up of convection currents in a rotating porous
medium under the influence of variable viscosity. Int. J. Engng. Sci. 21(2). 123-130.

Rudraiah N., Shivakumara I. S. and Friedrich R.: 1986, The effect of rotation on linear and non-linear
double-diffusive convection in a sparsely packed, porous medium, Int. J. Heat Mass Trans. 29(9),
1301-1317.

Sanchez-Palencia, E.: 1980, Non Homogeneous Media and Vibration Theory, Vol. 127, Springer,
Lecture notes in Physics.

Vadasz, P.: 1993, Fluid flow through heterogeneous porous media in a rotating square channel,
Transport in Porous Media 12, 43-54.

Vadasz, P.: 1997, Flow in rotating porous media, in: Prieur du Plessis (ed.). Fluid Transport in Porous
Media, Computational Mechanics Publications, Southampton.



